File size: 4,673 Bytes
031526e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# -*- coding: utf-8 -*-
"""scratchpad
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/notebooks/empty.ipynb
"""
pip install -q datasets transformers
from datasets import load_dataset
dataset = load_dataset("tau/scrolls", "qmsum")
dataset
!pip install clean-text[gpl] -q
from cleantext import clean
train_df = dataset["train"].to_pandas().convert_dtypes()
val_df = dataset["validation"].to_pandas().convert_dtypes()
test_df = dataset["test"].to_pandas().convert_dtypes()
from tqdm.auto import tqdm
tqdm.pandas()
train_df["input"] = train_df["input"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
val_df["input"] = val_df["input"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
test_df["input"] = test_df["input"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
train_df["output"] = train_df["output"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
val_df["output"] = val_df["output"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
test_df["output"] = test_df["output"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
import re
import re
def fix_punct_whitespace(text: str) -> str:
# Fix spaces around apostrophes
text = re.sub(r"([a-zA-Z])\s?'\s?([a-zA-Z])", r"\1'\2", text)
# Remove spaces before punctuation marks (except for parentheses)
text = re.sub(r"\s+([.,;:!?])", r"\1", text)
# Add a space after punctuation marks (except for parentheses) if missing
text = re.sub(r"([.,;:!?])(?=[^\s])", r"\1 ", text)
# Handle spaces around parentheses
text = re.sub(r"\s?\(\s?", r" (", text)
text = re.sub(r"\s?\)\s?", r")", text)
# Add a space after a closing parenthesis if:
# followed by a word or opening parenthesis
text = re.sub(r"\)(?=[^\s.,;:!?])", r") ", text)
# Handle spaces around quotation marks
text = re.sub(r'\s?"', r'"', text)
text = re.sub(r'"\s?', r'" ', text)
# Handle spaces around single quotes
text = re.sub(r"\s?'", r"'", text)
text = re.sub(r"'\s?", r"' ", text)
# Handle comma in numbers
text = re.sub(r"(\d),\s+(\d)", r"\1,\2", text)
return text.replace("' ", "'")
train_df["input"] = train_df["input"].progress_apply(fix_punct_whitespace)
val_df["input"] = val_df["input"].progress_apply(fix_punct_whitespace)
test_df["input"] = test_df["input"].progress_apply(fix_punct_whitespace)
train_df["output"] = train_df["output"].progress_apply(fix_punct_whitespace)
val_df["output"] = val_df["output"].progress_apply(fix_punct_whitespace)
test_df["output"] = test_df["output"].progress_apply(fix_punct_whitespace)
train_df.head(2)
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("pszemraj/long-t5-tglobal-xl-16384-book-summary-8bit")
def get_token_count(text:str):
if len(text) < 1:
return 0
else:
return len(tokenizer.encode(text, truncation=False, padding=False))
get_token_count("ayyy waddup my g")
train_df["input_token_count"] = train_df["input"].progress_apply(get_token_count)
val_df["input_token_count"] = val_df["input"].progress_apply(get_token_count)
test_df["input_token_count"] = test_df["input"].progress_apply(get_token_count)
train_df["output_token_count"] = train_df["output"].progress_apply(get_token_count)
val_df["output_token_count"] = val_df["output"].progress_apply(get_token_count)
test_df["output_token_count"] = test_df["output"].progress_apply(get_token_count)
train_df.describe()
"""# New Section"""
# Commented out IPython magic to ensure Python compatibility.
# %%bash
# curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
# apt-get install git-lfs -q
# git lfs install
!pip install -U -q transformers accelerate
from huggingface_hub import notebook_login
notebook_login()
# Commented out IPython magic to ensure Python compatibility.
# %%bash
#
# git lfs install
# git clone https://huggingface.co/datasets/pszemraj/qmsum-cleaned
from pathlib import Path
target = Path.cwd() / 'qmsum-cleaned'
target.exists()
train_df.to_parquet(target / 'train.parquet')
val_df.to_parquet(target / 'validation.parquet')
test_df.to_parquet(target/ 'test.parquet')
!ls $target
# Commented out IPython magic to ensure Python compatibility.
# %cd $target
!git pull
!git lfs install && git lfs track *.parquet
!git add . && git commit -a -m add_cleaned
!git push
# %cd ..
# Commented out IPython magic to ensure Python compatibility.
# %%bash
# git config --global user.email "you@example.com"
# git config --global user.name "colab"
|