File size: 15,677 Bytes
1c3ffd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Int Rat
lemma mylemma_main_lt2
(p q r: β€)
(hpl: 4 β€ p)
(hql: 5 β€ q)
(hrl: 6 β€ r) :
(β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β) β€ β2 := by
have hβ: (β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β)
= (βp/β(p-1)) * (βq/β(q-1)) * (βr/β(r-1)) := by
norm_cast
simp
have hp: (βp/β(p-1):β) β€ ((4/3):β) := by
have gβ: 0 < (β(p - 1):β) := by
norm_cast
linarith [hpl]
have gβ: βp * β(3:β) β€ β(4:β) * (β(p - 1):β) := by
norm_cast
linarith
refine (div_le_iffβ gβ).mpr ?_
rw [div_mul_eq_mul_div]
refine (le_div_iffβ ?_).mpr gβ
norm_num
have hq: (βq/β(q-1)) β€ ((5/4):β) := by
have gβ: 0 < (β(q - 1):β) := by
norm_cast
linarith[hql]
have gβ: βq * β(4:β) β€ β(5:β) * (β(q - 1):β) := by
norm_cast
linarith
refine (div_le_iffβ gβ).mpr ?_
rw [div_mul_eq_mul_div]
refine (le_div_iffβ ?_).mpr gβ
norm_num
have hr: (βr/β(r-1)) β€ ((6/5):β) := by
have gβ: 0 < (β(r - 1):β) := by
norm_cast
linarith[hql]
have gβ: βr * β(5:β) β€ β(6:β) * (β(r - 1):β) := by
norm_cast
linarith
refine (div_le_iffβ gβ).mpr ?_
rw [div_mul_eq_mul_div]
refine (le_div_iffβ ?_).mpr gβ
norm_num
have hub: (βp/β(p-1)) * (βq/β(q-1)) * (βr/β(r-1)) β€ (4/3:β) * ((5/4):β) * ((6/5):β) := by
have hq_nonneg: 0 β€ (βq:β) := by
norm_cast
linarith
have hq_1_nonneg: 0 β€ (β(q - 1):β) := by
norm_cast
linarith
have hβ: 0 β€ (((q:β) / β(q - 1)):β) := by
exact div_nonneg hq_nonneg hq_1_nonneg
have hub1: (βp/β(p-1)) * (βq/β(q-1)) β€ ((4/3):β) * ((5/4):β) := by
exact mul_le_mul hp hq hβ (by norm_num)
have hr_nonneg: 0 β€ (βr:β) := by
norm_cast
linarith
have hr_1_nonneg: 0 β€ (β(r - 1):β) := by
norm_cast
linarith
have hβ: 0 β€ (((r:β) / β(r - 1)):β) := by
exact div_nonneg hr_nonneg hr_1_nonneg
exact mul_le_mul hub1 hr hβ (by norm_num)
norm_num at hub
rw [hβ]
norm_num
exact hub
lemma mylemma_k_lt_2
(p q r k: β€)
(hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
(hpl: 4 β€ p)
(hql: 5 β€ q)
(hrl: 6 β€ r)
(hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
(k < 2) := by
have hβ: (β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β) β€ β2 := by
exact mylemma_main_lt2 p q r hpl hql hrl
have hβ: βk = (β(p * q * r - 1):β) / (β((p - 1) * (q - 1) * (r - 1)):β) := by
have gβ: β(p * q * r - 1) = βk * (β((p - 1) * (q - 1) * (r - 1)):β) := by
norm_cast
linarith
symm
have gβ: (β((p - 1) * (q - 1) * (r - 1)):β) β 0 := by
norm_cast
linarith[hden]
exact (div_eq_iff gβ).mpr gβ
have hβ: βk < (β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β) := by
rw [hβ]
have gβ: (β(p * q * r - 1):β) < (β(p * q * r):β) := by
norm_cast
exact sub_one_lt (p * q * r)
have gβ: 0 < (β((p - 1) * (q - 1) * (r - 1)):β) := by
norm_cast
exact div_lt_div_of_pos_right gβ gβ
have hβ: (βk:β) < β2 := by
exact lt_of_lt_of_le hβ hβ
norm_cast at hβ
lemma mylemma_main_lt4
(p q r: β€)
(hpl: 2 β€ p)
(hql: 3 β€ q)
(hrl: 4 β€ r) :
(β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β) β€ β4 := by
have hβ: (β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β)
= (βp/β(p-1)) * (βq/β(q-1)) * (βr/β(r-1)) := by
norm_cast
simp
have hp: (βp/β(p-1):β) β€ β(2:β) := by
have gβ: 0 < (β(p - 1):β) := by
norm_cast
linarith[hpl]
have gβ: βp β€ β(2:β) * (β(p - 1):β) := by
norm_cast
linarith
exact (div_le_iffβ gβ).mpr gβ
have hq: (βq/β(q-1)) β€ ((3/2):β) := by
have gβ: 0 < (β(q - 1):β) := by
norm_cast
linarith[hql]
have gβ: βq * β(2:β) β€ β(3:β) * (β(q - 1):β) := by
norm_cast
linarith
refine (div_le_iffβ gβ).mpr ?_
rw [div_mul_eq_mul_div]
refine (le_div_iffβ ?_).mpr gβ
norm_num
have hr: (βr/β(r-1)) β€ ((4/3):β) := by
have gβ: 0 < (β(r - 1):β) := by
norm_cast
linarith[hql]
have gβ: βr * β(3:β) β€ β(4:β) * (β(r - 1):β) := by
norm_cast
linarith
refine (div_le_iffβ gβ).mpr ?_
rw [div_mul_eq_mul_div]
refine (le_div_iffβ ?_).mpr gβ
norm_num
have hub: (βp/β(p-1)) * (βq/β(q-1)) * (βr/β(r-1)) β€ (2:β) * ((3/2):β) * ((4/3):β) := by
have hq_nonneg: 0 β€ (βq:β) := by
norm_cast
linarith
have hq_1_nonneg: 0 β€ (β(q - 1):β) := by
norm_cast
linarith
have hβ: 0 β€ (((q:β) / β(q - 1)):β) := by
exact div_nonneg hq_nonneg hq_1_nonneg
have hub1: (βp/β(p-1)) * (βq/β(q-1)) β€ (2:β) * ((3/2):β) := by
exact mul_le_mul hp hq hβ (by norm_num)
have hr_nonneg: 0 β€ (βr:β) := by
norm_cast
linarith
have hr_1_nonneg: 0 β€ (β(r - 1):β) := by
norm_cast
linarith
have hβ: 0 β€ (((r:β) / β(r - 1)):β) := by
exact div_nonneg hr_nonneg hr_1_nonneg
exact mul_le_mul hub1 hr hβ (by norm_num)
norm_num at hub
rw [hβ]
norm_num
exact hub
lemma mylemma_k_lt_4
(p q r k: β€)
(hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
(hpl: 2 β€ p)
(hql: 3 β€ q)
(hrl: 4 β€ r)
(hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
(k < 4) := by
have hβ: (β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β) β€ β4 := by
exact mylemma_main_lt4 p q r hpl hql hrl
have hβ: βk = (β(p * q * r - 1):β) / (β((p - 1) * (q - 1) * (r - 1)):β) := by
have gβ: β(p * q * r - 1) = βk * (β((p - 1) * (q - 1) * (r - 1)):β) := by
norm_cast
linarith
symm
have gβ: (β((p - 1) * (q - 1) * (r - 1)):β) β 0 := by
norm_cast
linarith [hden]
exact (div_eq_iff gβ).mpr gβ
have hβ: βk < (β(p * q * r) / β((p - 1) * (q - 1) * (r - 1)):β) := by
rw [hβ]
have gβ: (β(p * q * r - 1):β) < (β(p * q * r):β) := by
norm_cast
exact sub_one_lt (p * q * r)
have gβ: 0 < (β((p - 1) * (q - 1) * (r - 1)):β) := by
norm_cast
exact div_lt_div_of_pos_right gβ gβ
have hβ: (βk:β) < β4 := by
exact lt_of_lt_of_le hβ hβ
norm_cast at hβ
lemma mylemma_k_gt_1
(p q r k: β€)
(hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
(hβ: βk = (β(p * q * r - 1):β) / (β((p - 1) * (q - 1) * (r - 1)):β))
(hpl: 2 β€ p)
(hql: 3 β€ q)
(hrl: 4 β€ r)
(hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
(1 < k) := by
have hk0: 0 < (βk:β) := by
have gβ: 2*3*4 β€ p * q * r := by
have gβ: 2*3 β€ p * q := by
exact mul_le_mul hpl hql (by norm_num) (by linarith[hpl])
exact mul_le_mul gβ hrl (by norm_num) (by linarith[gβ])
have gβ: 0 < (β(p * q * r - 1):β) := by
norm_cast
linarith[gβ]
have gβ: 0 < (β((p - 1) * (q - 1) * (r - 1)):β) := by
norm_cast
rw [hβ]
exact div_pos gβ gβ
norm_cast at hk0
by_contra hc
push_neg at hc
interval_cases k
simp at hk
exfalso
have gβ: p*q + q*r + r*p = p+q+r := by linarith
have gβ: p < p*q := by exact lt_mul_right (by linarith) (by linarith)
have gβ: q < q*r := by exact lt_mul_right (by linarith) (by linarith)
have gβ: r < r*p := by exact lt_mul_right (by linarith) (by linarith)
have gβ
: p+q+r < p*q + q*r + r*p := by linarith[gβ,gβ,gβ]
linarith [gβ,gβ
]
lemma mylemma_p_lt_4
(p q r k: β€)
(hβ : 1 < p β§ p < q β§ q < r)
(hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
(hβ: βk = (β(p * q * r - 1):β) / (β((p - 1) * (q - 1) * (r - 1)):β))
(hpl: 2 β€ p)
(hql: 3 β€ q)
(hrl: 4 β€ r)
(hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
(p < 4) := by
by_contra hcp
push_neg at hcp
have hcq: 5 β€ q := by linarith
have hcr: 6 β€ r := by linarith
have hβ: k < 2 := by exact mylemma_k_lt_2 p q r k hk hcp hcq hcr hden
have hβ: 1 < k := by exact mylemma_k_gt_1 p q r k hk hβ hpl hql hrl hden
linarith
lemma q_r_divisor_of_prime
(q r : β€)
(p: β)
(hβ : q * r = βp)
(hβ: Nat.Prime p) :
q = -1 β¨ q = 1 β¨ q = -p β¨ q = p := by
have hq : q β 0 := by
intro h
rw [h] at hβ
simp at hβ
symm at hβ
norm_cast at hβ
rw [hβ] at hβ
exact Nat.not_prime_zero hβ
have hr : r β 0 := by
intro h
rw [h] at hβ
simp at hβ
norm_cast at hβ
rw [β hβ] at hβ
exact Nat.not_prime_zero hβ
have hqr : abs q * abs r = p := by
have hβ: abs q = q.natAbs := by exact abs_eq_natAbs q
have hβ: abs r = r.natAbs := by exact abs_eq_natAbs r
rw [hβ,hβ]
norm_cast
exact Int.natAbs_mul_natAbs_eq hβ
have h_abs: abs (β(q.natAbs):β€) = 1 β¨ abs q = p := by
cases' Int.natAbs_eq q with h_1 h_2
. rw [h_1] at hqr
have hβ: abs (β(q.natAbs):β€) β£ p := by exact Dvd.intro (abs r) hqr
have hβ: (β(q.natAbs):β) β£ p := by
norm_cast at *
have hβ: (β(q.natAbs):β) = 1 β¨ (β(q.natAbs):β) = p := by
exact Nat.Prime.eq_one_or_self_of_dvd hβ (β(q.natAbs):β) hβ
cases' hβ with hββ hββ
. left
norm_cast at *
have hβ
: abs q = q.natAbs := by exact abs_eq_natAbs q
right
rw [hβ
]
norm_cast at *
. rw [h_2] at hqr
rw [abs_neg _] at hqr
have hβ: abs (β(q.natAbs):β€) β£ p := by exact Dvd.intro (abs r) hqr
have hβ: (β(q.natAbs):β) β£ p := by
norm_cast at *
have hβ: (β(q.natAbs):β) = 1 β¨ (β(q.natAbs):β) = p := by
exact Nat.Prime.eq_one_or_self_of_dvd hβ (β(q.natAbs):β) hβ
cases' hβ with hββ hββ
. left
norm_cast at *
. have hβ
: abs q = q.natAbs := by exact abs_eq_natAbs q
right
rw [hβ
]
norm_cast
cases' h_abs with hq_abs hq_abs
. norm_cast at *
have hβ: q = β(q.natAbs) β¨ q = -β(q.natAbs) := by
exact Int.natAbs_eq q
rw [hq_abs] at hβ
norm_cast at hβ
cases' hβ with hββ hββ
. right
left
exact hββ
. left
exact hββ
. right
right
have hβ: abs q = q.natAbs := by exact abs_eq_natAbs q
rw [hβ] at hq_abs
norm_cast at hq_abs
refine or_comm.mp ?_
refine (Int.natAbs_eq_natAbs_iff).mp ?_
norm_cast
lemma mylemma_qr_11
(q r: β€)
(hβ: (4 - q) * (4 - r) = 11) :
(4 - q = -1 β¨ 4 - q = 1 β¨ 4 - q = -11 β¨ 4 - q = 11) := by
have hβ: Nat.Prime (11) := by decide
exact q_r_divisor_of_prime (4-q) (4-r) 11 hβ hβ
lemma mylemma_qr_5
(q r: β€)
(hβ: (q - 3) * (r - 3) = 5) :
(q - 3 = -1 β¨ q - 3 = 1 β¨ q - 3 = -5 β¨ q - 3 = 5) := by
have hβ: Nat.Prime (5) := by decide
exact q_r_divisor_of_prime (q - 3) (r - 3) 5 hβ hβ
lemma mylemma_63qr_5
(q r: β€)
(hβ: (6 - 3*q) * (2 - r) = 5) :
(6 - 3*q = -1 β¨ 6 - 3*q = 1 β¨ 6 - 3*q = -5 β¨ 6 - 3*q = 5) := by
have hβ: Nat.Prime (5) := by decide
exact q_r_divisor_of_prime (6 - 3*q) (2 - r) 5 hβ hβ
lemma mylemma_case_k_2
(p q r: β€)
(hβ: 1 < p β§ p < q β§ q < r)
(hpl: 2 β€ p)
(hql: 3 β€ q)
(hrl: 4 β€ r)
(hpu: p < 4)
(hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * 2) :
(p, q, r) = (2, 4, 8) β¨ (p, q, r) = (3, 5, 15) := by
interval_cases p
. exfalso
norm_num at *
have gβ: 2*q + 2*r = 3 := by linarith
linarith [gβ,hql,hrl]
. right
norm_num at *
-- have gβ: q*r - 4*q - 4*r + 5 = 0 := by linarith
have gβ: (4-q)*(4-r) = 11 := by linarith
have gβ: (4-q) = -1 β¨ (4-q) = 1 β¨ (4-q) = -11 β¨ (4-q) = 11 := by
exact mylemma_qr_11 q r gβ
cases' gβ with gββ gββ
. have hq: q = 5 := by linarith
constructor
. exact hq
. rw [hq] at gβ
linarith[gβ]
. exfalso
cases' gββ with gββ gββ
. have hq: q = 3 := by linarith[gββ]
rw [hq] at gβ
have hr: r = -7 := by linarith[gβ]
linarith[hrl,hr]
. cases' gββ with gββ gββ
. have hq: q = 15 := by linarith[gββ]
rw [hq] at gβ
have hr: r = 5 := by linarith[gβ]
linarith[hq,hr,hβ.2]
. have hq: q = -7 := by linarith[gββ]
linarith[hq,hql]
lemma mylemma_case_k_3
(p q r: β€)
(hβ: 1 < p β§ p < q β§ q < r)
(hpl: 2 β€ p)
(hql: 3 β€ q)
(hrl: 4 β€ r)
(hpu: p < 4)
(hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * 3) :
(p, q, r) = (2, 4, 8) β¨ (p, q, r) = (3, 5, 15) := by
interval_cases p
-- p = 2
. norm_num at *
-- have gβ: q*r - 3*q - 3*r + 4 = 0 := by linarith
have gβ: (q-3)*(r-3) = 5 := by linarith
have gβ: (q-3) = -1 β¨ (q-3) = 1 β¨ (q-3) = -5 β¨ (q-3) = 5 := by
exact mylemma_qr_5 q r gβ
cases' gβ with gββ gββ
. exfalso
linarith [hql,gββ]
. cases' gββ with gββ gββ
. have hq: q = 4 := by linarith
rw [hq] at gβ
have hr: r = 8 := by linarith[gβ]
exact { left := hq, right := hr }
. exfalso
cases' gββ with gββ gββ
. linarith[hql,gββ]
. have hq: q = 8 := by linarith
rw [hq] at gβ
norm_num at gβ
have hr: r = 4 := by linarith
linarith[hrl,hr]
-- p = 3
. right
norm_num at *
-- have gβ: 3 * q * r - 6 * q - 6 * r + 7 = 0 := by linarith
have gβ: (6 - 3*q) * (2 - r) = 5 := by linarith
have gβ: (6 - 3*q) = -1 β¨ (6 - 3*q) = 1 β¨ (6 - 3*q) = -5 β¨ (6 - 3*q) = 5 := by
exact mylemma_63qr_5 q r gβ
exfalso
cases' gβ with gββ gββ
. linarith[gββ,q]
. cases' gββ with gββ gββ
. linarith[gββ,q]
. cases' gββ with gββ gββ
. linarith[gββ,q]
. linarith[gββ,q]
theorem imo_1992_p1
(p q r : β€)
(hβ : 1 < p β§ p < q β§ q < r)
(hβ : (p - 1) * (q - 1) * (r - 1)β£(p * q * r - 1)) :
(p, q, r) = (2, 4, 8) β¨ (p, q, r) = (3, 5, 15) := by
cases' hβ with k hk
have hpl: 2 β€ p := by linarith
have hql: 3 β€ q := by linarith
have hrl: 4 β€ r := by linarith
have hden: 0 < (((p - 1) * (q - 1)) * (r - 1)) := by
have gp: 0 < (p - 1) := by linarith
have gq: 0 < (q - 1) := by linarith
have gr: 0 < (r - 1) := by linarith
exact mul_pos (mul_pos gp gq) gr
have hβ: βk = (β(p * q * r - 1):β) / (β((p - 1) * (q - 1) * (r - 1)):β) := by
have gβ: β(p * q * r - 1) = βk * (β((p - 1) * (q - 1) * (r - 1)):β) := by
norm_cast
linarith
symm
have gβ: (β((p - 1) * (q - 1) * (r - 1)):β) β 0 := by
norm_cast
linarith[hden]
exact (div_eq_iff gβ).mpr gβ
have hk4: k < 4 := by exact mylemma_k_lt_4 p q r k hk hpl hql hrl hden
have hk1: 1 < k := by exact mylemma_k_gt_1 p q r k hk hβ hpl hql hrl hden
have hpu: p < 4 := by exact mylemma_p_lt_4 p q r k hβ hk hβ hpl hql hrl hden
interval_cases k
. exact mylemma_case_k_2 p q r hβ hpl hql hrl hpu hk
. exact mylemma_case_k_3 p q r hβ hpl hql hrl hpu hk
|