File size: 16,349 Bytes
cdeba15
 
 
 
 
56dfa8d
cdeba15
56dfa8d
cdeba15
 
 
 
464dc4d
 
 
cdeba15
 
 
 
 
 
 
f725887
052ad26
2848bc9
 
eb907ff
 
543d715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0cbdf3
 
 
 
 
cdeba15
 
 
 
 
 
 
f725887
cdeba15
 
 
f725887
 
cdeba15
 
 
 
 
 
 
 
 
 
 
 
 
9396cf3
cdeba15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
052ad26
 
 
 
cdeba15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9396cf3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100M<n<1B
- 10M<n<100M
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-retrieval
task_ids:
- entity-linking-retrieval
- fact-checking-retrieval
paperswithcode_id: nell
pretty_name: Never Ending Language Learning (NELL)
tags:
- relation-extraction
- text-to-structured
- text-to-tabular
dataset_info:
- config_name: nell_belief
  features:
  - name: entity
    dtype: string
  - name: relation
    dtype: string
  - name: value
    dtype: string
  - name: iteration_of_promotion
    dtype: string
  - name: score
    dtype: string
  - name: source
    dtype: string
  - name: entity_literal_strings
    dtype: string
  - name: value_literal_strings
    dtype: string
  - name: best_entity_literal_string
    dtype: string
  - name: best_value_literal_string
    dtype: string
  - name: categories_for_entity
    dtype: string
  - name: categories_for_value
    dtype: string
  - name: candidate_source
    dtype: string
  splits:
  - name: train
    num_bytes: 4592559704
    num_examples: 2766079
  download_size: 929107246
  dataset_size: 4592559704
- config_name: nell_candidate
  features:
  - name: entity
    dtype: string
  - name: relation
    dtype: string
  - name: value
    dtype: string
  - name: iteration_of_promotion
    dtype: string
  - name: score
    dtype: string
  - name: source
    dtype: string
  - name: entity_literal_strings
    dtype: string
  - name: value_literal_strings
    dtype: string
  - name: best_entity_literal_string
    dtype: string
  - name: best_value_literal_string
    dtype: string
  - name: categories_for_entity
    dtype: string
  - name: categories_for_value
    dtype: string
  - name: candidate_source
    dtype: string
  splits:
  - name: train
    num_bytes: 23497433060
    num_examples: 32687353
  download_size: 2687057812
  dataset_size: 23497433060
- config_name: nell_belief_sentences
  features:
  - name: entity
    dtype: string
  - name: relation
    dtype: string
  - name: value
    dtype: string
  - name: score
    dtype: string
  - name: sentence
    dtype: string
  - name: count
    dtype: int32
  - name: url
    dtype: string
  - name: sentence_type
    dtype: string
  splits:
  - name: train
    num_bytes: 4459368426
    num_examples: 21031531
  download_size: 929107246
  dataset_size: 4459368426
- config_name: nell_candidate_sentences
  features:
  - name: entity
    dtype: string
  - name: relation
    dtype: string
  - name: value
    dtype: string
  - name: score
    dtype: string
  - name: sentence
    dtype: string
  - name: count
    dtype: int32
  - name: url
    dtype: string
  - name: sentence_type
    dtype: string
  splits:
  - name: train
    num_bytes: 20058197787
    num_examples: 100866414
  download_size: 2687057812
  dataset_size: 20058197787
config_names:
- nell_belief
- nell_belief_sentences
- nell_candidate
- nell_candidate_sentences
---

# Dataset Card for Never Ending Language Learning (NELL)

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
http://rtw.ml.cmu.edu/rtw/
- **Repository:**
http://rtw.ml.cmu.edu/rtw/
- **Paper:**
Never-Ending Learning.
T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, J. Welling. In Proceedings of the Conference on Artificial Intelligence (AAAI), 2015

### Dataset Summary

This dataset provides version 1115 of the belief
extracted by CMU's Never Ending Language Learner (NELL) and version
1110 of the candidate belief extracted by NELL. See
http://rtw.ml.cmu.edu/rtw/overview.  NELL is an open information
extraction system that attempts to read the Clueweb09 of 500 million
web pages (http://boston.lti.cs.cmu.edu/Data/clueweb09/) and general
web searches.

The dataset has 4 configurations: nell_belief, nell_candidate,
nell_belief_sentences, and nell_candidate_sentences. nell_belief is
certainties of belief are lower. The two sentences config extracts the
CPL sentence patterns filled with the applicable 'best' literal string
for the entities filled into the sentence patterns. And also provides
sentences found using web searches containing the entities and
relationships.

There are roughly 21M entries for nell_belief_sentences, and 100M
sentences for nell_candidate_sentences.

From the NELL website:

- **Research Goal**
To build a never-ending machine learning system that acquires the ability to extract structured information from unstructured web pages. If successful, this will result in a knowledge base (i.e., a relational database) of structured information that mirrors the content of the Web. We call this system NELL (Never-Ending Language Learner).

- **Approach**
The inputs to NELL include (1) an initial ontology defining hundreds of categories (e.g., person, sportsTeam, fruit, emotion) and relations (e.g., playsOnTeam(athlete,sportsTeam), playsInstrument(musician,instrument)) that NELL is expected to read about, and (2) 10 to 15 seed examples of each category and relation.

Given these inputs, plus a collection of 500 million web pages and access to the remainder of the web through search engine APIs, NELL runs 24 hours per day, continuously, to perform two ongoing tasks:

Extract new instances of categories and relations. In other words, find noun phrases that represent new examples of the input categories (e.g., "Barack Obama" is a person and politician), and find pairs of noun phrases that correspond to instances of the input relations (e.g., the pair "Jason Giambi" and "Yankees" is an instance of the playsOnTeam relation). These new instances are added to the growing knowledge base of structured beliefs.
Learn to read better than yesterday. NELL uses a variety of methods to extract beliefs from the web. These are retrained, using the growing knowledge base as a self-supervised collection of training examples. The result is a semi-supervised learning method that couples the training of hundreds of different extraction methods for a wide range of categories and relations. Much of NELL’s current success is due to its algorithm for coupling the simultaneous training of many extraction methods.

For more information, see: http://rtw.ml.cmu.edu/rtw/resources

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages
en, and perhaps some others

## Dataset Structure

### Data Instances

There are four configurations for the dataset: nell_belief, nell_candidate, nell_belief_sentences, nell_candidate_sentences. 

nell_belief and nell_candidate defines:

``
{'best_entity_literal_string': 'Aspect Medical Systems',
 'best_value_literal_string': '',
 'candidate_source': '%5BSEAL-Iter%3A215-2011%2F02%2F26-04%3A27%3A09-%3Ctoken%3Daspect_medical_systems%2Cbiotechcompany%3E-From%3ACategory%3Abiotechcompany-using-KB+http%3A%2F%2Fwww.unionegroup.com%2Fhealthcare%2Fmfg_info.htm+http%3A%2F%2Fwww.conventionspc.com%2Fcompanies.html%2C+CPL-Iter%3A1103-2018%2F03%2F08-15%3A32%3A34-%3Ctoken%3Daspect_medical_systems%2Cbiotechcompany%3E-grant+support+from+_%092%09research+support+from+_%094%09unrestricted+educational+grant+from+_%092%09educational+grant+from+_%092%09research+grant+support+from+_%091%09various+financial+management+positions+at+_%091%5D',
 'categories_for_entity': 'concept:biotechcompany',
 'categories_for_value': 'concept:company',
 'entity': 'concept:biotechcompany:aspect_medical_systems',
 'entity_literal_strings': '"Aspect Medical Systems" "aspect medical systems"',
 'iteration_of_promotion': '1103',
 'relation': 'generalizations',
 'score': '0.9244426550775064',
 'source': 'MBL-Iter%3A1103-2018%2F03%2F18-01%3A35%3A42-From+ErrorBasedIntegrator+%28SEAL%28aspect_medical_systems%2Cbiotechcompany%29%2C+CPL%28aspect_medical_systems%2Cbiotechcompany%29%29',
 'value': 'concept:biotechcompany',
 'value_literal_strings': ''}
``

nell_belief_sentences, nell_candidate_sentences defines:

``
{'count': 4,
 'entity': 'biotechcompany:aspect_medical_systems',
 'relation': 'generalizations',
 'score': '0.9244426550775064',
 'sentence': 'research support from [[ Aspect Medical Systems ]]',
 'sentence_type': 'CPL',
 'url': '',
 'value': 'biotechcompany'}
``

### Data Fields

For nell_belief and nell_canddiate configurations. From http://rtw.ml.cmu.edu/rtw/faq:
* entity: The Entity part of the (Entity, Relation, Value) tripple. Note that this will be the name of a concept and is not the literal string of characters seen by NELL from some text source, nor does it indicate the category membership of that concept
* relation: The Relation part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be "generalizations". In the case of a relation instance, this will be the name of the relation.
* value: The Value part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be the name of the category. In the case of a relation instance, this will be another concept (like Entity).
* iteration_of_promotion: The point in NELL's life at which this category or relation instance was promoted to one that NELL beleives to be true. This is a non-negative integer indicating the number of iterations of bootstrapping NELL had gone through.
* score: A confidence score for the belief. Note that NELL's scores are not actually probabilistic at this time.
* source: A summary of the provenance for the belief indicating the set of learning subcomponents (CPL, SEAL, etc.) that had submitted this belief as being potentially true.
* entity_literal_strings: The set of actual textual strings that NELL has read that it believes can refer to the concept indicated in the Entity column.
* value_literal_strings: For relations, the set of actual textual strings that NELL has read that it believes can refer to the concept indicated in the Value column. For categories, this should be empty but may contain something spurious.
* best_entity_literal_string: Of the set of strings in the Entity literalStrings, column, which one string can best be used to describe the concept.
* best_value_literal_string: Same thing, but for Value literalStrings.
* categories_for_entity: The full set of categories (which may be empty) to which NELL belives the concept indicated in the Entity column to belong.
* categories_for_value: For relations, the full set of categories (which may be empty) to which NELL believes the concept indicated in the Value column to belong. For categories, this should be empty but may contain something spurious.
* candidate_source: A free-form amalgamation of more specific provenance information describing the justification(s) NELL has for possibly believing this category or relation instance.

For the nell_belief_sentences and nell_candidate_sentences, we have extracted the underlying sentences, sentence count and URLs and provided a shortened version of the entity, relation and value field by removing the string "concept:" and "candidate:". There are two types of sentences, 'CPL' and 'OE', which are generated by two of the modules of NELL, pattern matching and open web searching, respectively. There may be duplicates. The configuration is as follows:
* entity: The Entity part of the (Entity, Relation, Value) tripple. Note that this will be the name of a concept and is not the literal string of characters seen by NELL from some text source, nor does it indicate the category membership of that concept
* relation: The Relation part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be "generalizations". In the case of a relation instance, this will be the name of the relation.
* value: The Value part of the (Entity, Relation, Value) tripple. In the case of a category instance, this will be the name of the category. In the case of a relation instance, this will be another concept (like Entity).
* score: A confidence score for the belief. Note that NELL's scores are not actually probabilistic at this time.
* sentence: the raw sentence. For 'CPL' type sentences, there are "[[" "]]" arounds the entity and value. For 'OE' type sentences, there are no "[[" and "]]".
* url: the url if there is one from which this sentence was extracted
* count: the count for this sentence
* sentence_type: either 'CPL' or 'OE'

### Data Splits

There are no splits. 

## Dataset Creation

### Curation Rationale

This dataset was gathered and created over many years of running the NELL system on web data.

### Source Data

#### Initial Data Collection and Normalization

See the research paper on NELL. NELL searches a subset of the web
(Clueweb09) and the open web using various open information extraction
algorithms, including pattern matching.

#### Who are the source language producers?

The NELL authors at Carnegie Mellon Univiersty and data from Cluebweb09 and the open web. 

### Annotations

#### Annotation process

The various open information extraction modules of NELL.

#### Who are the annotators?

Machine annotated.

### Personal and Sensitive Information

Unkown, but likely there are names of famous individuals.

## Considerations for Using the Data

### Social Impact of Dataset

The goal for the work is to help machines learn to read and understand the web.

### Discussion of Biases

Since the data is gathered from the web, there is likely to be biased text and relationships.

[More Information Needed]

### Other Known Limitations

The relationships and concepts gathered from NELL are not 100% accurate, and there could be errors (maybe as high as 30% error). 
See https://en.wikipedia.org/wiki/Never-Ending_Language_Learning

We did not 'tag' the entity and value in the 'OE' sentences, and this might be an extension in the future.

## Additional Information

### Dataset Curators

The authors of NELL at Carnegie Mellon Univeristy

### Licensing Information

There does not appear to be a license on http://rtw.ml.cmu.edu/rtw/resources. The data is made available by CMU on the web. 

### Citation Information
@inproceedings{mitchell2015,
  added-at = {2015-01-27T15:35:24.000+0100},
  author = {Mitchell, T. and Cohen, W. and Hruscha, E. and Talukdar, P. and Betteridge, J. and Carlson, A. and Dalvi, B. and Gardner, M. and Kisiel, B. and Krishnamurthy, J. and Lao, N. and Mazaitis, K. and Mohammad, T. and Nakashole, N. and Platanios, E. and Ritter, A. and Samadi, M. and Settles, B. and Wang, R. and Wijaya, D. and Gupta, A. and Chen, X. and Saparov, A. and Greaves, M. and Welling, J.},
  biburl = {https://www.bibsonomy.org/bibtex/263070703e6bb812852cca56574aed093/hotho},
  booktitle = {AAAI},
  description = {Papers by William W. Cohen},
  interhash = {52d0d71f6f5b332dabc1412f18e3a93d},
  intrahash = {63070703e6bb812852cca56574aed093},
  keywords = {learning nell ontology semantic toread},
  note = {: Never-Ending Learning in AAAI-2015},
  timestamp = {2015-01-27T15:35:24.000+0100},
  title = {Never-Ending Learning},
  url = {http://www.cs.cmu.edu/~wcohen/pubs.html},
  year = 2015
}


### Contributions

Thanks to [@ontocord](https://github.com/ontocord) for adding this dataset.