Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
Tags:
midjourney
License:
metadata
language:
- en
license: apache-2.0
source_datasets: vivym/midjourney-messages
task_categories:
- text-generation
dataset_info:
- config_name: deduped
features:
- name: id
dtype: string
- name: channel_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 2538669745
num_examples: 14828769
download_size: 1585207687
dataset_size: 2538669745
- config_name: default
features:
- name: id
dtype: string
- name: channel_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 3575844717.3610477
num_examples: 19716685
download_size: 1514418407
dataset_size: 3575844717.3610477
configs:
- config_name: deduped
data_files:
- split: train
path: deduped/train-*
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- midjourney
midjourney-messages-cleaned
This is vivym/midjourney-messages but with the following cleaning steps:
- remove most columns (keep
id
columns for reference vs. original) - Apply
clean-text
to all rows (keep casing) - rename
content
totext
(ffs) - remove intermediate ID/tag (???) in angle brackets at the end, remove double asterisks
**
- remove exact duplicate rows
dataset structure
overall:
DatasetDict({
train: Dataset({
features: ['id', 'channel_id', 'text'],
num_rows: 19738964
})
})
A single example looks like this:
random.choice(dataset['train'])
{'id': '1108635049391308879',
'channel_id': '1008571088919343124',
'text': 'Warhammer 40k Chaos Space Marine with pink Armor and a guitar'}
details
585M GPT-4 tiktoken tokens.
token_count
count 1.971668e+07
mean 2.971651e+01
std 3.875208e+01
min 1.000000e+00
25% 1.000000e+01
50% 1.900000e+01
75% 3.400000e+01
max 2.077000e+03