File size: 12,005 Bytes
2e3afdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
---
configs:
- config_name: "10_shot_rlw"
data_files:
- split: dev
path: "10_shot_rlw/dev.*"
- split: ood_cons_count_10
path: "10_shot_rlw/ood_cons_count_10.*"
- split: ood_cons_count_3
path: "10_shot_rlw/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "10_shot_rlw/ood_cons_count_5.*"
- split: ood_cons_count_7
path: "10_shot_rlw/ood_cons_count_7.*"
- split: ood_cons_len_10
path: "10_shot_rlw/ood_cons_len_10.*"
- split: ood_cons_len_3
path: "10_shot_rlw/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "10_shot_rlw/ood_cons_len_5.*"
- split: ood_cons_len_7
path: "10_shot_rlw/ood_cons_len_7.*"
- split: ood_lexical
path: "10_shot_rlw/ood_lexical.*"
- split: test
path: "10_shot_rlw/test.*"
- split: train
path: "10_shot_rlw/train.*"
- config_name: "1_shot_eng"
data_files:
- split: dev
path: "1_shot_eng/dev.*"
- split: ood_cons_count_3
path: "1_shot_eng/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "1_shot_eng/ood_cons_count_5.*"
- split: ood_cons_len_3
path: "1_shot_eng/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "1_shot_eng/ood_cons_len_5.*"
- split: ood_lexical
path: "1_shot_eng/ood_lexical.*"
- split: other_tasks_id
path: "1_shot_eng/other_tasks_id.*"
- split: other_tasks_ood
path: "1_shot_eng/other_tasks_ood.*"
- split: test
path: "1_shot_eng/test.*"
- split: train
path: "1_shot_eng/train.*"
- config_name: "1_shot_rlw"
data_files:
- split: dev
path: "1_shot_rlw/dev.*"
- split: ood_cons_count_10
path: "1_shot_rlw/ood_cons_count_10.*"
- split: ood_cons_count_3
path: "1_shot_rlw/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "1_shot_rlw/ood_cons_count_5.*"
- split: ood_cons_count_7
path: "1_shot_rlw/ood_cons_count_7.*"
- split: ood_cons_len_10
path: "1_shot_rlw/ood_cons_len_10.*"
- split: ood_cons_len_3
path: "1_shot_rlw/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "1_shot_rlw/ood_cons_len_5.*"
- split: ood_cons_len_7
path: "1_shot_rlw/ood_cons_len_7.*"
- split: ood_lexical
path: "1_shot_rlw/ood_lexical.*"
- split: test
path: "1_shot_rlw/test.*"
- split: train
path: "1_shot_rlw/train.*"
- config_name: "1_shot_rlw_10x"
data_files:
- split: dev
path: "1_shot_rlw_10x/dev.*"
- split: ood_cons_count_10
path: "1_shot_rlw_10x/ood_cons_count_10.*"
- split: ood_cons_count_3
path: "1_shot_rlw_10x/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "1_shot_rlw_10x/ood_cons_count_5.*"
- split: ood_cons_count_7
path: "1_shot_rlw_10x/ood_cons_count_7.*"
- split: ood_cons_len_10
path: "1_shot_rlw_10x/ood_cons_len_10.*"
- split: ood_cons_len_3
path: "1_shot_rlw_10x/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "1_shot_rlw_10x/ood_cons_len_5.*"
- split: ood_cons_len_7
path: "1_shot_rlw_10x/ood_cons_len_7.*"
- split: ood_lexical
path: "1_shot_rlw_10x/ood_lexical.*"
- split: test
path: "1_shot_rlw_10x/test.*"
- split: train
path: "1_shot_rlw_10x/train.*"
- config_name: "2_shot_rlw"
data_files:
- split: dev
path: "2_shot_rlw/dev.*"
- split: ood_cons_count_10
path: "2_shot_rlw/ood_cons_count_10.*"
- split: ood_cons_count_3
path: "2_shot_rlw/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "2_shot_rlw/ood_cons_count_5.*"
- split: ood_cons_count_7
path: "2_shot_rlw/ood_cons_count_7.*"
- split: ood_cons_len_10
path: "2_shot_rlw/ood_cons_len_10.*"
- split: ood_cons_len_3
path: "2_shot_rlw/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "2_shot_rlw/ood_cons_len_5.*"
- split: ood_cons_len_7
path: "2_shot_rlw/ood_cons_len_7.*"
- split: ood_lexical
path: "2_shot_rlw/ood_lexical.*"
- split: test
path: "2_shot_rlw/test.*"
- split: train
path: "2_shot_rlw/train.*"
- config_name: "3_shot_rlw"
data_files:
- split: dev
path: "3_shot_rlw/dev.*"
- split: ood_cons_count_10
path: "3_shot_rlw/ood_cons_count_10.*"
- split: ood_cons_count_3
path: "3_shot_rlw/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "3_shot_rlw/ood_cons_count_5.*"
- split: ood_cons_count_7
path: "3_shot_rlw/ood_cons_count_7.*"
- split: ood_cons_len_10
path: "3_shot_rlw/ood_cons_len_10.*"
- split: ood_cons_len_3
path: "3_shot_rlw/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "3_shot_rlw/ood_cons_len_5.*"
- split: ood_cons_len_7
path: "3_shot_rlw/ood_cons_len_7.*"
- split: ood_lexical
path: "3_shot_rlw/ood_lexical.*"
- split: test
path: "3_shot_rlw/test.*"
- split: train
path: "3_shot_rlw/train.*"
- config_name: "5_shot_rlw"
data_files:
- split: dev
path: "5_shot_rlw/dev.*"
- split: ood_cons_count_10
path: "5_shot_rlw/ood_cons_count_10.*"
- split: ood_cons_count_3
path: "5_shot_rlw/ood_cons_count_3.*"
- split: ood_cons_count_5
path: "5_shot_rlw/ood_cons_count_5.*"
- split: ood_cons_count_7
path: "5_shot_rlw/ood_cons_count_7.*"
- split: ood_cons_len_10
path: "5_shot_rlw/ood_cons_len_10.*"
- split: ood_cons_len_3
path: "5_shot_rlw/ood_cons_len_3.*"
- split: ood_cons_len_5
path: "5_shot_rlw/ood_cons_len_5.*"
- split: ood_cons_len_7
path: "5_shot_rlw/ood_cons_len_7.*"
- split: ood_lexical
path: "5_shot_rlw/ood_lexical.*"
- split: test
path: "5_shot_rlw/test.*"
- split: train
path: "5_shot_rlw/train.*"
annotations_creators:
- machine-generated
language:
- en
language_creators:
- machine-generated
license:
- other
multilinguality:
- monolingual
pretty_name: Templatic Generation Tasks for In-Context Learning Research
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
tags:
- seq2seq
task_categories:
- text2text-generation
task_ids: []
---
# Dataset Card for Active/Passive/Logical Transforms
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Dataset Subsets (Tasks)](#data-tasks)
- [Dataset Splits](#data-splits)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Roland Fernandez](mailto:rfernand@microsoft.com)
### Dataset Summary
This dataset is a synthetic dataset containing a set of templatic generation tasks using both English and random 2-letter words.
### Supported Tasks and Leaderboards
[TBD]
### Languages
All data is in English or random 2-letter words.
## Dataset Structure
The dataset consists of several subsets, or tasks. Each task contains a train split, a dev split, and a
test split, and multiple out-of-distribution splits.
Each sample in a split contains a source string, a target string, and an annotation string (describing the sample).
### Dataset Subsets (Tasks)
The dataset consists of the following tasks:
```
- 1_shot_rlw (1 example input/output pair, a test input, and the gold output, all using random 2-letter words)
- 1_shot_eng (same as 1_shot_rlw but using English words).
- 1_shot_rlw_10x (same as 1_shot_rlw, but with 10x the training samples)
- 2_shot_rlw (2 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 3_shot_rlw (3 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 5_shot_rlw (5 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 10_shot_rtw (10 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
```
### Data Splits
Most tasks have the following splits:
- train
- dev
- test
- ood_lexical
- ood_cons_count_3
- ood_cons_count_5
- ood_cons_count_7
- ood_cons_count_10
- ood_cons_len_3
- ood_cons_len_5
- ood_cons_len_7
- ood_cons_len_10
Here is a table showing how the number of examples varies by split (for most tasks):
| Dataset Split | Number of Instances in Split |
| ------------- | ------------------------------------------- |
| train | 280,000 |
| dev | 35,000 |
| test | 35,000 |
| ood_* | 84,000 |
### Data Instances
Each sample consits of a source, target, and annotation string (all tab separated).
Here is an example from the *train* split of the *1_shot_eng* task:
```
{
'raw': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A road & . {"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
'source': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A',
'target': 'road & .',
'annotation': '{"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
}
```
### Data Fields
- `source`: the string containing the N-shot examples and the test cue
- `target`: the string containing the desired (gold) output
- `annotation`: the string describing the example (as a python or JSON dictionary)
## Dataset Creation
### Curation Rationale
We wanted a dataset that would test in-context (and from scratch) learning of abstract, semantic-free symbolic transformations,
based on a random template for each example. The dataset is designed to test 3 types of out of distribution generalization:
- lexical - known words used in new contexts (relative to train split)
- length - train split uses constituents of 1, 2, or 4 words; OOD splits use 3, 5, 7, or 10 words
- count - train split uses 1, 2, or 4 constituents; OOD splits use 3, 5, 7, or 10 constituents
### Source Data
[N/A]
#### Initial Data Collection and Normalization
[N/A]
#### Who are the source language producers?
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
### Annotations
Besides the source and target strings, each sample contains an annotation string that describes the sample.
#### Annotation process
The annotation columns were generated from each sample template.
#### Who are the annotators?
[N/A]
### Personal and Sensitive Information
No names or other sensitive information are included in the data.
## Considerations for Using the Data
### Social Impact of Dataset
The purpose of this dataset is to research how LLM and from-scratch model can learn to solve templatic generation tasks.
### Discussion of Biases
[TBD]
### Other Known Limitations
[TBD]
## Additional Information
The internal name of this dataset is nc_tgt_v11. Also see DATASET_INFO.md and GRAMMAR.md files.
### Dataset Curators
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
### Licensing Information
This dataset is released under the [Permissive 2.0 license](https://cdla.dev/permissive-2-0/).
### Citation Information
[TBD]
### Contributions
Thanks to [The Neurocompositional AI group at Microsoft Research](https://www.microsoft.com/en-us/research/project/neurocompositional-ai/) for creating and adding this dataset.
|