File size: 22,678 Bytes
ba1bf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
import logging
import math
import re
from abc import abstractmethod
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Tuple, Union
import pytorch_lightning as pl
import torch
import torch.nn as nn
from einops import rearrange
from packaging import version
from ..modules.autoencoding.regularizers import AbstractRegularizer
from ..modules.ema import LitEma
from ..util import (default, get_nested_attribute, get_obj_from_str,
instantiate_from_config)
logpy = logging.getLogger(__name__)
class AbstractAutoencoder(pl.LightningModule):
"""
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
unCLIP models, etc. Hence, it is fairly general, and specific features
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
"""
def __init__(
self,
ema_decay: Union[None, float] = None,
monitor: Union[None, str] = None,
input_key: str = "jpg",
):
super().__init__()
self.input_key = input_key
self.use_ema = ema_decay is not None
if monitor is not None:
self.monitor = monitor
if self.use_ema:
self.model_ema = LitEma(self, decay=ema_decay)
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if version.parse(torch.__version__) >= version.parse("2.0.0"):
self.automatic_optimization = False
def apply_ckpt(self, ckpt: Union[None, str, dict]):
if ckpt is None:
return
if isinstance(ckpt, str):
ckpt = {
"target": "sgm.modules.checkpoint.CheckpointEngine",
"params": {"ckpt_path": ckpt},
}
engine = instantiate_from_config(ckpt)
engine(self)
@abstractmethod
def get_input(self, batch) -> Any:
raise NotImplementedError()
def on_train_batch_end(self, *args, **kwargs):
# for EMA computation
if self.use_ema:
self.model_ema(self)
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
logpy.info(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
logpy.info(f"{context}: Restored training weights")
@abstractmethod
def encode(self, *args, **kwargs) -> torch.Tensor:
raise NotImplementedError("encode()-method of abstract base class called")
@abstractmethod
def decode(self, *args, **kwargs) -> torch.Tensor:
raise NotImplementedError("decode()-method of abstract base class called")
def instantiate_optimizer_from_config(self, params, lr, cfg):
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
return get_obj_from_str(cfg["target"])(
params, lr=lr, **cfg.get("params", dict())
)
def configure_optimizers(self) -> Any:
raise NotImplementedError()
class AutoencodingEngine(AbstractAutoencoder):
"""
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
(we also restore them explicitly as special cases for legacy reasons).
Regularizations such as KL or VQ are moved to the regularizer class.
"""
def __init__(
self,
*args,
encoder_config: Dict,
decoder_config: Dict,
loss_config: Dict,
regularizer_config: Dict,
optimizer_config: Union[Dict, None] = None,
lr_g_factor: float = 1.0,
trainable_ae_params: Optional[List[List[str]]] = None,
ae_optimizer_args: Optional[List[dict]] = None,
trainable_disc_params: Optional[List[List[str]]] = None,
disc_optimizer_args: Optional[List[dict]] = None,
disc_start_iter: int = 0,
diff_boost_factor: float = 3.0,
ckpt_engine: Union[None, str, dict] = None,
ckpt_path: Optional[str] = None,
additional_decode_keys: Optional[List[str]] = None,
**kwargs,
):
super().__init__(*args, **kwargs)
self.automatic_optimization = False # pytorch lightning
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
self.loss: torch.nn.Module = instantiate_from_config(loss_config)
self.regularization: AbstractRegularizer = instantiate_from_config(
regularizer_config
)
self.optimizer_config = default(
optimizer_config, {"target": "torch.optim.Adam"}
)
self.diff_boost_factor = diff_boost_factor
self.disc_start_iter = disc_start_iter
self.lr_g_factor = lr_g_factor
self.trainable_ae_params = trainable_ae_params
if self.trainable_ae_params is not None:
self.ae_optimizer_args = default(
ae_optimizer_args,
[{} for _ in range(len(self.trainable_ae_params))],
)
assert len(self.ae_optimizer_args) == len(self.trainable_ae_params)
else:
self.ae_optimizer_args = [{}] # makes type consitent
self.trainable_disc_params = trainable_disc_params
if self.trainable_disc_params is not None:
self.disc_optimizer_args = default(
disc_optimizer_args,
[{} for _ in range(len(self.trainable_disc_params))],
)
assert len(self.disc_optimizer_args) == len(self.trainable_disc_params)
else:
self.disc_optimizer_args = [{}] # makes type consitent
if ckpt_path is not None:
assert ckpt_engine is None, "Can't set ckpt_engine and ckpt_path"
logpy.warn("Checkpoint path is deprecated, use `checkpoint_egnine` instead")
self.apply_ckpt(default(ckpt_path, ckpt_engine))
self.additional_decode_keys = set(default(additional_decode_keys, []))
def get_input(self, batch: Dict) -> torch.Tensor:
# assuming unified data format, dataloader returns a dict.
# image tensors should be scaled to -1 ... 1 and in channels-first
# format (e.g., bchw instead if bhwc)
return batch[self.input_key]
def get_autoencoder_params(self) -> list:
params = []
if hasattr(self.loss, "get_trainable_autoencoder_parameters"):
params += list(self.loss.get_trainable_autoencoder_parameters())
if hasattr(self.regularization, "get_trainable_parameters"):
params += list(self.regularization.get_trainable_parameters())
params = params + list(self.encoder.parameters())
params = params + list(self.decoder.parameters())
return params
def get_discriminator_params(self) -> list:
if hasattr(self.loss, "get_trainable_parameters"):
params = list(self.loss.get_trainable_parameters()) # e.g., discriminator
else:
params = []
return params
def get_last_layer(self):
return self.decoder.get_last_layer()
def encode(
self,
x: torch.Tensor,
return_reg_log: bool = False,
unregularized: bool = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
z = self.encoder(x)
if unregularized:
return z, dict()
z, reg_log = self.regularization(z)
if return_reg_log:
return z, reg_log
return z
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
x = self.decoder(z, **kwargs)
return x
def forward(
self, x: torch.Tensor, **additional_decode_kwargs
) -> Tuple[torch.Tensor, torch.Tensor, dict]:
z, reg_log = self.encode(x, return_reg_log=True)
dec = self.decode(z, **additional_decode_kwargs)
return z, dec, reg_log
def inner_training_step(
self, batch: dict, batch_idx: int, optimizer_idx: int = 0
) -> torch.Tensor:
x = self.get_input(batch)
additional_decode_kwargs = {
key: batch[key] for key in self.additional_decode_keys.intersection(batch)
}
z, xrec, regularization_log = self(x, **additional_decode_kwargs)
if hasattr(self.loss, "forward_keys"):
extra_info = {
"z": z,
"optimizer_idx": optimizer_idx,
"global_step": self.global_step,
"last_layer": self.get_last_layer(),
"split": "train",
"regularization_log": regularization_log,
"autoencoder": self,
}
extra_info = {k: extra_info[k] for k in self.loss.forward_keys}
else:
extra_info = dict()
if optimizer_idx == 0:
# autoencode
out_loss = self.loss(x, xrec, **extra_info)
if isinstance(out_loss, tuple):
aeloss, log_dict_ae = out_loss
else:
# simple loss function
aeloss = out_loss
log_dict_ae = {"train/loss/rec": aeloss.detach()}
self.log_dict(
log_dict_ae,
prog_bar=False,
logger=True,
on_step=True,
on_epoch=True,
sync_dist=False,
)
self.log(
"loss",
aeloss.mean().detach(),
prog_bar=True,
logger=False,
on_epoch=False,
on_step=True,
)
return aeloss
elif optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(x, xrec, **extra_info)
# -> discriminator always needs to return a tuple
self.log_dict(
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True
)
return discloss
else:
raise NotImplementedError(f"Unknown optimizer {optimizer_idx}")
def training_step(self, batch: dict, batch_idx: int):
opts = self.optimizers()
if not isinstance(opts, list):
# Non-adversarial case
opts = [opts]
optimizer_idx = batch_idx % len(opts)
if self.global_step < self.disc_start_iter:
optimizer_idx = 0
opt = opts[optimizer_idx]
opt.zero_grad()
with opt.toggle_model():
loss = self.inner_training_step(
batch, batch_idx, optimizer_idx=optimizer_idx
)
self.manual_backward(loss)
opt.step()
def validation_step(self, batch: dict, batch_idx: int) -> Dict:
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
log_dict.update(log_dict_ema)
return log_dict
def _validation_step(self, batch: dict, batch_idx: int, postfix: str = "") -> Dict:
x = self.get_input(batch)
z, xrec, regularization_log = self(x)
if hasattr(self.loss, "forward_keys"):
extra_info = {
"z": z,
"optimizer_idx": 0,
"global_step": self.global_step,
"last_layer": self.get_last_layer(),
"split": "val" + postfix,
"regularization_log": regularization_log,
"autoencoder": self,
}
extra_info = {k: extra_info[k] for k in self.loss.forward_keys}
else:
extra_info = dict()
out_loss = self.loss(x, xrec, **extra_info)
if isinstance(out_loss, tuple):
aeloss, log_dict_ae = out_loss
else:
# simple loss function
aeloss = out_loss
log_dict_ae = {f"val{postfix}/loss/rec": aeloss.detach()}
full_log_dict = log_dict_ae
if "optimizer_idx" in extra_info:
extra_info["optimizer_idx"] = 1
discloss, log_dict_disc = self.loss(x, xrec, **extra_info)
full_log_dict.update(log_dict_disc)
self.log(
f"val{postfix}/loss/rec",
log_dict_ae[f"val{postfix}/loss/rec"],
sync_dist=True,
)
self.log_dict(full_log_dict, sync_dist=True)
return full_log_dict
def get_param_groups(
self, parameter_names: List[List[str]], optimizer_args: List[dict]
) -> Tuple[List[Dict[str, Any]], int]:
groups = []
num_params = 0
for names, args in zip(parameter_names, optimizer_args):
params = []
for pattern_ in names:
pattern_params = []
pattern = re.compile(pattern_)
for p_name, param in self.named_parameters():
if re.match(pattern, p_name):
pattern_params.append(param)
num_params += param.numel()
if len(pattern_params) == 0:
logpy.warn(f"Did not find parameters for pattern {pattern_}")
params.extend(pattern_params)
groups.append({"params": params, **args})
return groups, num_params
def configure_optimizers(self) -> List[torch.optim.Optimizer]:
if self.trainable_ae_params is None:
ae_params = self.get_autoencoder_params()
else:
ae_params, num_ae_params = self.get_param_groups(
self.trainable_ae_params, self.ae_optimizer_args
)
logpy.info(f"Number of trainable autoencoder parameters: {num_ae_params:,}")
if self.trainable_disc_params is None:
disc_params = self.get_discriminator_params()
else:
disc_params, num_disc_params = self.get_param_groups(
self.trainable_disc_params, self.disc_optimizer_args
)
logpy.info(
f"Number of trainable discriminator parameters: {num_disc_params:,}"
)
opt_ae = self.instantiate_optimizer_from_config(
ae_params,
default(self.lr_g_factor, 1.0) * self.learning_rate,
self.optimizer_config,
)
opts = [opt_ae]
if len(disc_params) > 0:
opt_disc = self.instantiate_optimizer_from_config(
disc_params, self.learning_rate, self.optimizer_config
)
opts.append(opt_disc)
return opts
@torch.no_grad()
def log_images(
self, batch: dict, additional_log_kwargs: Optional[Dict] = None, **kwargs
) -> dict:
log = dict()
additional_decode_kwargs = {}
x = self.get_input(batch)
additional_decode_kwargs.update(
{key: batch[key] for key in self.additional_decode_keys.intersection(batch)}
)
_, xrec, _ = self(x, **additional_decode_kwargs)
log["inputs"] = x
log["reconstructions"] = xrec
diff = 0.5 * torch.abs(torch.clamp(xrec, -1.0, 1.0) - x)
diff.clamp_(0, 1.0)
log["diff"] = 2.0 * diff - 1.0
# diff_boost shows location of small errors, by boosting their
# brightness.
log["diff_boost"] = (
2.0 * torch.clamp(self.diff_boost_factor * diff, 0.0, 1.0) - 1
)
if hasattr(self.loss, "log_images"):
log.update(self.loss.log_images(x, xrec))
with self.ema_scope():
_, xrec_ema, _ = self(x, **additional_decode_kwargs)
log["reconstructions_ema"] = xrec_ema
diff_ema = 0.5 * torch.abs(torch.clamp(xrec_ema, -1.0, 1.0) - x)
diff_ema.clamp_(0, 1.0)
log["diff_ema"] = 2.0 * diff_ema - 1.0
log["diff_boost_ema"] = (
2.0 * torch.clamp(self.diff_boost_factor * diff_ema, 0.0, 1.0) - 1
)
if additional_log_kwargs:
additional_decode_kwargs.update(additional_log_kwargs)
_, xrec_add, _ = self(x, **additional_decode_kwargs)
log_str = "reconstructions-" + "-".join(
[f"{key}={additional_log_kwargs[key]}" for key in additional_log_kwargs]
)
log[log_str] = xrec_add
return log
class AutoencodingEngineLegacy(AutoencodingEngine):
def __init__(self, embed_dim: int, **kwargs):
self.max_batch_size = kwargs.pop("max_batch_size", None)
ddconfig = kwargs.pop("ddconfig")
ckpt_path = kwargs.pop("ckpt_path", None)
ckpt_engine = kwargs.pop("ckpt_engine", None)
super().__init__(
encoder_config={
"target": "sgm.modules.diffusionmodules.model.Encoder",
"params": ddconfig,
},
decoder_config={
"target": "sgm.modules.diffusionmodules.model.Decoder",
"params": ddconfig,
},
**kwargs,
)
self.quant_conv = torch.nn.Conv2d(
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
(1 + ddconfig["double_z"]) * embed_dim,
1,
)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
self.apply_ckpt(default(ckpt_path, ckpt_engine))
def get_autoencoder_params(self) -> list:
params = super().get_autoencoder_params()
return params
def encode(
self, x: torch.Tensor, return_reg_log: bool = False
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
if self.max_batch_size is None:
z = self.encoder(x)
z = self.quant_conv(z)
else:
N = x.shape[0]
bs = self.max_batch_size
n_batches = int(math.ceil(N / bs))
z = list()
for i_batch in range(n_batches):
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
z_batch = self.quant_conv(z_batch)
z.append(z_batch)
z = torch.cat(z, 0)
z, reg_log = self.regularization(z)
if return_reg_log:
return z, reg_log
return z
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
if self.max_batch_size is None:
dec = self.post_quant_conv(z)
dec = self.decoder(dec, **decoder_kwargs)
else:
N = z.shape[0]
bs = self.max_batch_size
n_batches = int(math.ceil(N / bs))
dec = list()
for i_batch in range(n_batches):
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
dec_batch = self.decoder(dec_batch, **decoder_kwargs)
dec.append(dec_batch)
dec = torch.cat(dec, 0)
return dec
class AutoencoderKL(AutoencodingEngineLegacy):
def __init__(self, **kwargs):
if "lossconfig" in kwargs:
kwargs["loss_config"] = kwargs.pop("lossconfig")
super().__init__(
regularizer_config={
"target": (
"sgm.modules.autoencoding.regularizers"
".DiagonalGaussianRegularizer"
)
},
**kwargs,
)
class AutoencoderLegacyVQ(AutoencodingEngineLegacy):
def __init__(
self,
embed_dim: int,
n_embed: int,
sane_index_shape: bool = False,
**kwargs,
):
if "lossconfig" in kwargs:
logpy.warn(f"Parameter `lossconfig` is deprecated, use `loss_config`.")
kwargs["loss_config"] = kwargs.pop("lossconfig")
super().__init__(
regularizer_config={
"target": (
"sgm.modules.autoencoding.regularizers.quantize" ".VectorQuantizer"
),
"params": {
"n_e": n_embed,
"e_dim": embed_dim,
"sane_index_shape": sane_index_shape,
},
},
**kwargs,
)
class IdentityFirstStage(AbstractAutoencoder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def get_input(self, x: Any) -> Any:
return x
def encode(self, x: Any, *args, **kwargs) -> Any:
return x
def decode(self, x: Any, *args, **kwargs) -> Any:
return x
class AEIntegerWrapper(nn.Module):
def __init__(
self,
model: nn.Module,
shape: Union[None, Tuple[int, int], List[int]] = (16, 16),
regularization_key: str = "regularization",
encoder_kwargs: Optional[Dict[str, Any]] = None,
):
super().__init__()
self.model = model
assert hasattr(model, "encode") and hasattr(
model, "decode"
), "Need AE interface"
self.regularization = get_nested_attribute(model, regularization_key)
self.shape = shape
self.encoder_kwargs = default(encoder_kwargs, {"return_reg_log": True})
def encode(self, x) -> torch.Tensor:
assert (
not self.training
), f"{self.__class__.__name__} only supports inference currently"
_, log = self.model.encode(x, **self.encoder_kwargs)
assert isinstance(log, dict)
inds = log["min_encoding_indices"]
return rearrange(inds, "b ... -> b (...)")
def decode(
self, inds: torch.Tensor, shape: Union[None, tuple, list] = None
) -> torch.Tensor:
# expect inds shape (b, s) with s = h*w
shape = default(shape, self.shape) # Optional[(h, w)]
if shape is not None:
assert len(shape) == 2, f"Unhandeled shape {shape}"
inds = rearrange(inds, "b (h w) -> b h w", h=shape[0], w=shape[1])
h = self.regularization.get_codebook_entry(inds) # (b, h, w, c)
h = rearrange(h, "b h w c -> b c h w")
return self.model.decode(h)
class AutoencoderKLModeOnly(AutoencodingEngineLegacy):
def __init__(self, **kwargs):
if "lossconfig" in kwargs:
kwargs["loss_config"] = kwargs.pop("lossconfig")
super().__init__(
regularizer_config={
"target": (
"sgm.modules.autoencoding.regularizers"
".DiagonalGaussianRegularizer"
),
"params": {"sample": False},
},
**kwargs,
)
|