File size: 2,919 Bytes
bd90170
 
d9255d7
bd90170
 
d9255d7
 
 
 
 
 
bd90170
 
d9255d7
bd90170
 
d9255d7
bd90170
d9255d7
bd90170
d9255d7
bd90170
d9255d7
bd90170
 
 
d9255d7
 
 
 
 
bd90170
 
 
 
 
 
 
d9255d7
 
 
 
 
 
bd90170
 
d9255d7
bd90170
 
 
d9255d7
bd90170
d9255d7
bd90170
 
 
 
 
d9255d7
 
bd90170
 
 
 
d9255d7
 
bd90170
 
 
 
 
d9255d7
 
bd90170
 
 
 
 
d9255d7
 
bd90170
 
 
 
d9255d7
 
 
 
bd90170
d9255d7
bd90170
d9255d7
bd90170
d9255d7
 
bd90170
d9255d7
 
 
bd90170
d9255d7
 
 
 
 
bd90170
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import json
import random

import datasets
import numpy as np
import pandas as pd

_CITATION = """\
ddd
"""

_DESCRIPTION = """\
ddd
"""

_HOMEPAGE = "ddd"

_URL = "https://huggingface.co/datasets/Dr-BERT/MORFITT/resolve/main/data.zip"

_LICENSE = "unknown"

_SPECIALITIES = ['microbiology', 'etiology', 'virology', 'physiology', 'immunology', 'parasitology', 'genetics', 'chemistry', 'veterinary', 'surgery', 'pharmacology', 'psychology']

class MORFITT(datasets.GeneratorBasedBuilder):

    DEFAULT_CONFIG_NAME = "source"

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="source", version="1.0.0", description="The MORFITT corpora"),
    ]

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "abstract": datasets.Value("string"),
                "specialities": datasets.Sequence(
                    datasets.features.ClassLabel(names=_SPECIALITIES),
                ),
                "specialities_one_hot": datasets.Sequence(
                    datasets.Value("float"),
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        data_dir = dl_manager.download_and_extract(_URL).rstrip("/")
            
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "tsv_file": data_dir + "/train.tsv",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "tsv_file": data_dir + "/dev.tsv",
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "tsv_file": data_dir + "/test.tsv",
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, tsv_file, split):

        # Load TSV file
        df = pd.read_csv(tsv_file, sep="\t")

        for index, e in df.iterrows():

            specialities = e["specialities"].split("|")

            # Empty one hot vector
            one_hot = [0.0 for i in _SPECIALITIES]

            # Fill up the one hot vector
            for s in specialities:
                one_hot[_SPECIALITIES.index(s)] = 1.0

            yield e["identifier"], {
                "id": e["identifier"],
                "abstract": e["abstract"],
                "specialities": specialities,
                "specialities_one_hot": one_hot,
            }