File size: 2,724 Bytes
f07159f 3ead889 f07159f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[ConceptNet5](https://ojs.aaai.org/index.php/AAAI/article/view/11164)"""
_NAME = "conceptnet"
_VERSION = "1.0.0"
_CITATION = """
@inproceedings{speer2017conceptnet,
title={Conceptnet 5.5: An open multilingual graph of general knowledge},
author={Speer, Robyn and Chin, Joshua and Havasi, Catherine},
booktitle={Thirty-first AAAI conference on artificial intelligence},
year={2017}
}
"""
_HOME_PAGE = "https://github.com/asahi417/relbert"
_URL = f'https://huggingface.co/datasets/relbert/{_NAME}/raw/main/dataset'
_URLS = {
# str(datasets.Split.TRAIN): [f'{_URL}/train.jsonl'],
# str(datasets.Split.VALIDATION): [f'{_URL}/valid.jsonl'],
str(datasets.Split.TRAIN): [f'{_URL}/train{i:02d}.jsonl' for i in range(33)],
str(datasets.Split.VALIDATION): [f'{_URL}/valid{i:02d}.jsonl' for i in range(25)],
}
class ConceptNetHighConfidenceConfig(datasets.BuilderConfig):
"""BuilderConfig"""
def __init__(self, **kwargs):
"""BuilderConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ConceptNetHighConfidenceConfig, self).__init__(**kwargs)
class ConceptNetHighConfidence(datasets.GeneratorBasedBuilder):
"""Dataset."""
BUILDER_CONFIGS = [
ConceptNetHighConfidenceConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
]
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION]]
def _generate_examples(self, filepaths):
_key = 0
for filepath in filepaths:
logger.info(f"generating examples from = {filepath}")
with open(filepath, encoding="utf-8") as f:
_list = [i for i in f.read().split('\n') if len(i) > 0]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"relation_type": datasets.Value("string"),
"positives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"negatives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
),
supervised_keys=None,
homepage=_HOME_PAGE,
citation=_CITATION,
)
|