File size: 1,455 Bytes
524c04c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
# KKBox_x1
+ **Dataset description:**
KKBox is a challenge dataset for music recommendation at WSDM 2018. The data consist of user-song pairs in a given time period, with a total of 19 user features (e.g., city, gender) and song features (e.g., language, genre, artist). We randomly split the data into 8:1:1 as the training set, validation set, and test set, respectively. In this setting, for all categorical fields, we replace infrequent features with a default ``<OOV>`` token by setting the threshold min_category_count=10.
The dataset statistics are summarized as follows:
| Dataset Split | Total | #Train | #Validation | #Test |
| :--------: | :-----: |:-----: | :----------: | :----: |
| KKBox_x1 | 7,377,418 | 5,901,932 | 737,743 | 737,743 |
+ **Source:** https://www.kaggle.com/c/kkbox-music-recommendation-challenge
+ **Download:** https://huggingface.co/datasets/reczoo/KKBox_x1/tree/main
+ **RecZoo Datasets:** https://github.com/reczoo/Datasets
+ **Used by papers:**
- Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, Rui Zhang. [BARS: Towards Open Benchmarking for Recommender Systems](https://arxiv.org/abs/2205.09626). In SIGIR 2022.
+ **Check the md5sum for data integrity:**
```bash
$ md5sum train.csv valid.csv test.csv
195b1ae8fc2d9267d7c8656c07ea1304 train.csv
398e97ac139611a09bd61a58e4240a3e valid.csv
8c5f7add05a6f5258b6b3bcc00ba640b test.csv
```
|