File size: 6,312 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import Mathlib
set_option linter.unusedVariables.analyzeTactics true


open Real



theorem imo_1962_p2_1
  (x : ℝ)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  (hβ‚‚ : 1 / 2 < Real.sqrt (x - 3) - Real.sqrt (x + 1)) :
  -1 ≀ x := by
  refine neg_le_iff_add_nonneg.mpr ?_
  contrapose! hβ‚‚
  have h₃: x - 3 < 0 := by linarith [hβ‚‚]
  have hβ‚„: Real.sqrt (x + 1) = 0 := by
    refine Real.sqrt_eq_zero'.mpr ?_
    exact le_of_lt hβ‚‚
  have hβ‚…: Real.sqrt (x -3) = 0 := by
    refine Real.sqrt_eq_zero'.mpr ?_
    exact le_of_lt h₃
  rw [hβ‚„, hβ‚…, sub_zero]
  refine div_nonneg ?_ ?_
  all_goals try linarith


theorem imo_1962_p2_2
  (x : ℝ)
  (hβ‚€ : 0 ≀ 3 - x)
  (h₁ : 0 ≀ x + 1)
  (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
  (2 * √(3 - x) * √(x + 1)) ^ 2 < (4 - 1 / 4) ^ 2 := by
  refine' pow_lt_pow_leftβ‚€ _ _ (by norm_num)
  . refine lt_tsub_iff_left.mpr ?_
    refine lt_tsub_iff_right.mp ?_
    suffices gβ‚€: 4 - 2 * sqrt (3 - x) * sqrt (x + 1) = (sqrt (3 - x) - sqrt (x + 1)) ^ 2
    . rw [gβ‚€]
      have g₁:  (1:ℝ) / 4 = (1/2)^2 := by norm_num
      rw [g₁]
      exact pow_lt_pow_leftβ‚€ hβ‚‚ (by norm_num) (by norm_num)
    rw [sub_sq]
    rw [sq_sqrt hβ‚€, sq_sqrt h₁]
    ring_nf
  . refine' mul_nonneg _ _
    . refine mul_nonneg (by linarith) ?_
      exact sqrt_nonneg (3 - x)
    . exact sqrt_nonneg (x + 1)


theorem imo_1962_p2_3
  (x : ℝ)
  (hβ‚€ : 0 ≀ 3 - x)
  (h₁ : 0 ≀ x + 1)
  (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
  2 * √(3 - x) * √(x + 1) < 4 - 1 / 4 := by
  refine lt_tsub_iff_left.mpr ?refine'_1.a
  refine lt_tsub_iff_right.mp ?refine'_1.a.a
  suffices gβ‚€: 4 - 2 * sqrt (3 - x) * sqrt (x + 1) = (sqrt (3 - x) - sqrt (x + 1)) ^ 2
  . rw [gβ‚€]
    have g₁:  (1:ℝ) / 4 = (1/2)^2 := by norm_num
    rw [g₁]
    exact pow_lt_pow_leftβ‚€ hβ‚‚ (by norm_num) (by norm_num)
  rw [sub_sq]
  rw [sq_sqrt hβ‚€, sq_sqrt h₁]
  ring_nf


theorem imo_1962_p2_4
  (x : ℝ) :
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
  0 ≀ 2 * √(3 - x) * √(x + 1) := by
  refine' mul_nonneg ?_ ?_
  . refine mul_nonneg (by linarith) ?_
    exact sqrt_nonneg (3 - x)
  . exact sqrt_nonneg (x + 1)



theorem imo_1962_p2_5
  (x : ℝ)
  (hβ‚€ : 0 ≀ 3 - x)
  (h₁ : 0 ≀ x + 1) :
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
  4 - 2 * √(3 - x) * √(x + 1) = (√(3 - x) - √(x + 1)) ^ 2 := by
  rw [sub_sq]
  rw [sq_sqrt hβ‚€, sq_sqrt h₁]
  ring_nf


theorem imo_1962_p2_6
  (x : ℝ)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
  (h₃: 4 - 2 * √(3 - x) * √(x + 1) = (√(3 - x) - √(x + 1)) ^ 2) :
  1 / 4 < 4 - 2 * √(3 - x) * √(x + 1) := by
  rw [h₃]
  have g₁:  (1:ℝ) / 4 = (1/2) ^ 2 := by norm_num
  rw [g₁]
  exact pow_lt_pow_leftβ‚€ hβ‚‚ (by norm_num) (by norm_num)


theorem imo_1962_p2_7
  (x : ℝ)
  (hβ‚€ : 0 ≀ 3 - x)
  (h₁ : 0 ≀ x + 1)
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
  (h₃: (2 *sqrt (3 - x) * sqrt (x + 1)) ^ 2 < (4 - 1 / 4) ^ 2) :
  4 * (x + 1) * (3 - x) < 225 / 16 := by
  norm_num at h₃
  suffices gβ‚€: 4 * (x + 1) * (3 - x) = (2 * sqrt (3 - x) * sqrt (x + 1)) ^ 2
  . exact Eq.trans_lt gβ‚€ h₃
  . rw [mul_pow, mul_pow, sq_sqrt hβ‚€, sq_sqrt h₁]
    norm_num
    exact mul_right_comm 4 (x + 1) (3 - x)


theorem imo_1962_p2_8
  (x : ℝ)
  (hβ‚€ : 0 ≀ 3 - x)
  (h₁ : 0 ≀ x + 1)
  (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) :
  x < 1 := by
  suffices gβ‚€: x + 1 < 3 - x
  . linarith
  . rw [← sq_sqrt hβ‚€, ← sq_sqrt h₁]
    refine' pow_lt_pow_leftβ‚€ ?_ ?_ (by norm_num)
    . linarith
    . exact sqrt_nonneg (x + 1)


theorem imo_1962_p2_9
  (x : ℝ)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
  (hβ‚„: 4 * (x + 1) * (3 - x) < 225 / 16) :
  x < 1 - sqrt 31 / 8 ∨ 1 + sqrt 31 / 8 < x := by
  ring_nf at hβ‚„
  have gβ‚€: 0 < x * x + -2 * x + 33 / 64 := by linarith
  let a:ℝ := sqrt 31 / 8
  have g₁: x * x + -2 * x + 33 / 64 = (x - (1 + a)) * (x - (1 - a)) := by
    simp
    ring_nf
    norm_num
    linarith
  rw [g₁] at gβ‚€
  by_cases gβ‚‚: (x - (1 - a)) < 0
  . left
    exact sub_neg.mp gβ‚‚
  . push_neg at gβ‚‚
    right
    have g₃: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left gβ‚€ gβ‚‚
    exact sub_pos.mp g₃


theorem imo_1962_p2_10
  (x : ℝ)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
  (hβ‚„: x < 1)
  (hβ‚…: x < 1 - sqrt 31 / 8 ∨ 1 + sqrt 31 / 8 < x) :
  x < 1 - Real.sqrt 31 / 8 := by
  cases hβ‚… with
  | inl hβ‚… => exact hβ‚…
  | inr hβ‚… => linarith


theorem imo_1962_p2_11
  (x a : ℝ)
  (ha: a = √31 / 8)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
  (h₃: 0 < (x - (1 + a)) * (x - (1 - a))) :
  x < 1 - √31 / 8 ∨ 1 + √31 / 8 < x := by
  by_cases gβ‚‚: (x - (1 - a)) < 0
  . left
    rw [ha] at gβ‚‚
    exact sub_neg.mp gβ‚‚
  . push_neg at gβ‚‚
    right
    have g₃: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left h₃ gβ‚‚
    rw [ha] at g₃
    exact sub_pos.mp g₃


theorem imo_1962_p2_12
  (x a : ℝ)
  (ha: a = 0.5)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  -- (hβ‚‚ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1))
  (h₃: 0 < (x - (1 + a)) * (x - (1 - a))) :
  x < 1 - 0.5 ∨ 1 + 0.5 < x := by
  by_cases gβ‚‚: (x - (1 - a)) < 0
  . left
    rw [ha] at gβ‚‚
    exact sub_neg.mp gβ‚‚
  . push_neg at gβ‚‚
    right
    have g₃: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left h₃ gβ‚‚
    rw [ha] at g₃
    exact sub_pos.mp g₃


theorem imo_1962_p2_13
  (x a : ℝ)
  (ha: a = √31 / 8) :
  -- hβ‚€ : 0 ≀ 3 - x
  -- h₁ : 0 ≀ x + 1
  -- hβ‚„ : 12 + (x * 8 - x ^ 2 * 4) < 225 / 16
  -- gβ‚€ : 0 < x * x + -2 * x + 33 / 64
  x ^ 2 - 2 * x + 33 / 64 = (x - (1 + a)) * (x - (1 - a)) := by
  rw [ha]
  ring_nf
  norm_num
  linarith

theorem imo_1962_p2_14
  (x : ℝ)
  -- (hβ‚€ : 0 ≀ 3 - x)
  -- (h₁ : 0 ≀ x + 1)
  (hβ‚„ : 12 + (x * 8 - x ^ 2 * 4) < 225 / 16) :
  0 < x * x + -2 * x + 33 / 64 := by
  ring_nf at hβ‚„
  linarith