File size: 15,677 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import Mathlib
set_option linter.unusedVariables.analyzeTactics true

open Int Rat


lemma mylemma_main_lt2
  (p q r: β„€)
  (hpl: 4 ≀ p)
  (hql: 5 ≀ q)
  (hrl: 6 ≀ r) :
  (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š) ≀ ↑2 := by
  have h₁: (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š)
    = (↑p/↑(p-1)) * (↑q/↑(q-1)) * (↑r/↑(r-1)) := by
    norm_cast
    simp
  have hp: (↑p/↑(p-1):β„š) ≀ ((4/3):β„š) := by
    have g₁: 0 < (↑(p - 1):β„š) := by
      norm_cast
      linarith [hpl]
    have gβ‚‚: ↑p * ↑(3:β„š) ≀ ↑(4:β„š) * (↑(p - 1):β„š) := by
      norm_cast
      linarith
    refine (div_le_iffβ‚€ g₁).mpr ?_
    rw [div_mul_eq_mul_div]
    refine (le_div_iffβ‚€ ?_).mpr gβ‚‚
    norm_num
  have hq: (↑q/↑(q-1)) ≀ ((5/4):β„š) := by
    have g₁: 0 < (↑(q - 1):β„š) := by
      norm_cast
      linarith[hql]
    have gβ‚‚: ↑q * ↑(4:β„š) ≀ ↑(5:β„š) * (↑(q - 1):β„š) := by
      norm_cast
      linarith
    refine (div_le_iffβ‚€ g₁).mpr ?_
    rw [div_mul_eq_mul_div]
    refine (le_div_iffβ‚€ ?_).mpr gβ‚‚
    norm_num
  have hr: (↑r/↑(r-1)) ≀ ((6/5):β„š) := by
    have g₁: 0 < (↑(r - 1):β„š) := by
      norm_cast
      linarith[hql]
    have gβ‚‚: ↑r * ↑(5:β„š) ≀ ↑(6:β„š) * (↑(r - 1):β„š) := by
      norm_cast
      linarith
    refine (div_le_iffβ‚€ g₁).mpr ?_
    rw [div_mul_eq_mul_div]
    refine (le_div_iffβ‚€ ?_).mpr gβ‚‚
    norm_num
  have hub: (↑p/↑(p-1)) * (↑q/↑(q-1)) * (↑r/↑(r-1)) ≀ (4/3:β„š) * ((5/4):β„š) * ((6/5):β„š) := by
    have hq_nonneg: 0 ≀ (↑q:β„š) := by
      norm_cast
      linarith
    have hq_1_nonneg: 0 ≀ (↑(q - 1):β„š) := by
      norm_cast
      linarith
    have hβ‚‚: 0 ≀ (((q:β„š) / ↑(q - 1)):β„š) := by
      exact div_nonneg hq_nonneg hq_1_nonneg
    have hub1: (↑p/↑(p-1)) * (↑q/↑(q-1)) ≀ ((4/3):β„š) * ((5/4):β„š) := by
      exact mul_le_mul hp hq hβ‚‚ (by norm_num)
    have hr_nonneg: 0 ≀ (↑r:β„š) := by
      norm_cast
      linarith
    have hr_1_nonneg: 0 ≀ (↑(r - 1):β„š) := by
      norm_cast
      linarith
    have h₃: 0 ≀ (((r:β„š) / ↑(r - 1)):β„š) := by
      exact div_nonneg hr_nonneg hr_1_nonneg
    exact mul_le_mul hub1 hr h₃ (by norm_num)
  norm_num at hub
  rw [h₁]
  norm_num
  exact hub


lemma mylemma_k_lt_2
  (p q r k: β„€)
  (hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
  (hpl: 4 ≀ p)
  (hql: 5 ≀ q)
  (hrl: 6 ≀ r)
  (hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
  (k < 2) := by
  have h₁: (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š) ≀ ↑2 := by
    exact mylemma_main_lt2 p q r hpl hql hrl
  have hβ‚‚: ↑k = (↑(p * q * r - 1):β„š) / (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
    have g₁: ↑(p * q * r - 1) = ↑k * (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
      norm_cast
      linarith
    symm
    have gβ‚‚: (↑((p - 1) * (q - 1) * (r - 1)):β„š) β‰  0 := by
      norm_cast
      linarith[hden]
    exact (div_eq_iff gβ‚‚).mpr g₁
  have h₃: ↑k < (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
    rw [hβ‚‚]
    have g₁: (↑(p * q * r - 1):β„š) < (↑(p * q * r):β„š) := by
      norm_cast
      exact sub_one_lt (p * q * r)
    have gβ‚‚: 0 < (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
      norm_cast
    exact div_lt_div_of_pos_right g₁ gβ‚‚
  have hβ‚„: (↑k:β„š) < ↑2 := by
    exact lt_of_lt_of_le h₃ h₁
  norm_cast at hβ‚„


lemma mylemma_main_lt4
  (p q r: β„€)
  (hpl: 2 ≀ p)
  (hql: 3 ≀ q)
  (hrl: 4 ≀ r) :
  (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š) ≀ ↑4 := by
  have h₁: (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š)
      = (↑p/↑(p-1)) * (↑q/↑(q-1)) * (↑r/↑(r-1)) := by
    norm_cast
    simp
  have hp: (↑p/↑(p-1):β„š) ≀ ↑(2:β„š) := by
    have g₁: 0 < (↑(p - 1):β„š) := by
      norm_cast
      linarith[hpl]
    have gβ‚‚: ↑p ≀ ↑(2:β„š) * (↑(p - 1):β„š) := by
      norm_cast
      linarith
    exact (div_le_iffβ‚€ g₁).mpr gβ‚‚
  have hq: (↑q/↑(q-1)) ≀ ((3/2):β„š) := by
    have g₁: 0 < (↑(q - 1):β„š) := by
      norm_cast
      linarith[hql]
    have gβ‚‚: ↑q * ↑(2:β„š) ≀ ↑(3:β„š) * (↑(q - 1):β„š) := by
      norm_cast
      linarith
    refine (div_le_iffβ‚€ g₁).mpr ?_
    rw [div_mul_eq_mul_div]
    refine (le_div_iffβ‚€ ?_).mpr gβ‚‚
    norm_num
  have hr: (↑r/↑(r-1)) ≀ ((4/3):β„š) := by
    have g₁: 0 < (↑(r - 1):β„š) := by
      norm_cast
      linarith[hql]
    have gβ‚‚: ↑r * ↑(3:β„š) ≀ ↑(4:β„š) * (↑(r - 1):β„š) := by
      norm_cast
      linarith
    refine (div_le_iffβ‚€ g₁).mpr ?_
    rw [div_mul_eq_mul_div]
    refine (le_div_iffβ‚€ ?_).mpr gβ‚‚
    norm_num
  have hub: (↑p/↑(p-1)) * (↑q/↑(q-1)) * (↑r/↑(r-1)) ≀ (2:β„š) * ((3/2):β„š) * ((4/3):β„š) := by
    have hq_nonneg: 0 ≀ (↑q:β„š) := by
      norm_cast
      linarith
    have hq_1_nonneg: 0 ≀ (↑(q - 1):β„š) := by
      norm_cast
      linarith
    have hβ‚‚: 0 ≀ (((q:β„š) / ↑(q - 1)):β„š) := by
      exact div_nonneg hq_nonneg hq_1_nonneg
    have hub1: (↑p/↑(p-1)) * (↑q/↑(q-1)) ≀ (2:β„š) * ((3/2):β„š) := by
      exact mul_le_mul hp hq hβ‚‚ (by norm_num)
    have hr_nonneg: 0 ≀ (↑r:β„š) := by
      norm_cast
      linarith
    have hr_1_nonneg: 0 ≀ (↑(r - 1):β„š) := by
      norm_cast
      linarith
    have h₃: 0 ≀ (((r:β„š) / ↑(r - 1)):β„š) := by
      exact div_nonneg hr_nonneg hr_1_nonneg
    exact mul_le_mul hub1 hr h₃ (by norm_num)
  norm_num at hub
  rw [h₁]
  norm_num
  exact hub



lemma mylemma_k_lt_4
  (p q r k: β„€)
  (hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
  (hpl: 2 ≀ p)
  (hql: 3 ≀ q)
  (hrl: 4 ≀ r)
  (hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
  (k < 4) := by
  have h₁: (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š) ≀ ↑4 := by
    exact mylemma_main_lt4 p q r hpl hql hrl
  have hβ‚‚: ↑k = (↑(p * q * r - 1):β„š) / (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
    have g₁: ↑(p * q * r - 1) = ↑k * (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
      norm_cast
      linarith
    symm
    have gβ‚‚: (↑((p - 1) * (q - 1) * (r - 1)):β„š) β‰  0 := by
      norm_cast
      linarith [hden]
    exact (div_eq_iff gβ‚‚).mpr g₁
  have h₃: ↑k < (↑(p * q * r) / ↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
    rw [hβ‚‚]
    have g₁: (↑(p * q * r - 1):β„š) < (↑(p * q * r):β„š) := by
      norm_cast
      exact sub_one_lt (p * q * r)
    have gβ‚‚: 0 < (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
      norm_cast
    exact div_lt_div_of_pos_right g₁ gβ‚‚
  have hβ‚„: (↑k:β„š) < ↑4 := by
    exact lt_of_lt_of_le h₃ h₁
  norm_cast at hβ‚„



lemma mylemma_k_gt_1
  (p q r k: β„€)
  (hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
  (h₁: ↑k = (↑(p * q * r - 1):β„š) / (↑((p - 1) * (q - 1) * (r - 1)):β„š))
  (hpl: 2 ≀ p)
  (hql: 3 ≀ q)
  (hrl: 4 ≀ r)
  (hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
  (1 < k) := by
  have hk0: 0 < (↑k:β„š) := by
    have g₁: 2*3*4 ≀ p * q * r := by
      have gβ‚‚: 2*3 ≀ p * q := by
        exact mul_le_mul hpl hql (by norm_num) (by linarith[hpl])
      exact mul_le_mul gβ‚‚ hrl (by norm_num) (by linarith[gβ‚‚])
    have gβ‚‚: 0 < (↑(p * q * r - 1):β„š) := by
      norm_cast
      linarith[g₁]
    have g₃: 0 < (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
      norm_cast
    rw [h₁]
    exact div_pos gβ‚‚ g₃
  norm_cast at hk0
  by_contra hc
  push_neg at hc
  interval_cases k
  simp at hk
  exfalso
  have g₁: p*q + q*r + r*p = p+q+r := by linarith
  have gβ‚‚: p < p*q := by exact lt_mul_right (by linarith) (by linarith)
  have g₃: q < q*r := by exact lt_mul_right (by linarith) (by linarith)
  have gβ‚„: r < r*p := by exact lt_mul_right (by linarith) (by linarith)
  have gβ‚…: p+q+r < p*q + q*r + r*p := by linarith[gβ‚‚,g₃,gβ‚„]
  linarith [g₁,gβ‚…]



lemma mylemma_p_lt_4
  (p q r k: β„€)
  (hβ‚€ : 1 < p ∧ p < q ∧ q < r)
  (hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * k)
  (h₁: ↑k = (↑(p * q * r - 1):β„š) / (↑((p - 1) * (q - 1) * (r - 1)):β„š))
  (hpl: 2 ≀ p)
  (hql: 3 ≀ q)
  (hrl: 4 ≀ r)
  (hden: 0 < (p - 1) * (q - 1) * (r - 1) ) :
  (p < 4) := by
  by_contra hcp
  push_neg at hcp
  have hcq: 5 ≀ q := by linarith
  have hcr: 6 ≀ r := by linarith
  have h₃: k < 2 := by exact mylemma_k_lt_2 p q r k hk hcp hcq hcr hden
  have hβ‚„: 1 < k := by exact mylemma_k_gt_1 p q r k hk h₁ hpl hql hrl hden
  linarith


lemma q_r_divisor_of_prime
  (q r : β„€)
  (p: β„•)
  (hβ‚€ : q * r = ↑p)
  (h₁: Nat.Prime p) :
  q = -1 ∨ q = 1 ∨ q = -p ∨ q = p := by
  have hq : q β‰  0 := by
    intro h
    rw [h] at hβ‚€
    simp at hβ‚€
    symm at hβ‚€
    norm_cast at hβ‚€
    rw [hβ‚€] at h₁
    exact Nat.not_prime_zero h₁
  have hr : r β‰  0 := by
    intro h
    rw [h] at hβ‚€
    simp at hβ‚€
    norm_cast at hβ‚€
    rw [← hβ‚€] at h₁
    exact Nat.not_prime_zero h₁
  have hqr : abs q * abs r = p := by
    have h₃: abs q = q.natAbs := by exact abs_eq_natAbs q
    have hβ‚„: abs r = r.natAbs := by exact abs_eq_natAbs r
    rw [h₃,hβ‚„]
    norm_cast
    exact Int.natAbs_mul_natAbs_eq hβ‚€
  have h_abs: abs (↑(q.natAbs):β„€) = 1 ∨ abs q = p := by
    cases' Int.natAbs_eq q with h_1 h_2
    . rw [h_1] at hqr
      have hβ‚‚: abs (↑(q.natAbs):β„€) ∣ p := by exact Dvd.intro (abs r) hqr
      have h₃: (↑(q.natAbs):β„•) ∣ p := by
        norm_cast at *
      have hβ‚„: (↑(q.natAbs):β„•) = 1 ∨ (↑(q.natAbs):β„•) = p := by
        exact Nat.Prime.eq_one_or_self_of_dvd h₁ (↑(q.natAbs):β„•) h₃
      cases' hβ‚„ with hβ‚„β‚€ h₄₁
      . left
        norm_cast at *
      have hβ‚…: abs q = q.natAbs := by exact abs_eq_natAbs q
      right
      rw [hβ‚…]
      norm_cast at *
    . rw [h_2] at hqr
      rw [abs_neg _] at hqr
      have hβ‚‚: abs (↑(q.natAbs):β„€) ∣ p := by exact Dvd.intro (abs r) hqr
      have h₃: (↑(q.natAbs):β„•) ∣ p := by
        norm_cast at *
      have hβ‚„: (↑(q.natAbs):β„•) = 1 ∨ (↑(q.natAbs):β„•) = p := by
        exact Nat.Prime.eq_one_or_self_of_dvd h₁ (↑(q.natAbs):β„•) h₃
      cases' hβ‚„ with hβ‚„β‚€ h₄₁
      . left
        norm_cast at *
      . have hβ‚…: abs q = q.natAbs := by exact abs_eq_natAbs q
        right
        rw [hβ‚…]
        norm_cast
  cases' h_abs with hq_abs hq_abs
  . norm_cast at *
    have hβ‚„: q = ↑(q.natAbs) ∨ q = -↑(q.natAbs) := by
      exact Int.natAbs_eq q
    rw [hq_abs] at hβ‚„
    norm_cast at hβ‚„
    cases' hβ‚„ with hβ‚„β‚€ h₄₁
    . right
      left
      exact hβ‚„β‚€
    . left
      exact h₄₁
  . right
    right
    have hβ‚‚: abs q = q.natAbs := by exact abs_eq_natAbs q
    rw [hβ‚‚] at hq_abs
    norm_cast at hq_abs
    refine or_comm.mp ?_
    refine (Int.natAbs_eq_natAbs_iff).mp ?_
    norm_cast


lemma mylemma_qr_11
  (q r: β„€)
  (hβ‚€: (4 - q) * (4 - r) = 11) :
  (4 - q = -1 ∨ 4 - q = 1 ∨ 4 - q = -11 ∨ 4 - q = 11) := by
  have h₁: Nat.Prime (11) := by decide
  exact q_r_divisor_of_prime (4-q) (4-r) 11 hβ‚€ h₁


lemma mylemma_qr_5
  (q r: β„€)
  (hβ‚€: (q - 3) * (r - 3) = 5) :
  (q - 3 = -1 ∨ q - 3 = 1 ∨ q - 3 = -5 ∨ q - 3 = 5) := by
  have h₁: Nat.Prime (5) := by decide
  exact q_r_divisor_of_prime (q - 3) (r - 3) 5 hβ‚€ h₁


lemma mylemma_63qr_5
  (q r: β„€)
  (hβ‚€: (6 - 3*q) * (2 - r) = 5) :
  (6 - 3*q = -1 ∨ 6 - 3*q = 1 ∨ 6 - 3*q = -5 ∨ 6 - 3*q = 5) := by
  have h₁: Nat.Prime (5) := by decide
  exact q_r_divisor_of_prime (6 - 3*q) (2 - r) 5 hβ‚€ h₁


lemma mylemma_case_k_2
  (p q r: β„€)
  (hβ‚€: 1 < p ∧ p < q ∧ q < r)
  (hpl: 2 ≀ p)
  (hql: 3 ≀ q)
  (hrl: 4 ≀ r)
  (hpu: p < 4)
  (hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * 2) :
  (p, q, r) = (2, 4, 8) ∨ (p, q, r) = (3, 5, 15) := by
  interval_cases p
  . exfalso
    norm_num at *
    have g₁: 2*q + 2*r = 3 := by linarith
    linarith [g₁,hql,hrl]
  . right
    norm_num at *
    -- have g₁: q*r - 4*q - 4*r + 5 = 0 := by linarith
    have gβ‚‚: (4-q)*(4-r) = 11 := by linarith
    have g₃: (4-q) = -1 ∨ (4-q) = 1 ∨ (4-q) = -11 ∨ (4-q) = 11 := by
      exact mylemma_qr_11 q r gβ‚‚
    cases' g₃ with g₃₁ g₃₂
    . have hq: q = 5 := by linarith
      constructor
      . exact hq
      . rw [hq] at gβ‚‚
        linarith[gβ‚‚]
    . exfalso
      cases' g₃₂ with g₃₂ g₃₃
      . have hq: q = 3 := by linarith[g₃₂]
        rw [hq] at gβ‚‚
        have hr: r = -7 := by linarith[gβ‚‚]
        linarith[hrl,hr]
      . cases' g₃₃ with g₃₃ g₃₄
        . have hq: q = 15 := by linarith[g₃₃]
          rw [hq] at gβ‚‚
          have hr: r = 5 := by linarith[gβ‚‚]
          linarith[hq,hr,hβ‚€.2]
        . have hq: q = -7 := by linarith[g₃₄]
          linarith[hq,hql]


lemma mylemma_case_k_3
  (p q r: β„€)
  (hβ‚€: 1 < p ∧ p < q ∧ q < r)
  (hpl: 2 ≀ p)
  (hql: 3 ≀ q)
  (hrl: 4 ≀ r)
  (hpu: p < 4)
  (hk: p * q * r - 1 = (p - 1) * (q - 1) * (r - 1) * 3) :
  (p, q, r) = (2, 4, 8) ∨ (p, q, r) = (3, 5, 15) := by
  interval_cases p
  -- p = 2
  . norm_num at *
    -- have g₁: q*r - 3*q - 3*r + 4 = 0 := by linarith
    have gβ‚‚: (q-3)*(r-3) = 5 := by linarith
    have g₃: (q-3) = -1 ∨ (q-3) = 1 ∨ (q-3) = -5 ∨ (q-3) = 5 := by
      exact mylemma_qr_5 q r gβ‚‚
    cases' g₃ with g₃₁ g₃₂
    . exfalso
      linarith [hql,g₃₁]
    . cases' g₃₂ with g₃₂ g₃₃
      . have hq: q = 4 := by linarith
        rw [hq] at gβ‚‚
        have hr: r = 8 := by linarith[gβ‚‚]
        exact { left := hq, right := hr }
      . exfalso
        cases' g₃₃ with g₃₃ g₃₄
        . linarith[hql,g₃₃]
        . have hq: q = 8 := by linarith
          rw [hq] at gβ‚‚
          norm_num at gβ‚‚
          have hr: r = 4 := by linarith
          linarith[hrl,hr]
  -- p = 3
  . right
    norm_num at *
    -- have g₁: 3 * q * r - 6 * q - 6 * r + 7 = 0 := by linarith
    have gβ‚‚: (6 - 3*q) * (2 - r) = 5 := by linarith
    have g₃: (6 - 3*q) = -1 ∨ (6 - 3*q) = 1 ∨ (6 - 3*q) = -5 ∨ (6 - 3*q) = 5 := by
      exact mylemma_63qr_5 q r gβ‚‚
    exfalso
    cases' g₃ with g₃₁ g₃₂
    . linarith[g₃₁,q]
    . cases' g₃₂ with g₃₂ g₃₃
      . linarith[g₃₂,q]
      . cases' g₃₃ with g₃₃ g₃₄
        . linarith[g₃₃,q]
        . linarith[g₃₄,q]



theorem imo_1992_p1
  (p q r : β„€)
  (hβ‚€ : 1 < p ∧ p < q ∧ q < r)
  (h₁ : (p - 1) * (q - 1) * (r - 1)∣(p * q * r - 1)) :
  (p, q, r) = (2, 4, 8) ∨ (p, q, r) = (3, 5, 15) := by
  cases' h₁ with k hk
  have hpl: 2 ≀ p := by linarith
  have hql: 3 ≀ q := by linarith
  have hrl: 4 ≀ r := by linarith
  have hden: 0 < (((p - 1) * (q - 1)) * (r - 1)) := by
    have gp: 0 < (p - 1) := by linarith
    have gq: 0 < (q - 1) := by linarith
    have gr: 0 < (r - 1) := by linarith
    exact mul_pos (mul_pos gp gq) gr
  have h₁: ↑k = (↑(p * q * r - 1):β„š) / (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
    have g₁: ↑(p * q * r - 1) = ↑k * (↑((p - 1) * (q - 1) * (r - 1)):β„š) := by
      norm_cast
      linarith
    symm
    have gβ‚‚: (↑((p - 1) * (q - 1) * (r - 1)):β„š) β‰  0 := by
      norm_cast
      linarith[hden]
    exact (div_eq_iff gβ‚‚).mpr g₁
  have hk4: k < 4 := by exact mylemma_k_lt_4 p q r k hk hpl hql hrl hden
  have hk1: 1 < k := by exact mylemma_k_gt_1 p q r k hk h₁ hpl hql hrl hden
  have hpu: p < 4 := by exact mylemma_p_lt_4 p q r k hβ‚€ hk h₁ hpl hql hrl hden
  interval_cases k
  . exact mylemma_case_k_2 p q r hβ‚€ hpl hql hrl hpu hk
  . exact mylemma_case_k_3 p q r hβ‚€ hpl hql hrl hpu hk