File size: 2,385 Bytes
0092bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Quora question pairs data"""


import csv

import datasets


_DESCRIPTION = "The Quora dataset is composed of question pairs, and the task is to determine if the questions are paraphrases of each other (have the same meaning)."

_URL = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv"


class Quora(datasets.GeneratorBasedBuilder):
    """Quora Question Pairs dataset"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "questions": datasets.features.Sequence(
                        {
                            "id": datasets.Value("int32"),
                            "text": datasets.Value("string"),
                        }
                    ),
                    "is_duplicate": datasets.Value("bool"),
                }
            ),
            homepage="https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs",
        )

    def _split_generators(self, dl_manager):
        data_file = dl_manager.download_and_extract({"data_file": _URL})
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=data_file)]

    def _generate_examples(self, data_file):
        with open(data_file, encoding="utf-8") as f:
            data = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(data):
                yield idx, {
                    "questions": [
                        {"id": row["qid1"], "text": row["question1"]},
                        {"id": row["qid2"], "text": row["question2"]},
                    ],
                    "is_duplicate": row["is_duplicate"] == "1",
                }