File size: 35,574 Bytes
ba1bf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 |
import math
from contextlib import nullcontext
from functools import partial
from typing import Dict, List, Optional, Tuple, Union
import kornia
import numpy as np
import open_clip
import torch
import torch.nn as nn
from einops import rearrange, repeat
from omegaconf import ListConfig
from torch.utils.checkpoint import checkpoint
from transformers import (ByT5Tokenizer, CLIPTextModel, CLIPTokenizer,
T5EncoderModel, T5Tokenizer)
from ...modules.autoencoding.regularizers import DiagonalGaussianRegularizer
from ...modules.diffusionmodules.model import Encoder
from ...modules.diffusionmodules.openaimodel import Timestep
from ...modules.diffusionmodules.util import (extract_into_tensor,
make_beta_schedule)
from ...modules.distributions.distributions import DiagonalGaussianDistribution
from ...util import (append_dims, autocast, count_params, default,
disabled_train, expand_dims_like, instantiate_from_config)
class AbstractEmbModel(nn.Module):
def __init__(self):
super().__init__()
self._is_trainable = None
self._ucg_rate = None
self._input_key = None
@property
def is_trainable(self) -> bool:
return self._is_trainable
@property
def ucg_rate(self) -> Union[float, torch.Tensor]:
return self._ucg_rate
@property
def input_key(self) -> str:
return self._input_key
@is_trainable.setter
def is_trainable(self, value: bool):
self._is_trainable = value
@ucg_rate.setter
def ucg_rate(self, value: Union[float, torch.Tensor]):
self._ucg_rate = value
@input_key.setter
def input_key(self, value: str):
self._input_key = value
@is_trainable.deleter
def is_trainable(self):
del self._is_trainable
@ucg_rate.deleter
def ucg_rate(self):
del self._ucg_rate
@input_key.deleter
def input_key(self):
del self._input_key
class GeneralConditioner(nn.Module):
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
def __init__(self, emb_models: Union[List, ListConfig]):
super().__init__()
embedders = []
for n, embconfig in enumerate(emb_models):
embedder = instantiate_from_config(embconfig)
assert isinstance(
embedder, AbstractEmbModel
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
embedder.is_trainable = embconfig.get("is_trainable", False)
embedder.ucg_rate = embconfig.get("ucg_rate", 0.0)
if not embedder.is_trainable:
embedder.train = disabled_train
for param in embedder.parameters():
param.requires_grad = False
embedder.eval()
print(
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
)
if "input_key" in embconfig:
embedder.input_key = embconfig["input_key"]
elif "input_keys" in embconfig:
embedder.input_keys = embconfig["input_keys"]
else:
raise KeyError(
f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}"
)
embedder.legacy_ucg_val = embconfig.get("legacy_ucg_value", None)
if embedder.legacy_ucg_val is not None:
embedder.ucg_prng = np.random.RandomState()
embedders.append(embedder)
self.embedders = nn.ModuleList(embedders)
def possibly_get_ucg_val(self, embedder: AbstractEmbModel, batch: Dict) -> Dict:
assert embedder.legacy_ucg_val is not None
p = embedder.ucg_rate
val = embedder.legacy_ucg_val
for i in range(len(batch[embedder.input_key])):
if embedder.ucg_prng.choice(2, p=[1 - p, p]):
batch[embedder.input_key][i] = val
return batch
def forward(
self, batch: Dict, force_zero_embeddings: Optional[List] = None
) -> Dict:
output = dict()
if force_zero_embeddings is None:
force_zero_embeddings = []
for embedder in self.embedders:
embedding_context = nullcontext if embedder.is_trainable else torch.no_grad
with embedding_context():
if hasattr(embedder, "input_key") and (embedder.input_key is not None):
if embedder.legacy_ucg_val is not None:
batch = self.possibly_get_ucg_val(embedder, batch)
emb_out = embedder(batch[embedder.input_key])
elif hasattr(embedder, "input_keys"):
emb_out = embedder(*[batch[k] for k in embedder.input_keys])
assert isinstance(
emb_out, (torch.Tensor, list, tuple)
), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}"
if not isinstance(emb_out, (list, tuple)):
emb_out = [emb_out]
for emb in emb_out:
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
emb = (
expand_dims_like(
torch.bernoulli(
(1.0 - embedder.ucg_rate)
* torch.ones(emb.shape[0], device=emb.device)
),
emb,
)
* emb
)
if (
hasattr(embedder, "input_key")
and embedder.input_key in force_zero_embeddings
):
emb = torch.zeros_like(emb)
if out_key in output:
output[out_key] = torch.cat(
(output[out_key], emb), self.KEY2CATDIM[out_key]
)
else:
output[out_key] = emb
return output
def get_unconditional_conditioning(
self,
batch_c: Dict,
batch_uc: Optional[Dict] = None,
force_uc_zero_embeddings: Optional[List[str]] = None,
force_cond_zero_embeddings: Optional[List[str]] = None,
):
if force_uc_zero_embeddings is None:
force_uc_zero_embeddings = []
ucg_rates = list()
for embedder in self.embedders:
ucg_rates.append(embedder.ucg_rate)
embedder.ucg_rate = 0.0
c = self(batch_c, force_cond_zero_embeddings)
uc = self(batch_c if batch_uc is None else batch_uc, force_uc_zero_embeddings)
for embedder, rate in zip(self.embedders, ucg_rates):
embedder.ucg_rate = rate
return c, uc
class InceptionV3(nn.Module):
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
port with an additional squeeze at the end"""
def __init__(self, normalize_input=False, **kwargs):
super().__init__()
from pytorch_fid import inception
kwargs["resize_input"] = True
self.model = inception.InceptionV3(normalize_input=normalize_input, **kwargs)
def forward(self, inp):
outp = self.model(inp)
if len(outp) == 1:
return outp[0].squeeze()
return outp
class IdentityEncoder(AbstractEmbModel):
def encode(self, x):
return x
def forward(self, x):
return x
class ClassEmbedder(AbstractEmbModel):
def __init__(self, embed_dim, n_classes=1000, add_sequence_dim=False):
super().__init__()
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.add_sequence_dim = add_sequence_dim
def forward(self, c):
c = self.embedding(c)
if self.add_sequence_dim:
c = c[:, None, :]
return c
def get_unconditional_conditioning(self, bs, device="cuda"):
uc_class = (
self.n_classes - 1
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs,), device=device) * uc_class
uc = {self.key: uc.long()}
return uc
class ClassEmbedderForMultiCond(ClassEmbedder):
def forward(self, batch, key=None, disable_dropout=False):
out = batch
key = default(key, self.key)
islist = isinstance(batch[key], list)
if islist:
batch[key] = batch[key][0]
c_out = super().forward(batch, key, disable_dropout)
out[key] = [c_out] if islist else c_out
return out
class FrozenT5Embedder(AbstractEmbModel):
"""Uses the T5 transformer encoder for text"""
def __init__(
self, version="google/t5-v1_1-xxl", device="cuda", max_length=77, freeze=True
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
with torch.autocast("cuda", enabled=False):
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenByT5Embedder(AbstractEmbModel):
"""
Uses the ByT5 transformer encoder for text. Is character-aware.
"""
def __init__(
self, version="google/byt5-base", device="cuda", max_length=77, freeze=True
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = ByT5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
with torch.autocast("cuda", enabled=False):
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEmbModel):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = ["last", "pooled", "hidden"]
def __init__(
self,
version="openai/clip-vit-large-patch14",
device="cuda",
max_length=77,
freeze=True,
layer="last",
layer_idx=None,
always_return_pooled=False,
): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
self.return_pooled = always_return_pooled
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
@autocast
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(
input_ids=tokens, output_hidden_states=self.layer == "hidden"
)
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
if self.return_pooled:
return z, outputs.pooler_output
return z
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder2(AbstractEmbModel):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = ["pooled", "last", "penultimate"]
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device="cuda",
max_length=77,
freeze=True,
layer="last",
always_return_pooled=False,
legacy=True,
):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(
arch,
device=torch.device("cpu"),
pretrained=version,
)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
self.return_pooled = always_return_pooled
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
self.legacy = legacy
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
@autocast
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
if not self.return_pooled and self.legacy:
return z
if self.return_pooled:
assert not self.legacy
return z[self.layer], z["pooled"]
return z[self.layer]
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
if self.legacy:
x = x[self.layer]
x = self.model.ln_final(x)
return x
else:
# x is a dict and will stay a dict
o = x["last"]
o = self.model.ln_final(o)
pooled = self.pool(o, text)
x["pooled"] = pooled
return x
def pool(self, x, text):
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = (
x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
@ self.model.text_projection
)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
outputs = {}
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - 1:
outputs["penultimate"] = x.permute(1, 0, 2) # LND -> NLD
if (
self.model.transformer.grad_checkpointing
and not torch.jit.is_scripting()
):
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
outputs["last"] = x.permute(1, 0, 2) # LND -> NLD
return outputs
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder(AbstractEmbModel):
LAYERS = [
# "pooled",
"last",
"penultimate",
]
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device="cuda",
max_length=77,
freeze=True,
layer="last",
):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(
arch, device=torch.device("cpu"), pretrained=version
)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if (
self.model.transformer.grad_checkpointing
and not torch.jit.is_scripting()
):
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
"""
Uses the OpenCLIP vision transformer encoder for images
"""
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device="cuda",
init_device="cpu",
max_length=77,
freeze=True,
antialias=True,
ucg_rate=0.0,
unsqueeze_dim=False,
repeat_to_max_len=False,
num_image_crops=0,
output_tokens=False,
l2_norm_tokens=False,
only_tokens=False,
cache_dir: Optional[str] = None,
):
super().__init__()
model, _, _ = open_clip.create_model_and_transforms(
arch,
device=torch.device(init_device),
pretrained=version,
cache_dir=cache_dir,
)
del model.transformer
self.model = model
self.max_crops = num_image_crops
self.pad_to_max_len = self.max_crops > 0
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.antialias = antialias
self.register_buffer(
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
)
self.register_buffer(
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
)
self.ucg_rate = ucg_rate
self.unsqueeze_dim = unsqueeze_dim
self.stored_batch = None
self.model.visual.output_tokens = output_tokens
self.output_tokens = output_tokens
if only_tokens:
assert output_tokens
self.only_tokens = only_tokens
self.l2_norm_tokens = l2_norm_tokens
if l2_norm_tokens:
assert output_tokens
def preprocess(self, x):
# normalize to [0,1]
x = kornia.geometry.resize(
x,
(224, 224),
interpolation="bicubic",
align_corners=True,
antialias=self.antialias,
)
x = (x + 1.0) / 2.0
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
@autocast
def forward(self, image, no_dropout=False):
z = self.encode_with_vision_transformer(image)
tokens = None
if self.output_tokens:
z, tokens = z[0], z[1]
z = z.to(image.dtype)
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
z = (
torch.bernoulli(
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
)[:, None]
* z
)
if tokens is not None:
tokens = (
expand_dims_like(
torch.bernoulli(
(1.0 - self.ucg_rate)
* torch.ones(tokens.shape[0], device=tokens.device)
),
tokens,
)
* tokens
)
if self.unsqueeze_dim:
z = z[:, None, :]
if self.output_tokens:
assert not self.repeat_to_max_len
assert not self.pad_to_max_len
if self.only_tokens:
return tokens
return tokens, z
if self.repeat_to_max_len:
if z.dim() == 2:
z_ = z[:, None, :]
else:
z_ = z
return repeat(z_, "b 1 d -> b n d", n=self.max_length), z
elif self.pad_to_max_len:
assert z.dim() == 3
z_pad = torch.cat(
(
z,
torch.zeros(
z.shape[0],
self.max_length - z.shape[1],
z.shape[2],
device=z.device,
),
),
1,
)
return z_pad, z_pad[:, 0, ...]
return z
def encode_with_vision_transformer(self, img):
# if self.max_crops > 0:
# img = self.preprocess_by_cropping(img)
if img.dim() == 5:
assert self.max_crops == img.shape[1]
img = rearrange(img, "b n c h w -> (b n) c h w")
img = self.preprocess(img)
if not self.output_tokens:
assert not self.model.visual.output_tokens
x = self.model.visual(img)
tokens = None
else:
assert self.model.visual.output_tokens
x, tokens = self.model.visual(img)
if self.l2_norm_tokens:
token_shape = tokens.shape
tokens = tokens.flatten(1)
tokens = torch.nn.functional.normalize(tokens, dim=-1)
tokens = (tokens - .0002) / .0015
tokens = tokens.view(token_shape)
tokens = (tokens * 1.0957) + .1598
if self.max_crops > 0:
x = rearrange(x, "(b n) d -> b n d", n=self.max_crops)
# drop out between 0 and all along the sequence axis
x = (
torch.bernoulli(
(1.0 - self.ucg_rate)
* torch.ones(x.shape[0], x.shape[1], 1, device=x.device)
)
* x
)
if tokens is not None:
tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops)
logpy.warning(
f"You are running very experimental token-concat in {self.__class__.__name__}. "
f"Check what you are doing, and then remove this message."
)
if self.output_tokens:
return x, tokens
return x
def encode(self, text):
return self(text)
class FrozenCLIPT5Encoder(AbstractEmbModel):
def __init__(
self,
clip_version="openai/clip-vit-large-patch14",
t5_version="google/t5-v1_1-xl",
device="cuda",
clip_max_length=77,
t5_max_length=77,
):
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(
clip_version, device, max_length=clip_max_length
)
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
print(
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params."
)
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
class SpatialRescaler(nn.Module):
def __init__(
self,
n_stages=1,
method="bilinear",
multiplier=0.5,
in_channels=3,
out_channels=None,
bias=False,
wrap_video=False,
kernel_size=1,
remap_output=False,
):
super().__init__()
self.n_stages = n_stages
assert self.n_stages >= 0
assert method in [
"nearest",
"linear",
"bilinear",
"trilinear",
"bicubic",
"area",
]
self.multiplier = multiplier
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
self.remap_output = out_channels is not None or remap_output
if self.remap_output:
print(
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing."
)
self.channel_mapper = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
bias=bias,
padding=kernel_size // 2,
)
self.wrap_video = wrap_video
def forward(self, x):
if self.wrap_video and x.ndim == 5:
B, C, T, H, W = x.shape
x = rearrange(x, "b c t h w -> b t c h w")
x = rearrange(x, "b t c h w -> (b t) c h w")
for stage in range(self.n_stages):
x = self.interpolator(x, scale_factor=self.multiplier)
if self.wrap_video:
x = rearrange(x, "(b t) c h w -> b t c h w", b=B, t=T, c=C)
x = rearrange(x, "b t c h w -> b c t h w")
if self.remap_output:
x = self.channel_mapper(x)
return x
def encode(self, x):
return self(x)
class LowScaleEncoder(nn.Module):
def __init__(
self,
model_config,
linear_start,
linear_end,
timesteps=1000,
max_noise_level=250,
output_size=64,
scale_factor=1.0,
):
super().__init__()
self.max_noise_level = max_noise_level
self.model = instantiate_from_config(model_config)
self.augmentation_schedule = self.register_schedule(
timesteps=timesteps, linear_start=linear_start, linear_end=linear_end
)
self.out_size = output_size
self.scale_factor = scale_factor
def register_schedule(
self,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer(
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
)
self.register_buffer(
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
)
self.register_buffer(
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
)
self.register_buffer(
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def forward(self, x):
z = self.model.encode(x)
if isinstance(z, DiagonalGaussianDistribution):
z = z.sample()
z = z * self.scale_factor
noise_level = torch.randint(
0, self.max_noise_level, (x.shape[0],), device=x.device
).long()
z = self.q_sample(z, noise_level)
if self.out_size is not None:
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest")
return z, noise_level
def decode(self, z):
z = z / self.scale_factor
return self.model.decode(z)
class ConcatTimestepEmbedderND(AbstractEmbModel):
"""embeds each dimension independently and concatenates them"""
def __init__(self, outdim):
super().__init__()
self.timestep = Timestep(outdim)
self.outdim = outdim
def forward(self, x):
if x.ndim == 1:
x = x[:, None]
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = rearrange(x, "b d -> (b d)")
emb = self.timestep(x)
emb = rearrange(emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return emb
class GaussianEncoder(Encoder, AbstractEmbModel):
def __init__(
self, weight: float = 1.0, flatten_output: bool = True, *args, **kwargs
):
super().__init__(*args, **kwargs)
self.posterior = DiagonalGaussianRegularizer()
self.weight = weight
self.flatten_output = flatten_output
def forward(self, x) -> Tuple[Dict, torch.Tensor]:
z = super().forward(x)
z, log = self.posterior(z)
log["loss"] = log["kl_loss"]
log["weight"] = self.weight
if self.flatten_output:
z = rearrange(z, "b c h w -> b (h w ) c")
return log, z
class VideoPredictionEmbedderWithEncoder(AbstractEmbModel):
def __init__(
self,
n_cond_frames: int,
n_copies: int,
encoder_config: dict,
sigma_sampler_config: Optional[dict] = None,
sigma_cond_config: Optional[dict] = None,
is_ae: bool = False,
scale_factor: float = 1.0,
disable_encoder_autocast: bool = False,
en_and_decode_n_samples_a_time: Optional[int] = None,
):
super().__init__()
self.n_cond_frames = n_cond_frames
self.n_copies = n_copies
self.encoder = instantiate_from_config(encoder_config)
self.sigma_sampler = (
instantiate_from_config(sigma_sampler_config)
if sigma_sampler_config is not None
else None
)
self.sigma_cond = (
instantiate_from_config(sigma_cond_config)
if sigma_cond_config is not None
else None
)
self.is_ae = is_ae
self.scale_factor = scale_factor
self.disable_encoder_autocast = disable_encoder_autocast
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
def forward(
self, vid: torch.Tensor
) -> Union[
torch.Tensor,
Tuple[torch.Tensor, torch.Tensor],
Tuple[torch.Tensor, dict],
Tuple[Tuple[torch.Tensor, torch.Tensor], dict],
]:
if self.sigma_sampler is not None:
b = vid.shape[0] // self.n_cond_frames
sigmas = self.sigma_sampler(b).to(vid.device)
if self.sigma_cond is not None:
sigma_cond = self.sigma_cond(sigmas)
sigma_cond = repeat(sigma_cond, "b d -> (b t) d", t=self.n_copies)
sigmas = repeat(sigmas, "b -> (b t)", t=self.n_cond_frames)
noise = torch.randn_like(vid)
vid = vid + noise * append_dims(sigmas, vid.ndim)
with torch.autocast("cuda", enabled=not self.disable_encoder_autocast):
n_samples = (
self.en_and_decode_n_samples_a_time
if self.en_and_decode_n_samples_a_time is not None
else vid.shape[0]
)
n_rounds = math.ceil(vid.shape[0] / n_samples)
all_out = []
for n in range(n_rounds):
if self.is_ae:
out = self.encoder.encode(vid[n * n_samples : (n + 1) * n_samples])
else:
out = self.encoder(vid[n * n_samples : (n + 1) * n_samples])
all_out.append(out)
vid = torch.cat(all_out, dim=0)
vid *= self.scale_factor
vid = rearrange(vid, "(b t) c h w -> b () (t c) h w", t=self.n_cond_frames)
vid = repeat(vid, "b 1 c h w -> (b t) c h w", t=self.n_copies)
return_val = (vid, sigma_cond) if self.sigma_cond is not None else vid
return return_val
class FrozenOpenCLIPImagePredictionEmbedder(AbstractEmbModel):
def __init__(
self,
open_clip_embedding_config: Dict,
n_cond_frames: int,
n_copies: int,
):
super().__init__()
self.n_cond_frames = n_cond_frames
self.n_copies = n_copies
self.open_clip = instantiate_from_config(open_clip_embedding_config)
def forward(self, vid):
vid = self.open_clip(vid)
vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames)
vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies)
return vid
|