Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1K - 10K
License:
File size: 2,245 Bytes
ee714e0 02cd9b2 ee714e0 c6f50dd 7221371 c6f50dd 7221371 c6f50dd 7221371 c6f50dd 7221371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
pretty_name: Beans
dataset_info:
features:
- name: image_file_path
dtype: string
- name: image
dtype: image
- name: labels
dtype:
class_label:
names:
'0': angular_leaf_spot
'1': bean_rust
'2': healthy
- name: embedding_foundation
sequence: float32
- name: embedding_ft
sequence: float32
- name: outlier_score_ft
dtype: float64
- name: outlier_score_foundation
dtype: float64
- name: nn_image
dtype: image
splits:
- name: train
num_bytes: 293531811.754
num_examples: 1034
download_size: 0
dataset_size: 293531811.754
---
# Dataset Card for "beans-outlier"
📚 This dataset is an enhancved version of the [ibean project of the AIR lab](https://github.com/AI-Lab-Makerere/ibean/).
The workflow is described in the medium article: [Changes of Embeddings during Fine-Tuning of Transformers](https://medium.com/@markus.stoll/changes-of-embeddings-during-fine-tuning-c22aa1615921).
## Explore the Dataset
The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) allows you to explorer this dataset. You can find a Hugging Face Space running Spotlight with this dataset here: <https://huggingface.co/spaces/renumics/beans-outlier>
![Analyze with Spotlight](https://spotlight.renumics.com/resources/hf-beans-outlier.png)
Or you can explorer it locally:
```python
!pip install renumics-spotlight datasets
from renumics import spotlight
import datasets
ds = datasets.load_dataset("renumics/beansoutlier", split="train")
df = ds.to_pandas()
df["label_str"] = df["labels"].apply(lambda x: ds.features["labels"].int2str(x))
dtypes = {
"nn_image": spotlight.Image,
"image": spotlight.Image,
"embedding_ft": spotlight.Embedding,
"embedding_foundation": spotlight.Embedding,
}
spotlight.show(
df,
dtype=dtypes,
layout="https://spotlight.renumics.com/resources/layout_pre_post_ft.json",
)
``` |