import re import pandas as pd from tqdm import tqdm from bs4 import BeautifulSoup # https://wt-public.emm4u.eu/Resources/ECDC-TM/2012_10_Terms-of-Use_ECDC-TM.pdf INPUT_TMX = "ECDC.tmx" print("⌛ Load TMX...") tree = BeautifulSoup(open(INPUT_TMX,"r"), features="lxml") print("⚗️ Parse content") sentences = [] for tu in tqdm(tree.findAll("tu")): langs = {} for tuv in tu.findAll("tuv"): text = re.sub("\s+", " ", tuv.seg.text.replace("\n"," ")) langs[tuv["xml:lang"].lower()] = text sentences.append(langs) content = [] print("⚙️ Convert to CSV") # For each sentences for idx, sentence in tqdm(enumerate(sentences)): # For each language for lang in sentence: # Pass english if lang == "en" or len(sentence[lang].replace(" ","")) <= 0: continue # Add row content.append({ 'key': "doc_" + str(idx), 'lang': "en-" + lang, 'source_text': sentence["en"], 'target_text': sentence[lang] }) df = pd.DataFrame({ 'key': [], 'lang': [], 'source_text': [], 'target_text': [] }) df = df.append(content) # Sort by language pair df = df.sort_values(by=['lang'], ascending=True) print("💾 Save as CSV and GZ") df.to_csv("ECDC.csv", index=False) df.to_csv("ECDC.csv.gz", index=False, compression="gzip") uniq_elements = list(set(df['lang'].unique())) l = open("langs.txt","w") l.write("\n".join(uniq_elements)) l.close() uniq_elements = df.groupby('lang').count() l = open("stats.md","w") l.write(str(uniq_elements)) l.close()