|
import re
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
|
INPUT_TMX = "ECDC.tmx"
|
|
|
|
print("⌛ Load TMX...")
|
|
|
|
tree = BeautifulSoup(open(INPUT_TMX,"r"), features="lxml")
|
|
|
|
print("⚗️ Parse content")
|
|
sentences = []
|
|
for tu in tqdm(tree.findAll("tu")):
|
|
langs = {}
|
|
for tuv in tu.findAll("tuv"):
|
|
text = re.sub("\s+", " ", tuv.seg.text.replace("\n"," "))
|
|
langs[tuv["xml:lang"].lower()] = text
|
|
sentences.append(langs)
|
|
|
|
content = []
|
|
|
|
print("⚙️ Convert to CSV")
|
|
|
|
for idx, sentence in tqdm(enumerate(sentences)):
|
|
|
|
|
|
for lang in sentence:
|
|
|
|
|
|
if lang == "en" or len(sentence[lang].replace(" ","")) <= 0:
|
|
continue
|
|
|
|
|
|
content.append({
|
|
'key': "doc_" + str(idx),
|
|
'lang': "en-" + lang,
|
|
'source_text': sentence["en"],
|
|
'target_text': sentence[lang]
|
|
})
|
|
|
|
df = pd.DataFrame({
|
|
'key': [],
|
|
'lang': [],
|
|
'source_text': [],
|
|
'target_text': []
|
|
})
|
|
df = df.append(content)
|
|
|
|
|
|
df = df.sort_values(by=['lang'], ascending=True)
|
|
|
|
print("💾 Save as CSV and GZ")
|
|
df.to_csv("ECDC.csv", index=False)
|
|
df.to_csv("ECDC.csv.gz", index=False, compression="gzip")
|
|
|
|
uniq_elements = list(set(df['lang'].unique()))
|
|
l = open("langs.txt","w")
|
|
l.write("\n".join(uniq_elements))
|
|
l.close()
|
|
|
|
|
|
uniq_elements = df.groupby('lang').count()
|
|
l = open("stats.md","w")
|
|
l.write(str(uniq_elements))
|
|
l.close()
|
|
|