File size: 6,312 Bytes
1c3ffd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Real
theorem imo_1962_p2_1
(x : β)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
(hβ : 1 / 2 < Real.sqrt (x - 3) - Real.sqrt (x + 1)) :
-1 β€ x := by
refine neg_le_iff_add_nonneg.mpr ?_
contrapose! hβ
have hβ: x - 3 < 0 := by linarith [hβ]
have hβ: Real.sqrt (x + 1) = 0 := by
refine Real.sqrt_eq_zero'.mpr ?_
exact le_of_lt hβ
have hβ
: Real.sqrt (x -3) = 0 := by
refine Real.sqrt_eq_zero'.mpr ?_
exact le_of_lt hβ
rw [hβ, hβ
, sub_zero]
refine div_nonneg ?_ ?_
all_goals try linarith
theorem imo_1962_p2_2
(x : β)
(hβ : 0 β€ 3 - x)
(hβ : 0 β€ x + 1)
(hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
(2 * β(3 - x) * β(x + 1)) ^ 2 < (4 - 1 / 4) ^ 2 := by
refine' pow_lt_pow_leftβ _ _ (by norm_num)
. refine lt_tsub_iff_left.mpr ?_
refine lt_tsub_iff_right.mp ?_
suffices gβ: 4 - 2 * sqrt (3 - x) * sqrt (x + 1) = (sqrt (3 - x) - sqrt (x + 1)) ^ 2
. rw [gβ]
have gβ: (1:β) / 4 = (1/2)^2 := by norm_num
rw [gβ]
exact pow_lt_pow_leftβ hβ (by norm_num) (by norm_num)
rw [sub_sq]
rw [sq_sqrt hβ, sq_sqrt hβ]
ring_nf
. refine' mul_nonneg _ _
. refine mul_nonneg (by linarith) ?_
exact sqrt_nonneg (3 - x)
. exact sqrt_nonneg (x + 1)
theorem imo_1962_p2_3
(x : β)
(hβ : 0 β€ 3 - x)
(hβ : 0 β€ x + 1)
(hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
2 * β(3 - x) * β(x + 1) < 4 - 1 / 4 := by
refine lt_tsub_iff_left.mpr ?refine'_1.a
refine lt_tsub_iff_right.mp ?refine'_1.a.a
suffices gβ: 4 - 2 * sqrt (3 - x) * sqrt (x + 1) = (sqrt (3 - x) - sqrt (x + 1)) ^ 2
. rw [gβ]
have gβ: (1:β) / 4 = (1/2)^2 := by norm_num
rw [gβ]
exact pow_lt_pow_leftβ hβ (by norm_num) (by norm_num)
rw [sub_sq]
rw [sq_sqrt hβ, sq_sqrt hβ]
ring_nf
theorem imo_1962_p2_4
(x : β) :
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
0 β€ 2 * β(3 - x) * β(x + 1) := by
refine' mul_nonneg ?_ ?_
. refine mul_nonneg (by linarith) ?_
exact sqrt_nonneg (3 - x)
. exact sqrt_nonneg (x + 1)
theorem imo_1962_p2_5
(x : β)
(hβ : 0 β€ 3 - x)
(hβ : 0 β€ x + 1) :
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
4 - 2 * β(3 - x) * β(x + 1) = (β(3 - x) - β(x + 1)) ^ 2 := by
rw [sub_sq]
rw [sq_sqrt hβ, sq_sqrt hβ]
ring_nf
theorem imo_1962_p2_6
(x : β)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
(hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
(hβ: 4 - 2 * β(3 - x) * β(x + 1) = (β(3 - x) - β(x + 1)) ^ 2) :
1 / 4 < 4 - 2 * β(3 - x) * β(x + 1) := by
rw [hβ]
have gβ: (1:β) / 4 = (1/2) ^ 2 := by norm_num
rw [gβ]
exact pow_lt_pow_leftβ hβ (by norm_num) (by norm_num)
theorem imo_1962_p2_7
(x : β)
(hβ : 0 β€ 3 - x)
(hβ : 0 β€ x + 1)
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
(hβ: (2 *sqrt (3 - x) * sqrt (x + 1)) ^ 2 < (4 - 1 / 4) ^ 2) :
4 * (x + 1) * (3 - x) < 225 / 16 := by
norm_num at hβ
suffices gβ: 4 * (x + 1) * (3 - x) = (2 * sqrt (3 - x) * sqrt (x + 1)) ^ 2
. exact Eq.trans_lt gβ hβ
. rw [mul_pow, mul_pow, sq_sqrt hβ, sq_sqrt hβ]
norm_num
exact mul_right_comm 4 (x + 1) (3 - x)
theorem imo_1962_p2_8
(x : β)
(hβ : 0 β€ 3 - x)
(hβ : 0 β€ x + 1)
(hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
x < 1 := by
suffices gβ: x + 1 < 3 - x
. linarith
. rw [β sq_sqrt hβ, β sq_sqrt hβ]
refine' pow_lt_pow_leftβ ?_ ?_ (by norm_num)
. linarith
. exact sqrt_nonneg (x + 1)
theorem imo_1962_p2_9
(x : β)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
(hβ: 4 * (x + 1) * (3 - x) < 225 / 16) :
x < 1 - sqrt 31 / 8 β¨ 1 + sqrt 31 / 8 < x := by
ring_nf at hβ
have gβ: 0 < x * x + -2 * x + 33 / 64 := by linarith
let a:β := sqrt 31 / 8
have gβ: x * x + -2 * x + 33 / 64 = (x - (1 + a)) * (x - (1 - a)) := by
simp
ring_nf
norm_num
linarith
rw [gβ] at gβ
by_cases gβ: (x - (1 - a)) < 0
. left
exact sub_neg.mp gβ
. push_neg at gβ
right
have gβ: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left gβ gβ
exact sub_pos.mp gβ
theorem imo_1962_p2_10
(x : β)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
(hβ: x < 1)
(hβ
: x < 1 - sqrt 31 / 8 β¨ 1 + sqrt 31 / 8 < x) :
x < 1 - Real.sqrt 31 / 8 := by
cases hβ
with
| inl hβ
=> exact hβ
| inr hβ
=> linarith
theorem imo_1962_p2_11
(x a : β)
(ha: a = β31 / 8)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
(hβ: 0 < (x - (1 + a)) * (x - (1 - a))) :
x < 1 - β31 / 8 β¨ 1 + β31 / 8 < x := by
by_cases gβ: (x - (1 - a)) < 0
. left
rw [ha] at gβ
exact sub_neg.mp gβ
. push_neg at gβ
right
have gβ: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left hβ gβ
rw [ha] at gβ
exact sub_pos.mp gβ
theorem imo_1962_p2_12
(x a : β)
(ha: a = 0.5)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
-- (hβ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
(hβ: 0 < (x - (1 + a)) * (x - (1 - a))) :
x < 1 - 0.5 β¨ 1 + 0.5 < x := by
by_cases gβ: (x - (1 - a)) < 0
. left
rw [ha] at gβ
exact sub_neg.mp gβ
. push_neg at gβ
right
have gβ: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left hβ gβ
rw [ha] at gβ
exact sub_pos.mp gβ
theorem imo_1962_p2_13
(x a : β)
(ha: a = β31 / 8) :
-- hβ : 0 β€ 3 - x
-- hβ : 0 β€ x + 1
-- hβ : 12 + (x * 8 - x ^ 2 * 4) < 225 / 16
-- gβ : 0 < x * x + -2 * x + 33 / 64
x ^ 2 - 2 * x + 33 / 64 = (x - (1 + a)) * (x - (1 - a)) := by
rw [ha]
ring_nf
norm_num
linarith
theorem imo_1962_p2_14
(x : β)
-- (hβ : 0 β€ 3 - x)
-- (hβ : 0 β€ x + 1)
(hβ : 12 + (x * 8 - x ^ 2 * 4) < 225 / 16) :
0 < x * x + -2 * x + 33 / 64 := by
ring_nf at hβ
linarith
|