Datasets:
Tasks:
Text Classification
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
100K<n<1M
License:
File size: 2,385 Bytes
0092bce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Quora question pairs data"""
import csv
import datasets
_DESCRIPTION = "The Quora dataset is composed of question pairs, and the task is to determine if the questions are paraphrases of each other (have the same meaning)."
_URL = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv"
class Quora(datasets.GeneratorBasedBuilder):
"""Quora Question Pairs dataset"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"questions": datasets.features.Sequence(
{
"id": datasets.Value("int32"),
"text": datasets.Value("string"),
}
),
"is_duplicate": datasets.Value("bool"),
}
),
homepage="https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs",
)
def _split_generators(self, dl_manager):
data_file = dl_manager.download_and_extract({"data_file": _URL})
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=data_file)]
def _generate_examples(self, data_file):
with open(data_file, encoding="utf-8") as f:
data = csv.DictReader(f, delimiter="\t")
for idx, row in enumerate(data):
yield idx, {
"questions": [
{"id": row["qid1"], "text": row["question1"]},
{"id": row["qid2"], "text": row["question2"]},
],
"is_duplicate": row["is_duplicate"] == "1",
}
|