|
r'''############################################################################ |
|
#=============================================================================== |
|
# |
|
# X Trasformer Module |
|
# |
|
# x-transformers code With useful modifications |
|
# |
|
# Version 1.27.16 |
|
# |
|
# Original source code courtesy of lucidrains |
|
# https://github.com/lucidrains/x-transformers |
|
# |
|
# Source code retrieved on 02/20/2024 |
|
# |
|
# Project Los Angeles |
|
# Tegridy Code 2024 |
|
# |
|
#=============================================================================== |
|
# |
|
# Critical dependencies |
|
# |
|
# !pip install torch |
|
# !pip install einops |
|
# |
|
#=============================================================================== |
|
# |
|
# Basic use example |
|
# |
|
# from x_transformer_1_27_16 import * |
|
# |
|
# model = instantiate_x_transformer_model() |
|
# save_x_transformer_model(model) |
|
# load_x_transformer_model('model_checkpoint_1_epochs_1_steps_0_loss_1_acc.pth') |
|
# |
|
#=============================================================================== |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from torch import nn, einsum, Tensor |
|
import torch.nn.functional as F |
|
|
|
from collections import namedtuple |
|
from functools import wraps |
|
from packaging import version |
|
from dataclasses import dataclass |
|
|
|
from einops import rearrange, repeat |
|
|
|
|
|
|
|
@dataclass |
|
class Intermediates: |
|
qk_similarities: Optional[Tensor] = None |
|
pre_softmax_attn: Optional[Tensor] = None |
|
post_softmax_attn: Optional[Tensor] = None |
|
cached_kv: Optional[Tuple[Tensor, Tensor]] = None |
|
|
|
def to_tuple(self): |
|
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
def compact(arr): |
|
return [*filter(exists, arr)] |
|
|
|
def once(fn): |
|
called = False |
|
@wraps(fn) |
|
def inner(x): |
|
nonlocal called |
|
if called: |
|
return |
|
called = True |
|
return fn(x) |
|
return inner |
|
|
|
print_once = once(print) |
|
|
|
|
|
|
|
|
|
def create_causal_mask(i, j, device): |
|
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) |
|
|
|
def onnx_create_causal_mask(i, j, device): |
|
r = torch.arange(i, device = device) |
|
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') |
|
causal_mask = F.pad(causal_mask, (j - i, 0), value = False) |
|
return causal_mask |
|
|
|
|
|
|
|
class Attend(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dropout = 0., |
|
causal = False, |
|
heads = None, |
|
talking_heads = False, |
|
sparse_topk = None, |
|
scale = None, |
|
qk_norm = False, |
|
flash = False, |
|
add_zero_kv = False, |
|
onnxable = False, |
|
sdp_kwargs: dict = dict( |
|
enable_flash = True, |
|
enable_math = True, |
|
enable_mem_efficient = True |
|
) |
|
): |
|
super().__init__() |
|
self.scale = scale |
|
self.qk_norm = qk_norm |
|
|
|
self.causal = causal |
|
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask |
|
|
|
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax |
|
|
|
self.dropout = dropout |
|
self.attn_dropout = nn.Dropout(dropout) |
|
|
|
|
|
|
|
assert not (flash and talking_heads), 'talking heads not compatible with flash attention' |
|
|
|
self.talking_heads = talking_heads |
|
if talking_heads: |
|
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) |
|
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) |
|
|
|
|
|
|
|
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' |
|
self.sparse_topk = sparse_topk |
|
|
|
|
|
|
|
|
|
self.add_zero_kv = add_zero_kv |
|
|
|
|
|
|
|
self.flash = flash |
|
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' |
|
|
|
self.sdp_kwargs = sdp_kwargs |
|
|
|
def flash_attn( |
|
self, |
|
q, k, v, |
|
mask = None, |
|
attn_bias = None |
|
): |
|
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device |
|
|
|
|
|
|
|
|
|
if k.ndim == 3: |
|
k = repeat(k, 'b ... -> b h ...', h = q.shape[1]) |
|
|
|
if v.ndim == 3: |
|
v = repeat(v, 'b ... -> b h ...', h = q.shape[1]) |
|
|
|
|
|
|
|
if self.qk_norm: |
|
default_scale = q.shape[-1] ** -0.5 |
|
q = q * (self.scale / default_scale) |
|
|
|
|
|
|
|
|
|
causal = self.causal |
|
|
|
|
|
|
|
|
|
if q_len == 1 and causal: |
|
causal = False |
|
|
|
|
|
|
|
if exists(mask): |
|
assert mask.ndim == 4 |
|
mask = mask.expand(batch, heads, q_len, k_len) |
|
|
|
|
|
|
|
if k_len > q_len and causal: |
|
causal_mask = self.create_causal_mask(q_len, k_len, device = device) |
|
if not exists(mask): |
|
mask = ~causal_mask |
|
else: |
|
mask = mask & ~causal_mask |
|
causal = False |
|
|
|
|
|
|
|
row_is_entirely_masked = None |
|
|
|
if exists(mask) and causal: |
|
causal_mask = self.create_causal_mask(q_len, k_len, device = device) |
|
mask = mask & ~causal_mask |
|
|
|
|
|
|
|
row_is_entirely_masked = ~mask.any(dim = -1) |
|
mask[..., 0] = mask[..., 0] | row_is_entirely_masked |
|
|
|
causal = False |
|
|
|
|
|
|
|
|
|
if exists(attn_bias): |
|
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) |
|
|
|
|
|
|
|
|
|
mask_value = -torch.finfo(q.dtype).max |
|
|
|
if exists(mask): |
|
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) |
|
elif causal: |
|
causal_mask = self.create_causal_mask(q_len, k_len, device = device) |
|
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) |
|
causal = False |
|
|
|
|
|
|
|
|
|
mask = attn_bias |
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs): |
|
out = F.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask = mask, |
|
dropout_p = self.dropout if self.training else 0., |
|
is_causal = causal |
|
) |
|
|
|
|
|
|
|
if exists(row_is_entirely_masked): |
|
out = out.masked_fill(row_is_entirely_masked[..., None], 0.) |
|
|
|
return out, Intermediates() |
|
|
|
def forward( |
|
self, |
|
q, k, v, |
|
mask = None, |
|
attn_bias = None, |
|
prev_attn = None |
|
): |
|
""" |
|
einstein notation |
|
b - batch |
|
h - heads |
|
n, i, j - sequence length (base sequence length, source, target) |
|
d - feature dimension |
|
""" |
|
|
|
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device |
|
|
|
scale = default(self.scale, q.shape[-1] ** -0.5) |
|
|
|
causal = self.causal |
|
|
|
|
|
|
|
if n == 1 and causal: |
|
causal = False |
|
|
|
|
|
|
|
if kv_heads == 1: |
|
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v)) |
|
elif kv_heads < heads: |
|
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v)) |
|
|
|
|
|
|
|
if self.add_zero_kv: |
|
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) |
|
|
|
if exists(mask): |
|
mask = F.pad(mask, (1, 0), value = True) |
|
|
|
if exists(attn_bias): |
|
attn_bias = F.pad(attn_bias, (1, 0), value = 0.) |
|
|
|
if self.flash: |
|
assert not exists(prev_attn), 'residual attention not compatible with flash attention' |
|
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) |
|
|
|
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' |
|
|
|
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale |
|
|
|
if exists(prev_attn): |
|
dots = dots + prev_attn |
|
|
|
qk_similarities = dots.clone() |
|
|
|
if self.talking_heads: |
|
dots = self.pre_softmax_talking_heads(dots) |
|
|
|
if exists(attn_bias): |
|
dots = dots + attn_bias |
|
|
|
i, j, dtype = *dots.shape[-2:], dots.dtype |
|
|
|
mask_value = -torch.finfo(dots.dtype).max |
|
|
|
if exists(self.sparse_topk) and self.sparse_topk < j: |
|
top_values, _ = dots.topk(self.sparse_topk, dim = -1) |
|
sparse_topk_mask = dots < top_values[..., -1:] |
|
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask |
|
|
|
if exists(mask): |
|
dots = dots.masked_fill(~mask, mask_value) |
|
|
|
if causal: |
|
causal_mask = self.create_causal_mask(i, j, device = device) |
|
dots = dots.masked_fill(causal_mask, mask_value) |
|
|
|
pre_softmax_attn = dots.clone() |
|
|
|
attn = self.attn_fn(dots, dim = -1) |
|
attn = attn.type(dtype) |
|
|
|
post_softmax_attn = attn.clone() |
|
|
|
attn = self.attn_dropout(attn) |
|
|
|
if self.talking_heads: |
|
attn = self.post_softmax_talking_heads(attn) |
|
|
|
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) |
|
|
|
intermediates = Intermediates( |
|
qk_similarities = qk_similarities, |
|
pre_softmax_attn = pre_softmax_attn, |
|
post_softmax_attn = post_softmax_attn |
|
) |
|
|
|
return out, intermediates |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from random import random |
|
from typing import Dict |
|
from packaging import version |
|
|
|
import torch |
|
from torch import nn, einsum, Tensor |
|
import torch.nn.functional as F |
|
from torch.cuda.amp import autocast |
|
|
|
from functools import partial, wraps |
|
from collections import namedtuple |
|
from dataclasses import dataclass |
|
from typing import List, Callable, Optional, Union |
|
|
|
from einops import rearrange, repeat, reduce, pack, unpack |
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
|
|
DEFAULT_DIM_HEAD = 64 |
|
|
|
@dataclass |
|
class LayerIntermediates: |
|
hiddens: Optional[List[Tensor]] = None |
|
last_hidden: Optional[Tensor] = None |
|
attn_intermediates: Optional[List[Intermediates]] = None |
|
layer_hiddens: Optional[List[Tensor]] = None |
|
attn_z_loss: Optional[Tensor] = None |
|
mems: Optional[Tensor] = None |
|
memory_tokens: Optional[Tensor] = None |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if callable(d) else d |
|
|
|
def cast_tuple(val, depth): |
|
return val if isinstance(val, tuple) else (val,) * depth |
|
|
|
def divisible_by(num, den): |
|
return (num % den) == 0 |
|
|
|
def maybe(fn): |
|
@wraps(fn) |
|
def inner(x, *args, **kwargs): |
|
if not exists(x): |
|
return x |
|
return fn(x, *args, **kwargs) |
|
return inner |
|
|
|
def at_most_one_of(*bools): |
|
return sum(map(int, bools)) <= 1 |
|
|
|
class always(): |
|
def __init__(self, val): |
|
self.val = val |
|
def __call__(self, *args, **kwargs): |
|
return self.val |
|
|
|
class not_equals(): |
|
def __init__(self, val): |
|
self.val = val |
|
def __call__(self, x, *args, **kwargs): |
|
return x != self.val |
|
|
|
class equals(): |
|
def __init__(self, val): |
|
self.val = val |
|
def __call__(self, x, *args, **kwargs): |
|
return x == self.val |
|
|
|
def Sequential(*modules): |
|
return nn.Sequential(*filter(exists, modules)) |
|
|
|
|
|
|
|
def max_neg_value(tensor): |
|
return -torch.finfo(tensor.dtype).max |
|
|
|
def l2norm(t, groups = 1): |
|
t = rearrange(t, '... (g d) -> ... g d', g = groups) |
|
t = F.normalize(t, p = 2, dim = -1) |
|
return rearrange(t, '... g d -> ... (g d)') |
|
|
|
def pad_at_dim(t, pad, dim = -1, value = 0.): |
|
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) |
|
zeros = ((0, 0) * dims_from_right) |
|
return F.pad(t, (*zeros, *pad), value = value) |
|
|
|
def or_reduce(masks): |
|
head, *body = masks |
|
for rest in body: |
|
head = head | rest |
|
return head |
|
|
|
|
|
|
|
def calc_z_loss( |
|
pre_softmax_attns: List[Tensor], |
|
mask = None, |
|
weight = 1. |
|
): |
|
|
|
|
|
|
|
|
|
lse = 0. |
|
|
|
for attn in pre_softmax_attns: |
|
lse = lse + attn.logsumexp(dim = -1) |
|
|
|
loss = torch.square(lse) |
|
loss = reduce(loss, 'b h n -> b n', 'sum') |
|
|
|
if not exists(mask): |
|
return loss.mean() * weight |
|
|
|
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) |
|
return loss * weight |
|
|
|
|
|
|
|
def init_zero_(layer): |
|
nn.init.constant_(layer.weight, 0.) |
|
if exists(layer.bias): |
|
nn.init.constant_(layer.bias, 0.) |
|
|
|
|
|
|
|
def pick_and_pop(keys, d): |
|
values = list(map(lambda key: d.pop(key), keys)) |
|
return dict(zip(keys, values)) |
|
|
|
def group_dict_by_key(cond, d): |
|
return_val = [dict(),dict()] |
|
for key in d.keys(): |
|
match = bool(cond(key)) |
|
ind = int(not match) |
|
return_val[ind][key] = d[key] |
|
return (*return_val,) |
|
|
|
def string_begins_with(prefix, str): |
|
return str.startswith(prefix) |
|
|
|
def group_by_key_prefix(prefix, d): |
|
return group_dict_by_key(partial(string_begins_with, prefix), d) |
|
|
|
def groupby_prefix_and_trim(prefix, d): |
|
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) |
|
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) |
|
return kwargs_without_prefix, kwargs |
|
|
|
|
|
|
|
def dropout_seq(seq, mask, dropout): |
|
b, n, *_, device = *seq.shape, seq.device |
|
logits = torch.randn(b, n, device = device) |
|
|
|
if exists(mask): |
|
mask_value = max_neg_value(logits) |
|
logits = logits.masked_fill(~mask, mask_value) |
|
|
|
keep_prob = 1. - dropout |
|
num_keep = max(1, int(keep_prob * n)) |
|
keep_indices = logits.topk(num_keep, dim = 1).indices |
|
|
|
batch_indices = torch.arange(b, device = device) |
|
batch_indices = rearrange(batch_indices, 'b -> b 1') |
|
|
|
seq = seq[batch_indices, keep_indices] |
|
|
|
if exists(mask): |
|
seq_counts = mask.sum(dim = -1) |
|
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() |
|
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') |
|
|
|
mask = mask[batch_indices, keep_indices] & keep_mask |
|
|
|
return seq, mask |
|
|
|
|
|
|
|
class ReluSquared(nn.Module): |
|
def forward(self, x): |
|
return F.relu(x) ** 2 |
|
|
|
|
|
|
|
class TokenEmbedding(nn.Module): |
|
def __init__(self, dim, num_tokens, l2norm_embed = False): |
|
super().__init__() |
|
self.l2norm_embed = l2norm_embed |
|
self.emb = nn.Embedding(num_tokens, dim) |
|
|
|
def forward(self, x): |
|
token_emb = self.emb(x.long()) |
|
return l2norm(token_emb) if self.l2norm_embed else token_emb |
|
|
|
|
|
|
|
class AbsolutePositionalEmbedding(nn.Module): |
|
def __init__(self, dim, max_seq_len, l2norm_embed = False): |
|
super().__init__() |
|
self.scale = dim ** -0.5 if not l2norm_embed else 1. |
|
self.max_seq_len = max_seq_len |
|
self.l2norm_embed = l2norm_embed |
|
self.emb = nn.Embedding(max_seq_len, dim) |
|
|
|
def forward(self, x, pos = None, seq_start_pos = None): |
|
seq_len, device = x.shape[1], x.device |
|
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' |
|
|
|
if not exists(pos): |
|
pos = torch.arange(seq_len, device = device) |
|
|
|
if exists(seq_start_pos): |
|
pos = (pos - seq_start_pos[..., None]).clamp(min = 0) |
|
|
|
pos_emb = self.emb(pos) |
|
pos_emb = pos_emb * self.scale |
|
return l2norm(pos_emb) if self.l2norm_embed else pos_emb |
|
|
|
class ScaledSinusoidalEmbedding(nn.Module): |
|
def __init__(self, dim, theta = 10000): |
|
super().__init__() |
|
assert divisible_by(dim, 2) |
|
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) |
|
|
|
half_dim = dim // 2 |
|
freq_seq = torch.arange(half_dim).float() / half_dim |
|
inv_freq = theta ** -freq_seq |
|
self.register_buffer('inv_freq', inv_freq, persistent = False) |
|
|
|
def forward(self, x, pos = None, seq_start_pos = None): |
|
seq_len, device = x.shape[1], x.device |
|
|
|
if not exists(pos): |
|
pos = torch.arange(seq_len, device = device) |
|
|
|
if exists(seq_start_pos): |
|
pos = pos - seq_start_pos[..., None] |
|
|
|
emb = einsum('i, j -> i j', pos, self.inv_freq) |
|
emb = torch.cat((emb.sin(), emb.cos()), dim = -1) |
|
return emb * self.scale |
|
|
|
class RelativePositionBias(nn.Module): |
|
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): |
|
super().__init__() |
|
self.scale = scale |
|
self.causal = causal |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.relative_attention_bias = nn.Embedding(num_buckets, heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): |
|
ret = 0 |
|
n = -relative_position |
|
if not causal: |
|
num_buckets //= 2 |
|
ret += (n < 0).long() * num_buckets |
|
n = torch.abs(n) |
|
else: |
|
n = torch.max(n, torch.zeros_like(n)) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = n < max_exact |
|
|
|
val_if_large = max_exact + ( |
|
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) |
|
).long() |
|
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) |
|
|
|
ret += torch.where(is_small, n, val_if_large) |
|
return ret |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
def forward(self, i, j): |
|
device = self.device |
|
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) |
|
k_pos = torch.arange(j, dtype = torch.long, device = device) |
|
rel_pos = k_pos[None, :] - q_pos[:, None] |
|
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) |
|
values = self.relative_attention_bias(rp_bucket) |
|
bias = rearrange(values, 'i j h -> h i j') |
|
return bias * self.scale |
|
|
|
class DynamicPositionBias(nn.Module): |
|
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): |
|
super().__init__() |
|
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' |
|
self.log_distance = log_distance |
|
|
|
self.mlp = nn.ModuleList([]) |
|
|
|
self.mlp.append(Sequential( |
|
nn.Linear(1, dim), |
|
LayerNorm(dim) if norm else None, |
|
nn.SiLU() |
|
)) |
|
|
|
for _ in range(depth - 1): |
|
self.mlp.append(Sequential( |
|
nn.Linear(dim, dim), |
|
nn.LayerNorm(dim) if norm else None, |
|
nn.SiLU() |
|
)) |
|
|
|
self.mlp.append(nn.Linear(dim, heads)) |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
def forward(self, i, j): |
|
assert i == j |
|
n, device = j, self.device |
|
|
|
|
|
seq_arange = torch.arange(n, device = device) |
|
context_arange = torch.arange(n, device = device) |
|
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') |
|
indices += (n - 1) |
|
|
|
|
|
pos = torch.arange(-n + 1, n, device = device).float() |
|
pos = rearrange(pos, '... -> ... 1') |
|
|
|
if self.log_distance: |
|
pos = torch.sign(pos) * torch.log(pos.abs() + 1) |
|
|
|
for layer in self.mlp: |
|
pos = layer(pos) |
|
|
|
|
|
bias = pos[indices] |
|
bias = rearrange(bias, 'i j h -> h i j') |
|
return bias |
|
|
|
class AlibiPositionalBias(nn.Module): |
|
def __init__(self, heads, total_heads, **kwargs): |
|
super().__init__() |
|
self.heads = heads |
|
self.total_heads = total_heads |
|
|
|
slopes = Tensor(self._get_slopes(heads)) |
|
slopes = rearrange(slopes, 'h -> h 1 1') |
|
self.register_buffer('slopes', slopes, persistent = False) |
|
self.register_buffer('bias', None, persistent = False) |
|
|
|
def get_bias(self, i, j, device): |
|
i_arange = torch.arange(j - i, j, device = device) |
|
j_arange = torch.arange(j, device = device) |
|
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) |
|
return bias |
|
|
|
@staticmethod |
|
def _get_slopes(heads): |
|
def get_slopes_power_of_2(n): |
|
start = (2**(-2**-(math.log2(n)-3))) |
|
ratio = start |
|
return [start*ratio**i for i in range(n)] |
|
|
|
if math.log2(heads).is_integer(): |
|
return get_slopes_power_of_2(heads) |
|
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(heads)) |
|
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] |
|
|
|
@property |
|
def device(self): |
|
return next(self.buffers()).device |
|
|
|
def forward(self, i, j): |
|
h, device = self.total_heads, self.device |
|
|
|
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: |
|
return self.bias[..., -i:, -j:] |
|
|
|
bias = self.get_bias(i, j, device) |
|
bias = bias * self.slopes |
|
|
|
num_heads_unalibied = h - bias.shape[0] |
|
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) |
|
self.register_buffer('bias', bias, persistent = False) |
|
|
|
return self.bias |
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
use_xpos = False, |
|
scale_base = 512, |
|
interpolation_factor = 1., |
|
base = 10000, |
|
base_rescale_factor = 1. |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
base *= base_rescale_factor ** (dim / (dim - 2)) |
|
|
|
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer('inv_freq', inv_freq) |
|
|
|
assert interpolation_factor >= 1. |
|
self.interpolation_factor = interpolation_factor |
|
|
|
if not use_xpos: |
|
self.register_buffer('scale', None) |
|
return |
|
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) |
|
|
|
self.scale_base = scale_base |
|
self.register_buffer('scale', scale) |
|
|
|
def forward_from_seq_len(self, seq_len): |
|
device = self.inv_freq.device |
|
|
|
t = torch.arange(seq_len, device = device) |
|
return self.forward(t) |
|
|
|
@autocast(enabled = False) |
|
def forward(self, t): |
|
max_pos = t.max()+1 |
|
|
|
freqs = torch.einsum('i , j -> i j', t.type_as(self.inv_freq), self.inv_freq) / self.interpolation_factor |
|
freqs = torch.cat((freqs, freqs), dim = -1) |
|
|
|
if not exists(self.scale): |
|
return freqs, 1. |
|
|
|
power = (t - (max_pos // 2)) / self.scale_base |
|
scale = self.scale ** rearrange(power, 'n -> n 1') |
|
scale = torch.cat((scale, scale), dim = -1) |
|
|
|
return freqs, scale |
|
|
|
|
|
def rotate_half(x): |
|
x = rearrange(x, '... (j d) -> ... j d', j = 2) |
|
x1, x2 = x.unbind(dim = -2) |
|
return torch.cat((-x2, x1), dim = -1) |
|
|
|
@autocast(enabled = False) |
|
def apply_rotary_pos_emb(t, freqs, scale = 1): |
|
rot_dim, seq_len = freqs.shape[-1], t.shape[-2] |
|
freqs = freqs[-seq_len:, :] |
|
scale = scale[-seq_len:, :] if isinstance(scale, torch.Tensor) else scale |
|
|
|
if t.ndim == 4 and freqs.ndim == 3: |
|
freqs = rearrange(freqs, 'b n d -> b 1 n d') |
|
|
|
|
|
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] |
|
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) |
|
return torch.cat((t, t_unrotated), dim = -1) |
|
|
|
|
|
|
|
class Scale(nn.Module): |
|
def __init__(self, value, fn): |
|
super().__init__() |
|
self.value = value |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
out = self.fn(x, **kwargs) |
|
scale_fn = lambda t: t * self.value |
|
|
|
if not isinstance(out, tuple): |
|
return scale_fn(out) |
|
|
|
return (scale_fn(out[0]), *out[1:]) |
|
|
|
class ScaleNorm(nn.Module): |
|
def __init__(self, dim, eps = 1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) |
|
|
|
def forward(self, x): |
|
norm = torch.norm(x, dim = -1, keepdim = True) |
|
return x / norm.clamp(min = self.eps) * self.g |
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, dim): |
|
""" |
|
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less |
|
""" |
|
super().__init__() |
|
self.gamma = nn.Parameter(torch.ones(dim)) |
|
self.register_buffer("beta", torch.zeros(dim)) |
|
|
|
def forward(self, x): |
|
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) |
|
|
|
if version.parse(torch.__version__) >= version.parse('2.1.0'): |
|
LayerNorm = partial(nn.LayerNorm, bias = False) |
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.scale = dim ** 0.5 |
|
self.g = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return F.normalize(x, dim = -1) * self.scale * self.g |
|
|
|
class SimpleRMSNorm(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.scale = dim ** 0.5 |
|
|
|
def forward(self, x): |
|
return F.normalize(x, dim = -1) * self.scale |
|
|
|
|
|
|
|
class Residual(nn.Module): |
|
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): |
|
super().__init__() |
|
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None |
|
self.scale_residual_constant = scale_residual_constant |
|
|
|
def forward(self, x, residual): |
|
if exists(self.residual_scale): |
|
residual = residual * self.residual_scale |
|
|
|
if self.scale_residual_constant != 1: |
|
residual = residual * self.scale_residual_constant |
|
|
|
return x + residual |
|
|
|
class GRUGating(nn.Module): |
|
def __init__(self, dim, scale_residual = False, **kwargs): |
|
super().__init__() |
|
self.gru = nn.GRUCell(dim, dim) |
|
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None |
|
|
|
def forward(self, x, residual): |
|
if exists(self.residual_scale): |
|
residual = residual * self.residual_scale |
|
|
|
gated_output = self.gru( |
|
rearrange(x, 'b n d -> (b n) d'), |
|
rearrange(residual, 'b n d -> (b n) d') |
|
) |
|
|
|
return gated_output.reshape_as(x) |
|
|
|
|
|
|
|
def shift(t, amount, mask = None): |
|
if amount == 0: |
|
return t |
|
else: |
|
amount = min(amount, t.shape[1]) |
|
|
|
if exists(mask): |
|
t = t.masked_fill(~mask[..., None], 0.) |
|
|
|
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) |
|
|
|
class ShiftTokens(nn.Module): |
|
def __init__(self, shifts, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.shifts = tuple(shifts) |
|
|
|
def forward(self, x, **kwargs): |
|
mask = kwargs.get('mask', None) |
|
shifts = self.shifts |
|
segments = len(shifts) |
|
feats_per_shift = x.shape[-1] // segments |
|
splitted = x.split(feats_per_shift, dim = -1) |
|
segments_to_shift, rest = splitted[:segments], splitted[segments:] |
|
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) |
|
x = torch.cat((*segments_to_shift, *rest), dim = -1) |
|
return self.fn(x, **kwargs) |
|
|
|
|
|
|
|
class GLU(nn.Module): |
|
def __init__( |
|
self, |
|
dim_in, |
|
dim_out, |
|
activation: Callable, |
|
mult_bias = False |
|
): |
|
super().__init__() |
|
self.act = activation |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim = -1) |
|
return x * self.act(gate) * self.mult_bias |
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
dim_out = None, |
|
mult = 4, |
|
glu = False, |
|
glu_mult_bias = False, |
|
swish = False, |
|
relu_squared = False, |
|
post_act_ln = False, |
|
dropout = 0., |
|
no_bias = False, |
|
zero_init_output = False |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
|
|
if relu_squared: |
|
activation = ReluSquared() |
|
elif swish: |
|
activation = nn.SiLU() |
|
else: |
|
activation = nn.GELU() |
|
|
|
if glu: |
|
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) |
|
else: |
|
project_in = nn.Sequential( |
|
nn.Linear(dim, inner_dim, bias = not no_bias), |
|
activation |
|
) |
|
|
|
self.ff = Sequential( |
|
project_in, |
|
LayerNorm(inner_dim) if post_act_ln else None, |
|
nn.Dropout(dropout), |
|
nn.Linear(inner_dim, dim_out, bias = not no_bias) |
|
) |
|
|
|
|
|
if zero_init_output: |
|
init_zero_(self.ff[-1]) |
|
|
|
def forward(self, x): |
|
return self.ff(x) |
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
dim_head = DEFAULT_DIM_HEAD, |
|
dim_context = None, |
|
heads = 8, |
|
causal = False, |
|
flash = False, |
|
talking_heads = False, |
|
head_scale = False, |
|
sparse_topk = None, |
|
num_mem_kv = 0, |
|
dropout = 0., |
|
on_attn = False, |
|
gate_value_heads = False, |
|
swiglu_values = False, |
|
gate_values = False, |
|
zero_init_output = False, |
|
max_attend_past = None, |
|
qk_norm = False, |
|
qk_norm_groups = 1, |
|
qk_norm_scale = 10, |
|
qk_norm_dim_scale = False, |
|
one_kv_head = False, |
|
kv_heads = None, |
|
shared_kv = False, |
|
value_dim_head = None, |
|
tensor_product = False, |
|
add_zero_kv = False, |
|
rotary_embed_values = False, |
|
onnxable = False |
|
): |
|
super().__init__() |
|
dim_kv = default(dim_context, dim) |
|
|
|
self.scale = dim_head ** -0.5 |
|
|
|
self.heads = heads |
|
self.causal = causal |
|
self.max_attend_past = max_attend_past |
|
|
|
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both' |
|
|
|
value_dim_head = default(value_dim_head, dim_head) |
|
kv_heads = default(kv_heads, heads) |
|
|
|
kv_heads = 1 if one_kv_head else kv_heads |
|
assert divisible_by(heads, kv_heads) |
|
|
|
self.kv_heads = kv_heads |
|
|
|
q_dim = dim_head * heads |
|
k_dim = dim_head * kv_heads |
|
v_dim = value_dim_head * kv_heads |
|
out_dim = value_dim_head * heads |
|
|
|
self.to_q = nn.Linear(dim, q_dim, bias = False) |
|
self.to_k = nn.Linear(dim_kv, k_dim, bias = False) |
|
|
|
|
|
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' |
|
self.to_v = nn.Linear(dim_kv, v_dim, bias = False) if not shared_kv else None |
|
|
|
|
|
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None |
|
|
|
|
|
self.to_v_gate = None |
|
if gate_values: |
|
self.to_v_gate = nn.Linear(dim, out_dim) |
|
self.to_v_gate_activation = F.silu if swiglu_values else F.sigmoid |
|
nn.init.constant_(self.to_v_gate.weight, 0) |
|
nn.init.constant_(self.to_v_gate.bias, 10) |
|
|
|
|
|
self.to_v_head_gate = None |
|
if gate_value_heads: |
|
self.to_v_head_gate = nn.Linear(dim, heads) |
|
nn.init.constant_(self.to_v_head_gate.weight, 0) |
|
nn.init.constant_(self.to_v_head_gate.bias, 10) |
|
|
|
|
|
self.qk_norm = qk_norm |
|
self.qk_norm_groups = qk_norm_groups |
|
self.qk_norm_scale = qk_norm_scale |
|
|
|
|
|
self.qk_norm_dim_scale = qk_norm_dim_scale |
|
|
|
self.qk_norm_q_scale = self.qk_norm_k_scale = 1 |
|
if qk_norm and qk_norm_dim_scale: |
|
self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) |
|
self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) |
|
|
|
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups' |
|
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' |
|
|
|
|
|
|
|
self.attend = Attend( |
|
heads = heads, |
|
causal = causal, |
|
talking_heads = talking_heads, |
|
dropout = dropout, |
|
sparse_topk = sparse_topk, |
|
qk_norm = qk_norm, |
|
scale = qk_norm_scale if qk_norm else self.scale, |
|
add_zero_kv = add_zero_kv, |
|
flash = flash, |
|
onnxable = onnxable |
|
) |
|
|
|
|
|
self.head_scale = head_scale |
|
if head_scale: |
|
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) |
|
|
|
|
|
self.sparse_topk = sparse_topk |
|
|
|
|
|
self.num_mem_kv = num_mem_kv |
|
if num_mem_kv > 0: |
|
self.mem_k = nn.Parameter(torch.randn(kv_heads, num_mem_kv, dim_head)) |
|
self.mem_v = nn.Parameter(torch.randn(kv_heads, num_mem_kv, dim_head)) |
|
|
|
|
|
self.attn_on_attn = on_attn |
|
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) |
|
|
|
|
|
self.rotary_embed_values = rotary_embed_values |
|
|
|
|
|
if zero_init_output: |
|
init_zero_(self.to_out) |
|
|
|
def forward( |
|
self, |
|
x, |
|
context = None, |
|
mask = None, |
|
context_mask = None, |
|
attn_mask = None, |
|
rel_pos = None, |
|
rotary_pos_emb = None, |
|
prev_attn = None, |
|
mem = None, |
|
mem_mask = None, |
|
return_intermediates = False, |
|
cache: Optional[Intermediates] = None, |
|
): |
|
b, n, h, kv_h, head_scale, device, has_context = x.shape[0], x.shape[1], self.heads, self.kv_heads, self.head_scale, x.device, exists(context) |
|
|
|
kv_input = default(context, x) |
|
|
|
q_input = x |
|
k_input = kv_input |
|
v_input = kv_input |
|
r_input = x |
|
|
|
if exists(mem): |
|
k_input, mem_packed_shape = pack([mem, k_input], 'b * d') |
|
v_input, _ = pack([mem, v_input], 'b * d') |
|
|
|
q = self.to_q(q_input) |
|
k = self.to_k(k_input) |
|
v = self.to_v(v_input) if exists(self.to_v) else k |
|
r = self.to_r(r_input) if exists(self.to_r) else None |
|
|
|
q = rearrange(q, 'b n (h d) -> b h n d', h = h) |
|
|
|
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r)) |
|
|
|
if exists(cache) and not has_context: |
|
ck, cv = cache.cached_kv |
|
|
|
if exists(mem): |
|
mk, k = unpack(k, mem_packed_shape, 'b h * d') |
|
mv, v = unpack(v, mem_packed_shape, 'b h * d') |
|
|
|
k = torch.cat((ck, k), dim = -2) |
|
v = torch.cat((cv, v), dim = -2) |
|
|
|
if exists(mem): |
|
k = torch.cat((mk, k), dim = -2) |
|
v = torch.cat((mv, v), dim = -2) |
|
|
|
if return_intermediates: |
|
mem_len = mem.shape[-2] if exists(mem) else 0 |
|
cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :]) |
|
|
|
if self.qk_norm: |
|
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) |
|
q, k = map(qk_l2norm, (q, k)) |
|
scale = self.qk_norm_scale |
|
|
|
q = q * self.qk_norm_q_scale |
|
k = k * self.qk_norm_k_scale |
|
|
|
if exists(rotary_pos_emb) and not has_context: |
|
freqs, xpos_scale = rotary_pos_emb |
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) |
|
|
|
q = apply_rotary_pos_emb(q, freqs, q_xpos_scale) |
|
k = apply_rotary_pos_emb(k, freqs, k_xpos_scale) |
|
|
|
if self.rotary_embed_values: |
|
v = apply_rotary_pos_emb(v, freqs, k_xpos_scale) |
|
|
|
input_mask = context_mask |
|
|
|
if not exists(input_mask) and not has_context: |
|
input_mask = mask |
|
|
|
if (exists(input_mask) or exists(mem_mask)) and exists(mem): |
|
seq_len, mem_len = n, mem.shape[-2] |
|
|
|
if not exists(mem_mask): |
|
input_mask = pad_at_dim(input_mask, (mem_len, 0), dim = -1, value = True) |
|
elif not exists(input_mask): |
|
input_mask = pad_at_dim(mem_mask, (0, seq_len), dim = -1, value = True) |
|
else: |
|
input_mask = torch.cat((mem_mask, input_mask), dim = -1) |
|
|
|
if self.num_mem_kv > 0: |
|
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) |
|
|
|
if self.qk_norm: |
|
mem_k = l2norm(mem_k) |
|
mem_k = mem_k * self.qk_norm_k_scale |
|
|
|
k = torch.cat((mem_k, k), dim = -2) |
|
v = torch.cat((mem_v, v), dim = -2) |
|
|
|
if exists(input_mask): |
|
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) |
|
|
|
i, j = map(lambda t: t.shape[-2], (q, k)) |
|
|
|
|
|
|
|
mask_value = max_neg_value(q) |
|
masks = [] |
|
final_attn_mask = None |
|
|
|
if exists(input_mask): |
|
input_mask = rearrange(input_mask, 'b j -> b 1 1 j') |
|
masks.append(~input_mask) |
|
|
|
if exists(attn_mask): |
|
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' |
|
if attn_mask.ndim == 2: |
|
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') |
|
elif attn_mask.ndim == 3: |
|
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') |
|
masks.append(~attn_mask) |
|
|
|
if exists(self.max_attend_past): |
|
range_q = torch.arange(j - i, j, device = device) |
|
range_k = torch.arange(j, device = device) |
|
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') |
|
max_attend_past_mask = dist > self.max_attend_past |
|
masks.append(max_attend_past_mask) |
|
|
|
if len(masks) > 0: |
|
final_attn_mask = ~or_reduce(masks) |
|
|
|
|
|
|
|
attn_bias = None |
|
if exists(rel_pos): |
|
attn_bias = rel_pos(i, j) |
|
|
|
|
|
|
|
out, intermediates = self.attend( |
|
q, k, v, |
|
mask = final_attn_mask, |
|
attn_bias = attn_bias, |
|
prev_attn = prev_attn |
|
) |
|
|
|
|
|
|
|
if exists(r): |
|
out = out * r + out |
|
|
|
|
|
|
|
if head_scale: |
|
out = out * self.head_scale_params |
|
|
|
|
|
|
|
if exists(self.to_v_head_gate): |
|
head_gate = self.to_v_head_gate(x) |
|
out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid() |
|
|
|
|
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
|
|
|
|
|
|
if exists(self.to_v_gate): |
|
gates = self.to_v_gate(x) |
|
out = out * self.to_v_gate_activation(gates) |
|
|
|
|
|
|
|
out = self.to_out(out) |
|
|
|
if exists(mask): |
|
mask = rearrange(mask, 'b n -> b n 1') |
|
out = out.masked_fill(~mask, 0.) |
|
|
|
if not return_intermediates: |
|
return out |
|
|
|
intermediates.cached_kv = cached_kv |
|
|
|
return out, intermediates |
|
|
|
class AttentionLayers(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
depth, |
|
heads = 8, |
|
causal = False, |
|
cross_attend = False, |
|
only_cross = False, |
|
use_scalenorm = False, |
|
use_rmsnorm = False, |
|
use_simple_rmsnorm = False, |
|
alibi_pos_bias = False, |
|
alibi_num_heads = None, |
|
rel_pos_bias = False, |
|
rel_pos_num_buckets = 32, |
|
rel_pos_max_distance = 128, |
|
dynamic_pos_bias = False, |
|
dynamic_pos_bias_log_distance = False, |
|
dynamic_pos_bias_mlp_depth = 2, |
|
dynamic_pos_bias_norm = False, |
|
rotary_pos_emb = False, |
|
rotary_emb_dim = None, |
|
rotary_xpos = False, |
|
rotary_interpolation_factor = 1., |
|
rotary_xpos_scale_base = 512, |
|
rotary_base_rescale_factor = 1., |
|
custom_layers = None, |
|
sandwich_coef = None, |
|
par_ratio = None, |
|
weight_tie_layers = False, |
|
layers_execute_order = None, |
|
residual_attn = False, |
|
cross_residual_attn = False, |
|
macaron = False, |
|
pre_norm = True, |
|
pre_norm_has_final_norm = True, |
|
gate_residual = False, |
|
scale_residual = False, |
|
scale_residual_constant = 1., |
|
shift_tokens = 0, |
|
sandwich_norm = False, |
|
resi_dual = False, |
|
resi_dual_scale = 1., |
|
zero_init_branch_output = False, |
|
layer_dropout = 0., |
|
cross_attn_tokens_dropout = 0., |
|
disable_abs_pos_emb = None, |
|
**kwargs |
|
): |
|
super().__init__() |
|
rotary_pos_emb = rotary_pos_emb or rotary_xpos |
|
|
|
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) |
|
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) |
|
cross_attn_kwargs, kwargs = groupby_prefix_and_trim('cross_attn_', kwargs) |
|
|
|
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) |
|
|
|
self.dim = dim |
|
self.depth = depth |
|
self.causal = causal |
|
self.layers = nn.ModuleList([]) |
|
|
|
self.disable_abs_pos_emb = default(disable_abs_pos_emb, (rel_pos_bias or rotary_pos_emb)) |
|
|
|
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) |
|
|
|
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' |
|
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None |
|
|
|
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' |
|
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' |
|
|
|
|
|
|
|
flash_attn = attn_kwargs.get('flash', False) |
|
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' |
|
|
|
self.rel_pos = None |
|
if rel_pos_bias: |
|
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' |
|
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) |
|
elif dynamic_pos_bias: |
|
assert not flash_attn, 'flash attention not compatible with dynamic positional bias' |
|
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) |
|
elif alibi_pos_bias: |
|
alibi_num_heads = default(alibi_num_heads, heads) |
|
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' |
|
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) |
|
|
|
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' |
|
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' |
|
|
|
if resi_dual: |
|
pre_norm = False |
|
|
|
self.pre_norm = pre_norm |
|
self.sandwich_norm = sandwich_norm |
|
|
|
self.resi_dual = resi_dual |
|
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' |
|
self.resi_dual_scale = resi_dual_scale |
|
|
|
self.residual_attn = residual_attn |
|
self.cross_residual_attn = cross_residual_attn |
|
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' |
|
|
|
self.cross_attend = cross_attend |
|
|
|
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' |
|
|
|
if use_scalenorm: |
|
norm_class = ScaleNorm |
|
elif use_rmsnorm: |
|
norm_class = RMSNorm |
|
elif use_simple_rmsnorm: |
|
norm_class = SimpleRMSNorm |
|
else: |
|
norm_class = LayerNorm |
|
|
|
norm_fn = partial(norm_class, dim) |
|
|
|
if cross_attend and not only_cross: |
|
default_block = ('a', 'c', 'f') |
|
elif cross_attend and only_cross: |
|
default_block = ('c', 'f') |
|
else: |
|
default_block = ('a', 'f') |
|
|
|
if macaron: |
|
default_block = ('f',) + default_block |
|
|
|
|
|
|
|
if zero_init_branch_output: |
|
attn_kwargs = {**attn_kwargs, 'zero_init_output': True} |
|
ff_kwargs = {**ff_kwargs, 'zero_init_output': True} |
|
|
|
|
|
|
|
assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))])) |
|
|
|
if weight_tie_layers: |
|
assert not exists(layers_execute_order) |
|
layers_execute_order = tuple(range(len(default_block))) * depth |
|
depth = 1 |
|
|
|
|
|
|
|
if exists(custom_layers): |
|
layer_types = custom_layers |
|
elif exists(par_ratio): |
|
par_depth = depth * len(default_block) |
|
assert 1 < par_ratio <= par_depth, 'par ratio out of range' |
|
default_block = tuple(filter(not_equals('f'), default_block)) |
|
par_attn = par_depth // par_ratio |
|
depth_cut = par_depth * 2 // 3 |
|
par_width = (depth_cut + depth_cut // par_attn) // par_attn |
|
assert len(default_block) <= par_width, 'default block is too large for par_ratio' |
|
par_block = default_block + ('f',) * (par_width - len(default_block)) |
|
par_head = par_block * par_attn |
|
layer_types = par_head + ('f',) * (par_depth - len(par_head)) |
|
elif exists(sandwich_coef): |
|
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' |
|
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef |
|
else: |
|
layer_types = default_block * depth |
|
|
|
self.layer_types = layer_types |
|
self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types)))) |
|
|
|
assert all([i < len(self.layer_types) for i in self.layers_execute_order]) |
|
|
|
self.num_attn_layers = len(list(filter(equals('a'), layer_types))) |
|
|
|
|
|
|
|
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) |
|
|
|
|
|
|
|
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout |
|
|
|
|
|
|
|
shift_tokens = cast_tuple(shift_tokens, len(layer_types)) |
|
|
|
|
|
|
|
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() |
|
|
|
|
|
|
|
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): |
|
is_last_layer = ind == (len(self.layer_types) - 1) |
|
|
|
if layer_type == 'a': |
|
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) |
|
elif layer_type == 'c': |
|
layer = Attention(dim, heads = heads, **{**attn_kwargs, **cross_attn_kwargs}) |
|
elif layer_type == 'f': |
|
layer = FeedForward(dim, **ff_kwargs) |
|
layer = layer if not macaron else Scale(0.5, layer) |
|
else: |
|
raise Exception(f'invalid layer type {layer_type}') |
|
|
|
if layer_shift_tokens > 0: |
|
shift_range_upper = layer_shift_tokens + 1 |
|
shift_range_lower = -layer_shift_tokens if not causal else 0 |
|
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) |
|
|
|
residual_fn = GRUGating if gate_residual else Residual |
|
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) |
|
|
|
pre_branch_norm = norm_fn() if pre_norm else None |
|
post_branch_norm = norm_fn() if sandwich_norm else None |
|
post_main_norm = norm_fn() if not pre_norm else None |
|
|
|
norms = nn.ModuleList([ |
|
pre_branch_norm, |
|
post_branch_norm, |
|
post_main_norm |
|
]) |
|
|
|
self.layers.append(nn.ModuleList([ |
|
norms, |
|
layer, |
|
residual |
|
])) |
|
|
|
def forward( |
|
self, |
|
x, |
|
context = None, |
|
mask = None, |
|
context_mask = None, |
|
attn_mask = None, |
|
self_attn_kv_mask = None, |
|
mems = None, |
|
mem_masks = None, |
|
seq_start_pos: Optional[Tensor] = None, |
|
cache: Optional[LayerIntermediates] = None, |
|
cache_age = 1, |
|
return_hiddens = False, |
|
rotary_pos_emb = None |
|
): |
|
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' |
|
|
|
|
|
|
|
hiddens = [] |
|
layer_hiddens = [] |
|
intermediates = [] |
|
|
|
prev_attn = None |
|
prev_cross_attn = None |
|
|
|
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers |
|
mem_masks = mem_masks.copy() if exists(mem_masks) else [None] * self.num_attn_layers |
|
|
|
|
|
|
|
if exists(seq_start_pos): |
|
seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long) |
|
left_pad_mask = seq_arange >= seq_start_pos[..., None] |
|
|
|
if exists(self_attn_kv_mask): |
|
self_attn_kv_mask = self_attn_kv_mask & left_pad_mask |
|
else: |
|
self_attn_kv_mask = left_pad_mask |
|
|
|
|
|
|
|
if not exists(rotary_pos_emb) and exists(self.rotary_pos_emb): |
|
maybe_mem = mems[0] |
|
mem_len = maybe_mem.shape[1] if exists(maybe_mem) else 0 |
|
|
|
pos = torch.arange(x.shape[1] + mem_len, device = x.device) - mem_len |
|
rotary_pos_emb = self.rotary_pos_emb(pos) |
|
|
|
|
|
|
|
attn_cache = [] |
|
|
|
if exists(cache): |
|
assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))]) |
|
|
|
if cache_age > 0: |
|
x = x[:, -cache_age:] |
|
|
|
attn_cache = cache.attn_intermediates |
|
|
|
iter_attn_cache = iter(attn_cache) |
|
|
|
|
|
|
|
outer_residual = x * self.resi_dual_scale |
|
|
|
|
|
|
|
layer_variables = ( |
|
self.layer_types, |
|
self.layers, |
|
self.layer_dropouts |
|
) |
|
|
|
layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables) |
|
|
|
|
|
|
|
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)): |
|
is_last = ind == (len(self.layers) - 1) |
|
|
|
if self.training and layer_dropout > 0. and random() < layer_dropout: |
|
continue |
|
|
|
if layer_type == 'a': |
|
if return_hiddens: |
|
hiddens.append(x) |
|
|
|
layer_mem = mems.pop(0) if mems else None |
|
layer_mem_mask = mem_masks.pop(0) if mem_masks else None |
|
|
|
if layer_type == 'c': |
|
if self.training and self.cross_attn_tokens_dropout > 0.: |
|
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) |
|
|
|
inner_residual = x |
|
|
|
if return_hiddens: |
|
layer_hiddens.append(x) |
|
|
|
pre_norm, post_branch_norm, post_main_norm = norm |
|
|
|
if exists(pre_norm): |
|
x = pre_norm(x) |
|
|
|
if layer_type == 'a' and exists(layer_mem): |
|
layer_mem = pre_norm(layer_mem) |
|
|
|
if layer_type == 'a': |
|
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, return_intermediates = True) |
|
elif layer_type == 'c': |
|
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True) |
|
elif layer_type == 'f': |
|
out = block(x) |
|
|
|
if self.resi_dual: |
|
outer_residual = outer_residual + out * self.resi_dual_scale |
|
|
|
if exists(post_branch_norm): |
|
out = post_branch_norm(out) |
|
|
|
x = residual_fn(out, inner_residual) |
|
|
|
if layer_type in ('a', 'c') and return_hiddens: |
|
intermediates.append(inter) |
|
|
|
if layer_type == 'a' and self.residual_attn: |
|
prev_attn = inter.pre_softmax_attn |
|
elif layer_type == 'c' and self.cross_residual_attn: |
|
prev_cross_attn = inter.pre_softmax_attn |
|
|
|
if exists(post_main_norm): |
|
x = post_main_norm(x) |
|
|
|
if return_hiddens: |
|
layer_hiddens.append(x) |
|
|
|
if self.resi_dual: |
|
x = x + self.final_norm(outer_residual) |
|
else: |
|
x = self.final_norm(x) |
|
|
|
if not return_hiddens: |
|
return x |
|
|
|
intermediates = LayerIntermediates( |
|
hiddens = hiddens, |
|
last_hidden = x, |
|
attn_intermediates = intermediates, |
|
layer_hiddens = layer_hiddens, |
|
) |
|
|
|
return x, intermediates |
|
|
|
class Encoder(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
assert 'causal' not in kwargs, 'cannot set causality on encoder' |
|
super().__init__(causal = False, **kwargs) |
|
|
|
class Decoder(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
assert 'causal' not in kwargs, 'cannot set causality on decoder' |
|
super().__init__(causal = True, **kwargs) |
|
|
|
class PrefixDecoder(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
assert 'causal' not in kwargs, 'cannot set causality on decoder' |
|
super().__init__(causal = False, **kwargs) |
|
|
|
def forward( |
|
self, |
|
x, |
|
*args, |
|
attn_mask = None, |
|
prefix_attn_len = None, |
|
**kwargs |
|
): |
|
b, n, device = x.shape[0], x.shape[1], x.device |
|
causal_mask = torch.ones((n, n), device = device, dtype = torch.bool).triu(1) |
|
|
|
forwarded_mask = ~causal_mask |
|
|
|
if exists(prefix_attn_len): |
|
if isinstance(prefix_attn_len, int): |
|
prefix_attn_len = torch.full((b,), prefix_attn_len, device = device) |
|
|
|
prefix_mask = torch.arange(n, device = device) < rearrange(prefix_attn_len, 'b -> b 1 1 1') |
|
forwarded_mask = forwarded_mask | prefix_mask |
|
|
|
if exists(attn_mask): |
|
forwarded_mask = forwarded_mask & attn_mask |
|
|
|
return super().forward(x, *args, attn_mask = forwarded_mask, **kwargs) |
|
|
|
class CrossAttender(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
super().__init__(cross_attend = True, only_cross = True, **kwargs) |
|
|
|
class ViTransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
image_size, |
|
patch_size, |
|
attn_layers: Encoder, |
|
channels = 3, |
|
num_classes = None, |
|
post_emb_norm = False, |
|
num_register_tokens = 0, |
|
emb_dropout = 0. |
|
): |
|
super().__init__() |
|
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size' |
|
dim = attn_layers.dim |
|
num_patches = (image_size // patch_size) ** 2 |
|
patch_dim = channels * patch_size ** 2 |
|
|
|
self.patch_size = patch_size |
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) |
|
|
|
has_register_tokens = num_register_tokens > 0 |
|
self.has_register_tokens = has_register_tokens |
|
|
|
if has_register_tokens: |
|
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) |
|
|
|
self.patch_to_embedding = nn.Sequential( |
|
LayerNorm(patch_dim), |
|
nn.Linear(patch_dim, dim), |
|
LayerNorm(dim) |
|
) |
|
|
|
self.post_emb_norm = LayerNorm(dim) if post_emb_norm else nn.Identity() |
|
self.dropout = nn.Dropout(emb_dropout) |
|
|
|
self.attn_layers = attn_layers |
|
|
|
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
img, |
|
return_embeddings = False, |
|
return_logits_and_embeddings = False |
|
): |
|
b, p = img.shape[0], self.patch_size |
|
|
|
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) |
|
x = self.patch_to_embedding(x) |
|
n = x.shape[1] |
|
|
|
x = x + self.pos_embedding[:, :n] |
|
|
|
x = self.post_emb_norm(x) |
|
x = self.dropout(x) |
|
|
|
if self.has_register_tokens: |
|
r = repeat(self.register_tokens, 'n d -> b n d', b = b) |
|
x, ps = pack((x, r), 'b * d') |
|
|
|
embed = self.attn_layers(x) |
|
|
|
if self.has_register_tokens: |
|
embed, _ = unpack(embed, ps, 'b * d') |
|
|
|
assert at_most_one_of(return_embeddings, return_logits_and_embeddings) |
|
|
|
if not exists(self.mlp_head) or return_embeddings: |
|
return embed |
|
|
|
pooled = embed.mean(dim = -2) |
|
logits = self.mlp_head(pooled) |
|
|
|
if not return_logits_and_embeddings: |
|
return logits |
|
|
|
return logits, embed |
|
|
|
class TransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
num_tokens, |
|
max_seq_len, |
|
attn_layers: AttentionLayers, |
|
embed_num_tokens: Dict[str, int] = dict(), |
|
emb_dim = None, |
|
max_mem_len = 0, |
|
shift_mem_down = 0, |
|
emb_dropout = 0., |
|
post_emb_norm = False, |
|
num_memory_tokens = None, |
|
memory_tokens_interspersed_every = None, |
|
tie_embedding = False, |
|
logits_dim = None, |
|
use_abs_pos_emb = True, |
|
scaled_sinu_pos_emb = False, |
|
l2norm_embed = False, |
|
emb_frac_gradient = 1., |
|
attn_z_loss_weight = 1e-4, |
|
): |
|
super().__init__() |
|
|
|
dim = attn_layers.dim |
|
emb_dim = default(emb_dim, dim) |
|
self.emb_dim = emb_dim |
|
self.num_tokens = num_tokens |
|
|
|
self.max_seq_len = max_seq_len |
|
self.max_mem_len = max_mem_len |
|
self.shift_mem_down = shift_mem_down |
|
|
|
self.l2norm_embed = l2norm_embed |
|
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) |
|
|
|
no_abs_pos_emb = max_seq_len == 0 or not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb) |
|
|
|
if no_abs_pos_emb: |
|
self.pos_emb = always(0) |
|
elif scaled_sinu_pos_emb: |
|
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) |
|
else: |
|
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) |
|
|
|
|
|
|
|
self.embeds = None |
|
|
|
if len(embed_num_tokens) > 0: |
|
self.embeds = nn.ModuleDict({f'{name}_embed': nn.Embedding(num_tokens, emb_dim) for name, num_tokens in embed_num_tokens.items()}) |
|
|
|
|
|
|
|
self.emb_frac_gradient = emb_frac_gradient |
|
|
|
self.post_emb_norm = LayerNorm(emb_dim) if post_emb_norm else nn.Identity() |
|
self.emb_dropout = nn.Dropout(emb_dropout) |
|
|
|
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() |
|
self.attn_layers = attn_layers |
|
|
|
self.init_() |
|
|
|
logits_dim = default(logits_dim, num_tokens) |
|
self.to_logits = nn.Linear(dim, logits_dim, bias = False) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() |
|
|
|
|
|
|
|
num_memory_tokens = default(num_memory_tokens, 0) |
|
self.num_memory_tokens = num_memory_tokens |
|
if num_memory_tokens > 0: |
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) |
|
|
|
self.memory_tokens_interspersed_every = memory_tokens_interspersed_every |
|
|
|
|
|
|
|
self.can_cache_kv = self.num_memory_tokens == 0 |
|
self.can_cache_kv_outside_max_seq_len = no_abs_pos_emb |
|
|
|
def init_(self): |
|
if self.l2norm_embed: |
|
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) |
|
if not isinstance(self.pos_emb, always): |
|
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) |
|
return |
|
|
|
nn.init.kaiming_normal_(self.token_emb.emb.weight) |
|
|
|
def forward( |
|
self, |
|
x, |
|
return_embeddings = False, |
|
return_logits_and_embeddings = False, |
|
return_intermediates = False, |
|
mask = None, |
|
return_mems = False, |
|
return_attn = False, |
|
mems = None, |
|
mem_masks = None, |
|
pos = None, |
|
prepend_embeds = None, |
|
prepend_mask = None, |
|
embed_ids: Dict[str, Tensor] = dict(), |
|
sum_embeds = None, |
|
return_attn_z_loss = False, |
|
attn_z_loss_weight = 1e-4, |
|
seq_start_pos = None, |
|
cache: Optional[LayerIntermediates] = None, |
|
**kwargs |
|
): |
|
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient |
|
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss |
|
|
|
|
|
|
|
external_pos_emb = exists(pos) and pos.dtype != torch.long |
|
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos |
|
x = self.token_emb(x) + pos_emb |
|
|
|
|
|
|
|
if exists(self.embeds): |
|
assert len(embed_ids) == len(self.embeds) |
|
|
|
for name, embed_id in embed_ids.items(): |
|
embed_key = f'{name}_embed' |
|
|
|
assert embed_key in self.embeds |
|
embed = self.embeds[embed_key](embed_id) |
|
|
|
x = x + embed |
|
|
|
|
|
|
|
if exists(sum_embeds): |
|
x = x + sum_embeds |
|
|
|
|
|
|
|
x = self.post_emb_norm(x) |
|
|
|
|
|
|
|
if exists(prepend_embeds): |
|
prepend_seq, prepend_dim = prepend_embeds.shape[1:] |
|
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' |
|
|
|
x = torch.cat((prepend_embeds, x), dim = -2) |
|
|
|
if exists(prepend_mask) or exists(mask): |
|
mask = default(mask, lambda: torch.ones((b, n), device = device, dtype = torch.bool)) |
|
prepend_mask = default(prepend_mask, lambda: torch.ones((b, prepend_seq), device = device, dtype = torch.bool)) |
|
|
|
mask = torch.cat((prepend_mask, mask), dim = -1) |
|
|
|
|
|
|
|
if emb_frac_gradient < 1: |
|
assert emb_frac_gradient > 0 |
|
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) |
|
|
|
|
|
|
|
x = self.emb_dropout(x) |
|
|
|
x = self.project_emb(x) |
|
|
|
if has_memory_tokens: |
|
mem_every = self.memory_tokens_interspersed_every |
|
|
|
if exists(mem_every): |
|
assert mem_every > 0 |
|
assert isinstance(self.attn_layers, Decoder), 'only for decoder' |
|
next_seq_len = math.ceil(n / mem_every) * mem_every |
|
|
|
x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.) |
|
x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every) |
|
|
|
mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0]) |
|
x, mem_packed_shape = pack((mem, x), 'b * d') |
|
|
|
|
|
if not exists(mem_every) and exists(mask): |
|
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) |
|
|
|
if exists(mem_every): |
|
x = rearrange(x, '(b n) m d -> b (n m) d', b = b) |
|
|
|
if self.shift_mem_down and exists(mems): |
|
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] |
|
mems = [*mems_r, *mems_l] |
|
|
|
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, mem_masks = mem_masks, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs) |
|
|
|
if has_memory_tokens: |
|
if exists(mem_every): |
|
x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems)) |
|
|
|
mem, x = unpack(x, mem_packed_shape, 'b * d') |
|
|
|
intermediates.memory_tokens = mem |
|
|
|
if exists(mem_every): |
|
x = rearrange(x, '(b n) m d -> b (n m) d', b = b) |
|
|
|
x = x[:, :n] |
|
|
|
if return_logits_and_embeddings: |
|
out = (self.to_logits(x), x) |
|
elif return_embeddings: |
|
out = x |
|
else: |
|
out = self.to_logits(x) |
|
|
|
if return_attn_z_loss: |
|
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) |
|
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) |
|
return_intermediates = True |
|
|
|
if return_mems: |
|
hiddens = intermediates.hiddens |
|
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens |
|
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) |
|
|
|
if not return_intermediates: |
|
return out, new_mems |
|
|
|
intermediates.mems = new_mems |
|
|
|
if return_intermediates: |
|
return out, intermediates |
|
|
|
if return_attn: |
|
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) |
|
return out, attn_maps |
|
|
|
return out |
|
|
|
class XTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
tie_token_emb = False, |
|
ignore_index = -100, |
|
pad_value = 0, |
|
cross_attn_tokens_dropout = 0., |
|
**kwargs |
|
): |
|
super().__init__() |
|
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) |
|
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) |
|
|
|
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' |
|
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) |
|
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) |
|
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) |
|
enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) |
|
enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) |
|
|
|
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) |
|
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) |
|
dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) |
|
dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) |
|
|
|
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout |
|
|
|
self.encoder = TransformerWrapper( |
|
**enc_transformer_kwargs, |
|
attn_layers = Encoder(dim = dim, **enc_kwargs) |
|
) |
|
|
|
self.decoder = TransformerWrapper( |
|
**dec_transformer_kwargs, |
|
attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) |
|
) |
|
|
|
if tie_token_emb: |
|
self.decoder.token_emb = self.encoder.token_emb |
|
|
|
self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) |
|
|
|
@torch.no_grad() |
|
def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): |
|
encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) |
|
return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) |
|
|
|
def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): |
|
|
|
enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) |
|
|
|
if exists(src_prepend_embeds) and exists(mask): |
|
mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) |
|
|
|
if self.training and self.cross_attn_tokens_dropout > 0: |
|
enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) |
|
|
|
out = self.decoder(tgt, context = enc, context_mask = mask) |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from einops import pack, repeat, unpack |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if callable(d) else d |
|
|
|
|
|
|
|
class ContinuousTransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
max_seq_len, |
|
attn_layers: AttentionLayers, |
|
dim_in = None, |
|
dim_out = None, |
|
emb_dim = None, |
|
max_mem_len = 0, |
|
num_memory_tokens = None, |
|
post_emb_norm = False, |
|
emb_dropout = 0., |
|
use_abs_pos_emb = True, |
|
scaled_sinu_pos_emb = False |
|
): |
|
super().__init__() |
|
dim = attn_layers.dim |
|
|
|
self.max_seq_len = max_seq_len |
|
|
|
self.max_mem_len = max_mem_len |
|
|
|
if not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb): |
|
self.pos_emb = always(0) |
|
elif scaled_sinu_pos_emb: |
|
self.pos_emb = ScaledSinusoidalEmbedding(dim) |
|
else: |
|
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) |
|
|
|
self.post_emb_norm = LayerNorm(dim) if post_emb_norm else nn.Identity() |
|
self.emb_dropout = nn.Dropout(emb_dropout) |
|
|
|
|
|
|
|
num_memory_tokens = default(num_memory_tokens, 0) |
|
self.has_memory_tokens = num_memory_tokens > 0 |
|
|
|
if num_memory_tokens > 0: |
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) |
|
|
|
|
|
|
|
self.attn_layers = attn_layers |
|
|
|
|
|
|
|
self.project_in = nn.Linear(dim_in, dim, bias = False) if exists(dim_in) else nn.Identity() |
|
self.project_out = nn.Linear(dim, dim_out, bias = False) if exists(dim_out) else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
x, |
|
return_embeddings = False, |
|
return_intermediates = False, |
|
return_mems = False, |
|
mask = None, |
|
return_attn = False, |
|
mems = None, |
|
mem_masks = None, |
|
pos = None, |
|
prepend_embeds = None, |
|
prepend_mask = None, |
|
**kwargs |
|
): |
|
batch, seq, device = *x.shape[:2], x.device |
|
|
|
x = self.project_in(x) |
|
x = x + self.pos_emb(x, pos = pos) |
|
|
|
x = self.post_emb_norm(x) |
|
|
|
|
|
|
|
if self.has_memory_tokens: |
|
m = repeat(self.memory_tokens, 'm d -> b m d', b = batch) |
|
x, mem_ps = pack([m, x], 'b * d') |
|
|
|
if exists(mask): |
|
num_mems = m.shape[-2] |
|
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) |
|
|
|
|
|
|
|
if exists(prepend_embeds): |
|
prepend_seq, prepend_dim = prepend_embeds.shape[1:] |
|
|
|
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' |
|
|
|
x = torch.cat((prepend_embeds, x), dim = -2) |
|
|
|
if exists(prepend_mask) or exists(mask): |
|
mask = default(mask, lambda: torch.ones((batch, seq), device = device, dtype = torch.bool)) |
|
prepend_mask = default(prepend_mask, lambda: torch.ones((batch, prepend_seq), device = device, dtype = torch.bool)) |
|
|
|
mask = torch.cat((prepend_mask, mask), dim = -1) |
|
|
|
x = self.emb_dropout(x) |
|
|
|
|
|
|
|
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, mem_masks = mem_masks, return_hiddens = True, **kwargs) |
|
|
|
|
|
|
|
if self.has_memory_tokens: |
|
m, x = unpack(x, mem_ps, 'b * d') |
|
intermediates.memory_tokens = m |
|
|
|
out = self.project_out(x) if not return_embeddings else x |
|
|
|
if return_intermediates: |
|
return out, intermediates |
|
|
|
if return_mems: |
|
hiddens = intermediates.hiddens |
|
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) |
|
return out, new_mems |
|
|
|
if return_attn: |
|
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) |
|
return out, attn_maps |
|
|
|
return out |
|
|
|
class ContinuousAutoregressiveWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
net: ContinuousTransformerWrapper, |
|
ignore_index = -100, |
|
pad_value = 0, |
|
loss_fn = nn.MSELoss(reduction = 'none') |
|
): |
|
super().__init__() |
|
self.net = net |
|
self.max_seq_len = net.max_seq_len |
|
self.loss_fn = loss_fn |
|
|
|
@torch.no_grad() |
|
def generate(self, start_tokens, seq_len, **kwargs): |
|
device = start_tokens.device |
|
was_training = self.net.training |
|
num_dims = len(start_tokens.shape) |
|
|
|
assert num_dims >= 2, 'number of dimensions of your start tokens must be greater or equal to 2' |
|
|
|
if num_dims == 2: |
|
start_tokens = start_tokens[None, :] |
|
|
|
b, t, _, device = *start_tokens.shape, start_tokens.device |
|
|
|
self.net.eval() |
|
out = start_tokens |
|
|
|
for _ in range(seq_len): |
|
x = out[:, -self.max_seq_len:] |
|
|
|
last = self.net(x, **kwargs)[:, -1:] |
|
out = torch.cat((out, last), dim = -2) |
|
|
|
out = out[:, t:] |
|
|
|
if num_dims == 2: |
|
out = out.squeeze(0) |
|
|
|
self.net.train(was_training) |
|
return out |
|
|
|
def forward(self, x, **kwargs): |
|
inp, target = x[:, :-1], x[:, 1:] |
|
|
|
assert 'prepend_embeds' not in kwargs |
|
|
|
mask = kwargs.get('mask', None) |
|
if exists(mask) and mask.shape[1] == x.shape[1]: |
|
mask = mask[:, :-1] |
|
kwargs['mask'] = mask |
|
|
|
out = self.net(inp, **kwargs) |
|
|
|
loss = self.loss_fn(out, target) |
|
|
|
if exists(mask): |
|
assert loss.ndim > 1, 'loss should not be reduced if mask is passed in' |
|
loss = loss[mask] |
|
|
|
return loss.mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from copy import deepcopy |
|
|
|
import torch |
|
from torch.nn import Module |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange |
|
|
|
|
|
|
|
def exists(v): |
|
return v is not None |
|
|
|
def freeze_all_layers_(module): |
|
for param in module.parameters(): |
|
param.requires_grad = False |
|
|
|
def log_prob_from_model_and_seq(model, seq): |
|
logits = model(seq) |
|
log_prob = logits.log_softmax(dim = -1) |
|
indices = rearrange(seq, '... -> ... 1') |
|
log_probs = log_prob.gather(-1, indices) |
|
return rearrange(log_probs, '... 1 -> ...') |
|
|
|
def masked_mean(log_probs, mask = None): |
|
if not exists(mask): |
|
return log_probs.mean(dim = -1) |
|
|
|
log_probs = log_probs.masked_fill(~mask, 0.) |
|
num = log_probs.sum(dim = -1) |
|
den = mask.sum(dim = -1) |
|
return num / den.clamp(min = 1e-5) |
|
|
|
def maybe_and_mask(*masks): |
|
masks = [*filter(exists, masks)] |
|
if len(masks) == 0: |
|
return None |
|
|
|
mask, *rest_masks = masks |
|
for rest_mask in rest_masks: |
|
mask = mask & rest_mask |
|
|
|
return mask |
|
|
|
|
|
|
|
class DPO(Module): |
|
def __init__( |
|
self, |
|
model: TransformerWrapper, |
|
*, |
|
beta = 0.1, |
|
pad_id = None |
|
): |
|
super().__init__() |
|
self.policy_model = model |
|
|
|
self.ref_model = deepcopy(model) |
|
freeze_all_layers_(self.ref_model) |
|
|
|
self.beta = beta |
|
self.pad_id = pad_id |
|
|
|
def parameters(self): |
|
return self.policy_model.parameters() |
|
|
|
def forward( |
|
self, |
|
preferred_seq, |
|
unpreferred_seq, |
|
*, |
|
prompt_mask, |
|
preferred_seq_mask = None, |
|
unpreferred_seq_mask = None, |
|
): |
|
assert preferred_seq.ndim == 2 |
|
assert preferred_seq.shape == unpreferred_seq.shape |
|
|
|
if exists(self.pad_id): |
|
if not exists(preferred_seq_mask): |
|
preferred_seq_mask = preferred_seq != self.pad_id |
|
|
|
if not exists(unpreferred_seq_mask): |
|
unpreferred_seq_mask = unpreferred_seq != self.pad_id |
|
|
|
""" |
|
Following Appendix B in https://arxiv.org/abs/2305.18290 |
|
""" |
|
|
|
with torch.no_grad(): |
|
self.ref_model.eval() |
|
ref_preferred_logprob = log_prob_from_model_and_seq(self.ref_model, preferred_seq) |
|
ref_unpreferred_logprob = log_prob_from_model_and_seq(self.ref_model, unpreferred_seq) |
|
|
|
policy_preferred_logprob = log_prob_from_model_and_seq(self.policy_model, preferred_seq) |
|
policy_unpreferred_logprob = log_prob_from_model_and_seq(self.policy_model, unpreferred_seq) |
|
|
|
|
|
|
|
preferred_seq_mask = maybe_and_mask(~prompt_mask, preferred_seq_mask) |
|
unpreferred_seq_mask = maybe_and_mask(~prompt_mask, unpreferred_seq_mask) |
|
|
|
ref_preferred_logprob, policy_preferred_logprob = map(lambda t: masked_mean(t, preferred_seq_mask), (ref_preferred_logprob, policy_preferred_logprob)) |
|
ref_unpreferred_logprob, policy_unpreferred_logprob = map(lambda t: masked_mean(t, unpreferred_seq_mask), (ref_unpreferred_logprob, policy_unpreferred_logprob)) |
|
|
|
|
|
|
|
policy_logratios = policy_preferred_logprob - policy_unpreferred_logprob |
|
ref_logratios = ref_preferred_logprob - ref_unpreferred_logprob |
|
|
|
losses = -F.logsigmoid(self.beta * (policy_logratios - ref_logratios)) |
|
|
|
return losses.mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from random import random |
|
from contextlib import nullcontext |
|
from collections import namedtuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from einops import rearrange, repeat, pack, unpack |
|
|
|
from typing import Optional |
|
|
|
|
|
|
|
Losses = namedtuple('Losses', ['loss', 'generator_loss', 'critic_loss']) |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
|
|
|
|
def top_k(logits, thres = 0.9): |
|
k = math.ceil((1 - thres) * logits.shape[-1]) |
|
val, ind = logits.topk(k, dim = -1) |
|
probs = torch.full_like(logits, float('-inf')) |
|
probs.scatter_(2, ind, val) |
|
return probs |
|
|
|
def log(t, eps = 1e-10): |
|
return torch.log(t + eps) |
|
|
|
def gumbel_noise(t): |
|
noise = torch.zeros_like(t).uniform_(0, 1) |
|
return -log(-log(noise)) |
|
|
|
def gumbel_sample(t, temperature = 1., dim = -1): |
|
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim) |
|
|
|
|
|
|
|
def sample_prob(prob): |
|
return random() < prob |
|
|
|
def coin_flip(): |
|
return sample_prob(0.5) |
|
|
|
|
|
|
|
def get_mask_subset_prob(mask, prob, min_mask = 0): |
|
batch, seq, device = *mask.shape, mask.device |
|
num_to_mask = (mask.sum(dim = -1, keepdim = True) * prob).clamp(min = min_mask) |
|
logits = torch.rand((batch, seq), device = device) |
|
logits = logits.masked_fill(~mask, -1) |
|
|
|
randperm = logits.argsort(dim = -1).float() |
|
|
|
num_padding = (~mask).sum(dim = -1, keepdim = True) |
|
randperm -= num_padding |
|
|
|
subset_mask = randperm < num_to_mask |
|
subset_mask.masked_fill_(~mask, False) |
|
return subset_mask |
|
|
|
|
|
|
|
def linear_schedule(t): |
|
return 1 - t |
|
|
|
def cosine_schedule(t): |
|
""" https://arxiv.org/abs/2202.04200 """ |
|
return torch.cos(t * math.pi / 2) |
|
|
|
|
|
|
|
|
|
class SelfCritic(nn.Module): |
|
def __init__(self, net): |
|
super().__init__() |
|
self.net = net |
|
|
|
dim = net.attn_layers.dim |
|
self.to_logits = nn.Linear(dim, 1) |
|
|
|
def forward(self, x): |
|
embed = self.net(x, return_embeddings = True) |
|
return self.to_logits(embed) |
|
|
|
class NonAutoregressiveWrapper(nn.Module): |
|
""" |
|
https://arxiv.org/abs/1904.09324 |
|
https://arxiv.org/abs/2202.04200 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
net, |
|
*, |
|
mask_id, |
|
steps = 18, |
|
self_cond = False, |
|
self_cond_train_prob = 0.75, |
|
no_replace_prob = 0.15, |
|
random_token_prob = 0.1, |
|
schedule = 'linear', |
|
can_mask_prev_unmasked = False, |
|
token_critic: Optional[TransformerWrapper] = None, |
|
self_token_critic = False, |
|
critic_loss_weight = 1. |
|
): |
|
super().__init__() |
|
assert not (self_token_critic and exists(token_critic)) |
|
|
|
self.net = net |
|
|
|
dim = net.emb_dim |
|
self.dim = dim |
|
self.num_tokens = net.num_tokens |
|
|
|
self.mask_id = mask_id |
|
|
|
|
|
|
|
|
|
self.no_replace_prob = no_replace_prob |
|
self.random_token_prob = random_token_prob |
|
|
|
self.max_seq_len = net.max_seq_len |
|
self.steps = steps |
|
|
|
if callable(schedule): |
|
self.schedule_fn = schedule |
|
if schedule == 'linear': |
|
self.schedule_fn = linear_schedule |
|
elif schedule == 'cosine': |
|
self.schedule_fn = cosine_schedule |
|
else: |
|
raise ValueError(f'invalid schedule {schedule}') |
|
|
|
self.can_mask_prev_unmasked = can_mask_prev_unmasked |
|
|
|
|
|
|
|
self.self_cond = self_cond |
|
|
|
if self_cond: |
|
self.null_embed = nn.Parameter(torch.randn(dim)) |
|
self.to_self_cond = nn.Linear(dim, dim, bias = False) if self_cond else None |
|
self.self_cond_train_prob = self_cond_train_prob |
|
|
|
|
|
|
|
self.token_critic = token_critic |
|
|
|
if self_token_critic: |
|
self.token_critic = SelfCritic(net) |
|
|
|
self.critic_loss_weight = critic_loss_weight |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
batch_size = None, |
|
start_temperature = 1., |
|
filter_thres = 0.7, |
|
noise_level_scale = 1., |
|
**kwargs |
|
): |
|
sample_one = not exists(batch_size) |
|
batch_size = default(batch_size, 1) |
|
|
|
device = next(self.net.parameters()).device |
|
|
|
was_training = self.training |
|
self.eval() |
|
|
|
times = torch.linspace(0., 1., self.steps + 1) |
|
|
|
|
|
|
|
shape = (batch_size, self.max_seq_len) |
|
|
|
seq = torch.full(shape, self.mask_id, device = device) |
|
mask = torch.full(shape, True, device = device) |
|
|
|
|
|
|
|
all_mask_num_tokens = (self.schedule_fn(times[1:]) * self.max_seq_len).long() |
|
|
|
|
|
|
|
has_self_cond = self.self_cond |
|
last_embed = self.null_embed if has_self_cond else None |
|
|
|
for mask_num_tokens, steps_until_x0 in zip(all_mask_num_tokens.tolist(), reversed(range(self.steps))): |
|
|
|
self_cond = self.to_self_cond(last_embed) if has_self_cond else None |
|
|
|
logits, embeds = self.net( |
|
seq, |
|
sum_embeds = self_cond, |
|
return_logits_and_embeddings = True, |
|
**kwargs |
|
) |
|
|
|
if has_self_cond: |
|
last_embed = embeds |
|
|
|
if exists(filter_thres): |
|
logits = top_k(logits, filter_thres) |
|
|
|
annealing_scale = steps_until_x0 / self.steps |
|
temperature = start_temperature * annealing_scale |
|
|
|
probs = (logits / max(temperature, 1e-3)).softmax(dim = -1) |
|
|
|
sampled_ids = gumbel_sample(logits, temperature = max(temperature, 1e-3)) |
|
|
|
seq = torch.where(mask, sampled_ids, seq) |
|
|
|
if exists(self.token_critic): |
|
scores = self.token_critic(seq) |
|
scores = rearrange(scores, 'b n 1 -> b n') |
|
scores = scores + noise_level_scale * gumbel_noise(scores) * annealing_scale |
|
else: |
|
scores = 1 - logits.softmax(dim = -1) |
|
scores = scores.gather(2, rearrange(sampled_ids, 'b n -> b n 1')) |
|
scores = rearrange(scores, 'b n 1 -> b n') |
|
|
|
if mask_num_tokens == 0: |
|
pass |
|
|
|
if not self.can_mask_prev_unmasked: |
|
scores = scores.masked_fill(~mask, -torch.finfo(scores.dtype).max) |
|
|
|
mask_indices = scores.topk(mask_num_tokens, dim = -1).indices |
|
mask = torch.zeros_like(scores, dtype = torch.bool).scatter(1, mask_indices, True) |
|
seq = seq.masked_fill(mask, self.mask_id) |
|
|
|
self.train(was_training) |
|
|
|
if sample_one: |
|
seq = rearrange(seq, '1 n -> n') |
|
|
|
return seq |
|
|
|
def forward( |
|
self, |
|
x, |
|
only_train_generator = False, |
|
only_train_critic = False, |
|
generator_sample_temperature = None, |
|
**kwargs |
|
): |
|
b, n, device = *x.shape, x.device |
|
assert n == self.max_seq_len |
|
|
|
orig_seq = x.clone() |
|
|
|
rand_times = torch.empty(b, device = device).uniform_(0, 1) |
|
batched_randperm = torch.rand((b, n), device = device).argsort(dim = -1).float() |
|
|
|
rand_probs = self.schedule_fn(rand_times) |
|
num_tokens_mask = (rand_probs * n).clamp(min = 1.) |
|
mask = batched_randperm < rearrange(num_tokens_mask, 'b -> b 1') |
|
|
|
|
|
|
|
|
|
replace_mask_id_mask = mask.clone() |
|
frac_seq_left = 1. |
|
|
|
if self.no_replace_prob > 0. and coin_flip(): |
|
frac_seq_left -= self.no_replace_prob |
|
|
|
no_replace_prob_mask = get_mask_subset_prob(mask, self.no_replace_prob) |
|
replace_mask_id_mask &= ~no_replace_prob_mask |
|
|
|
if self.random_token_prob > 0. and coin_flip(): |
|
random_token_prob_mask = get_mask_subset_prob(replace_mask_id_mask, self.random_token_prob * frac_seq_left) |
|
random_tokens = torch.randint(0, self.num_tokens, (b, n), device = device) |
|
|
|
x = torch.where(random_token_prob_mask, random_tokens, x) |
|
replace_mask_id_mask &= ~random_token_prob_mask |
|
|
|
masked = torch.where(replace_mask_id_mask, self.mask_id, x) |
|
|
|
|
|
|
|
if self.self_cond: |
|
self_cond = self.null_embed |
|
|
|
if sample_prob(self.self_cond_train_prob): |
|
with torch.no_grad(): |
|
self_cond = self.net(masked, return_embeddings = True, **kwargs).detach() |
|
|
|
kwargs.update(sum_embeds = self.to_self_cond(self_cond)) |
|
|
|
|
|
|
|
context = torch.no_grad if only_train_critic else nullcontext |
|
|
|
with context(): |
|
logits = self.net(masked, **kwargs) |
|
|
|
|
|
|
|
loss = F.cross_entropy( |
|
logits[mask], |
|
orig_seq[mask] |
|
) |
|
|
|
if not exists(self.token_critic) or only_train_generator: |
|
return Losses(loss, loss, None) |
|
|
|
sampled_ids = gumbel_sample(logits, temperature = default(generator_sample_temperature, random())) |
|
generated = torch.where(mask, sampled_ids, orig_seq) |
|
|
|
critic_logits = self.token_critic(generated) |
|
critic_labels = (sampled_ids != orig_seq).float() |
|
|
|
critic_loss = F.binary_cross_entropy_with_logits( |
|
rearrange(critic_logits, '... 1 -> ...'), |
|
critic_labels |
|
) |
|
|
|
|
|
|
|
if only_train_critic: |
|
total_loss = critic_loss |
|
loss = None |
|
else: |
|
total_loss = loss + critic_loss * self.critic_loss_weight |
|
|
|
return Losses(total_loss, loss, critic_loss) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from math import ceil, log |
|
from typing import Optional, Union, Tuple, Callable |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
from torch.nn import Module |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, pack, unpack |
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
def identity(t, *args, **kwargs): |
|
return t |
|
|
|
def cast_tuple(t, length = 1): |
|
return t if isinstance(t, tuple) else (t,) * length |
|
|
|
def eval_decorator(fn): |
|
def inner(self, *args, **kwargs): |
|
was_training = self.training |
|
self.eval() |
|
out = fn(self, *args, **kwargs) |
|
self.train(was_training) |
|
return out |
|
return inner |
|
|
|
|
|
|
|
def align_right(t, lens, pad_id = 0): |
|
batch, seq_len, device, dtype = *t.shape, t.device, t.dtype |
|
|
|
assert lens.ndim == 1 and lens.shape[0] == batch |
|
assert lens.amax() <= seq_len |
|
|
|
pad_lens = seq_len - lens |
|
max_pad_len = pad_lens.amax() |
|
|
|
batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None] |
|
prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long) |
|
|
|
t = F.pad(t, (max_pad_len, 0), value = 0) |
|
offset = max_pad_len - pad_lens |
|
|
|
aligned = t[batch_arange, prompt_len_arange + offset[..., None]] |
|
return aligned |
|
|
|
|
|
|
|
def top_p(logits, thres = 0.9): |
|
sorted_logits, sorted_indices = torch.sort(logits, descending = True) |
|
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1) |
|
|
|
sorted_indices_to_remove = cum_probs > thres |
|
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False) |
|
|
|
sorted_logits[sorted_indices_to_remove] = float('-inf') |
|
return sorted_logits.scatter(1, sorted_indices, sorted_logits) |
|
|
|
|
|
|
|
def top_k(logits, frac_num_tokens = 0.1, k = None): |
|
num_tokens = logits.shape[-1] |
|
|
|
k = default(k, ceil(frac_num_tokens * num_tokens)) |
|
k = min(k, num_tokens) |
|
|
|
val, ind = torch.topk(logits, k) |
|
probs = torch.full_like(logits, float('-inf')) |
|
probs.scatter_(1, ind, val) |
|
return probs |
|
|
|
|
|
|
|
def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02): |
|
probs = F.softmax(logits, dim = -1) |
|
max_probs = torch.amax(probs, dim = -1, keepdim = True) |
|
limit = torch.pow(max_probs, min_p_pow) * min_p_ratio |
|
return torch.where(probs < limit, float('-inf'), logits) |
|
|
|
|
|
|
|
def contrastive_decode_fn( |
|
expert_logits, |
|
amateur_logits, |
|
alpha = 0.1, |
|
beta = 0.5 |
|
): |
|
""" |
|
Appendix A Algorithm 2 |
|
https://arxiv.org/abs/2309.09117 |
|
""" |
|
|
|
cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True) |
|
diffs = (1 + beta) * expert_logits - beta * amateur_logits |
|
contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max) |
|
return contrastive_decode_logits |
|
|
|
|
|
|
|
class AutoregressiveWrapper(Module): |
|
def __init__( |
|
self, |
|
net, |
|
ignore_index = -100, |
|
pad_value = 0, |
|
mask_prob = 0., |
|
add_attn_z_loss = False |
|
): |
|
super().__init__() |
|
self.pad_value = pad_value |
|
self.ignore_index = ignore_index |
|
|
|
self.net = net |
|
self.max_seq_len = net.max_seq_len |
|
|
|
|
|
assert mask_prob < 1. |
|
self.mask_prob = mask_prob |
|
|
|
|
|
self.add_attn_z_loss = add_attn_z_loss |
|
|
|
@torch.no_grad() |
|
@eval_decorator |
|
def generate( |
|
self, |
|
prompts, |
|
seq_len, |
|
eos_token = None, |
|
temperature = 1., |
|
prompt_lens: Optional[Tensor] = None, |
|
filter_logits_fn: Callable = top_k, |
|
restrict_to_max_seq_len = True, |
|
amateur_model: Optional[Union[Module, Tuple[Module]]] = None, |
|
filter_kwargs: dict = dict(), |
|
contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict( |
|
beta = 0.5, |
|
alpha = 0.1 |
|
), |
|
cache_kv = False, |
|
verbose=True, |
|
return_prime=False, |
|
**kwargs |
|
): |
|
max_seq_len, greedy, device = self.max_seq_len, temperature == 0., prompts.device |
|
|
|
prompts, ps = pack([prompts], '* n') |
|
|
|
b, t = prompts.shape |
|
|
|
|
|
|
|
seq_start_pos = None |
|
if exists(prompt_lens): |
|
prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value) |
|
seq_start_pos = t - prompt_lens |
|
|
|
|
|
|
|
out = prompts |
|
|
|
if verbose: |
|
print("Generating sequence of max length:", seq_len) |
|
|
|
|
|
|
|
cache = None |
|
|
|
|
|
|
|
if exists(amateur_model): |
|
amateur_model = cast_tuple(amateur_model) |
|
contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs) |
|
|
|
assert len(amateur_model) == len(contrastive_decode_kwargs) |
|
|
|
amateur_caches = [None] * len(amateur_model) |
|
filter_logits_fn = identity |
|
|
|
for i, module in enumerate(amateur_model): |
|
if isinstance(module, AutoregressiveWrapper): |
|
amateur_model[i] = module.net |
|
|
|
module.eval() |
|
|
|
|
|
|
|
for sl in range(seq_len): |
|
|
|
if restrict_to_max_seq_len: |
|
max_len_exceeded = out.shape[-1] > max_seq_len |
|
|
|
assert not (cache_kv and max_len_exceeded and not self.net.can_cache_kv_outside_max_seq_len), 'the network cannot use cached key values when decoding outside the max sequence length. most likely because you are using absolute positional embeeding. you can switch to rotary embeddings to resolve this issue' |
|
|
|
x = out[:, -max_seq_len:] |
|
|
|
if exists(cache): |
|
for inter in cache.attn_intermediates: |
|
inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv] |
|
|
|
logits, new_cache = self.net( |
|
x, |
|
return_intermediates = True, |
|
cache = cache, |
|
seq_start_pos = seq_start_pos, |
|
**kwargs |
|
) |
|
|
|
if cache_kv and self.net.can_cache_kv: |
|
cache = new_cache |
|
|
|
logits = logits[:, -1] |
|
|
|
|
|
|
|
|
|
if exists(amateur_model): |
|
for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)): |
|
amateur_logits, next_amateur_cache = amateur( |
|
x, |
|
return_intermediates = True, |
|
cache = amateur_cache, |
|
seq_start_pos = seq_start_pos, |
|
**kwargs |
|
) |
|
|
|
amateur_logits = amateur_logits[:, -1] |
|
|
|
assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model' |
|
logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs) |
|
|
|
if cache_kv and amateur.can_cache_kv: |
|
amateur_caches[i] = next_amateur_cache |
|
|
|
|
|
|
|
if greedy: |
|
sample = logits.argmax(dim = -1, keepdim = True) |
|
else: |
|
filtered_logits = filter_logits_fn(logits, **filter_kwargs) |
|
probs = F.softmax(filtered_logits / temperature, dim=-1) |
|
sample = torch.multinomial(probs, 1) |
|
|
|
|
|
|
|
out = torch.cat((out, sample), dim=-1) |
|
|
|
if verbose: |
|
if sl % 32 == 0: |
|
print(sl, '/', seq_len) |
|
|
|
if not exists(eos_token): |
|
continue |
|
|
|
is_eos_tokens = (out == eos_token) |
|
|
|
if is_eos_tokens.any(dim = -1).all(): |
|
if verbose: |
|
print('Model called the end of sequence at:', sl, '/', seq_len) |
|
break |
|
|
|
if exists(eos_token): |
|
|
|
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) |
|
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 |
|
out = out.masked_fill(mask, self.pad_value) |
|
|
|
if return_prime: |
|
return out[:, :] |
|
|
|
else: |
|
return out[:, t:] |
|
|
|
|
|
|
|
|
|
|
|
def compute_accuracy(self, logits, labels): |
|
out = torch.argmax(logits, dim=-1) |
|
out = out.flatten() |
|
labels = labels.flatten() |
|
|
|
mask = (labels != self.ignore_index) |
|
out = out[mask] |
|
labels = labels[mask] |
|
|
|
num_right = (out == labels) |
|
num_right = torch.sum(num_right).type(torch.float32) |
|
|
|
acc = num_right / len(labels) |
|
return acc |
|
|
|
def forward(self, x, return_outputs = False, **kwargs): |
|
seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss |
|
|
|
inp, target = x[:, :-1], x[:, 1:] |
|
inp = torch.where(inp == ignore_index, self.pad_value, inp) |
|
|
|
if self.mask_prob > 0.: |
|
rand = torch.randn(inp.shape, device = x.device) |
|
rand[:, 0] = -torch.finfo(rand.dtype).max |
|
num_mask = min(int(seq * self.mask_prob), seq - 1) |
|
indices = rand.topk(num_mask, dim = -1).indices |
|
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() |
|
kwargs.update(self_attn_kv_mask = mask) |
|
|
|
logits, cache = self.net( |
|
inp, |
|
return_intermediates = True, |
|
return_attn_z_loss = add_attn_z_loss, |
|
**kwargs |
|
) |
|
|
|
acc = self.compute_accuracy(logits, target) |
|
|
|
loss = F.cross_entropy( |
|
rearrange(logits, 'b n c -> b c n'), |
|
target, |
|
ignore_index = ignore_index |
|
) |
|
|
|
if add_attn_z_loss: |
|
loss = loss + cache.attn_z_loss |
|
|
|
if not return_outputs: |
|
return loss, acc |
|
|
|
return loss, acc, (logits, cache) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from math import ceil |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, pack, unpack |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def divisible_by(numer, denom): |
|
return (numer % denom) == 0 |
|
|
|
|
|
|
|
class XLAutoregressiveWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
net, |
|
ignore_index = -100, |
|
pad_value = 0 |
|
): |
|
super().__init__() |
|
self.pad_value = pad_value |
|
self.ignore_index = ignore_index |
|
|
|
self.net = net |
|
self.max_seq_len = net.max_seq_len |
|
|
|
@torch.no_grad() |
|
@eval_decorator |
|
def generate( |
|
self, |
|
start_tokens, |
|
seq_len, |
|
eos_token = None, |
|
temperature = 1., |
|
filter_logits_fn = top_k, |
|
filter_thres = 0.9, |
|
mems = None, |
|
**kwargs |
|
): |
|
device, max_seq_len = start_tokens.device, self.max_seq_len |
|
|
|
start_tokens, ps = pack([start_tokens], '* n') |
|
|
|
b, t = start_tokens.shape |
|
|
|
*all_leading_tokens, _ = start_tokens.split(max_seq_len, dim = -1) |
|
|
|
|
|
|
|
for leading_tokens in all_leading_tokens: |
|
_, mems = self.net( |
|
leading_tokens, |
|
mems = mems, |
|
return_mems = True, |
|
**kwargs |
|
) |
|
|
|
|
|
|
|
curr_pos = len(all_leading_tokens) * max_seq_len |
|
curr_mems = mems |
|
|
|
cache = None |
|
out = start_tokens |
|
|
|
for _ in range(seq_len): |
|
curr_segment_len = out.shape[-1] |
|
is_last_segment_tokens = divisible_by(curr_segment_len, max_seq_len) |
|
|
|
x = out[:, curr_pos:] |
|
|
|
logits, cache = self.net( |
|
x, |
|
mems = curr_mems, |
|
cache = cache, |
|
return_mems = True, |
|
return_intermediates = True, |
|
**kwargs |
|
) |
|
|
|
mems = cache.mems |
|
|
|
logits = logits[:, -1] |
|
filtered_logits = filter_logits_fn(logits, thres = filter_thres) |
|
probs = F.softmax(filtered_logits / temperature, dim=-1) |
|
|
|
sample = torch.multinomial(probs, 1) |
|
|
|
if is_last_segment_tokens: |
|
curr_pos = curr_segment_len |
|
curr_mems = mems |
|
|
|
out = torch.cat((out, sample), dim=-1) |
|
|
|
if exists(eos_token): |
|
is_eos_tokens = (out == eos_token) |
|
|
|
if is_eos_tokens.any(dim = -1).all(): |
|
|
|
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) |
|
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 |
|
out = out.masked_fill(mask, self.pad_value) |
|
break |
|
|
|
out = out[:, t:] |
|
|
|
out, = unpack(out, ps, '* n') |
|
|
|
return out |
|
|
|
def forward( |
|
self, |
|
x, |
|
mems = None, |
|
**kwargs |
|
): |
|
ignore_index, max_seq_len = self.ignore_index, self.max_seq_len |
|
|
|
x, labels = x[:, :-1], x[:, 1:] |
|
|
|
seq_len = x.shape[1] |
|
|
|
|
|
|
|
split_x = x.split(max_seq_len, dim = -1) |
|
split_labels = labels.split(max_seq_len, dim = -1) |
|
loss_weights = tuple(map(lambda t: t.shape[-1] / seq_len, split_x)) |
|
|
|
|
|
|
|
total_loss = 0. |
|
|
|
for chunk, chunk_labels, loss_weight in zip(split_x, split_labels, loss_weights): |
|
|
|
logits, mems = self.net( |
|
chunk, |
|
mems = mems, |
|
return_mems = True, |
|
**kwargs |
|
) |
|
|
|
loss = F.cross_entropy( |
|
rearrange(logits, 'b n c -> b c n'), |
|
chunk_labels, |
|
ignore_index = ignore_index |
|
) |
|
|
|
total_loss = total_loss + loss * loss_weight |
|
|
|
return total_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
regular transformer with discrete tokens, but continuous for number |
|
generalizes better for arithmetic |
|
https://arxiv.org/abs/2310.02989 |
|
""" |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
import torch.nn.functional as F |
|
|
|
from typing import Callable |
|
from collections import namedtuple |
|
|
|
from einops import rearrange |
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
|
|
LossBreakdown = namedtuple('LossBreakdown', ['cross_entropy_loss', 'numerical_mse_loss']) |
|
|
|
GenerateReturn = namedtuple('GenerateReturn', ['sampled_token_ids', 'sampled_numbers', 'is_number_mask']) |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if callable(d) else d |
|
|
|
|
|
|
|
class XValTransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
num_tokens, |
|
max_seq_len, |
|
numerical_token_id, |
|
attn_layers: AttentionLayers, |
|
emb_dim = None, |
|
logits_dim = None, |
|
tie_embedding = False, |
|
max_mem_len = 0, |
|
num_memory_tokens = None, |
|
emb_dropout = 0., |
|
use_abs_pos_emb = True, |
|
scaled_sinu_pos_emb = False |
|
): |
|
super().__init__() |
|
dim = attn_layers.dim |
|
emb_dim = default(emb_dim, dim) |
|
|
|
self.emb_dim = emb_dim |
|
self.token_emb = TokenEmbedding(emb_dim, num_tokens) |
|
|
|
self.numerical_token_id = numerical_token_id |
|
|
|
self.max_seq_len = max_seq_len |
|
|
|
self.max_mem_len = max_mem_len |
|
|
|
if not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb): |
|
self.pos_emb = always(0) |
|
elif scaled_sinu_pos_emb: |
|
self.pos_emb = ScaledSinusoidalEmbedding(dim) |
|
else: |
|
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) |
|
|
|
self.emb_dropout = nn.Dropout(emb_dropout) |
|
|
|
|
|
|
|
num_memory_tokens = default(num_memory_tokens, 0) |
|
self.has_memory_tokens = num_memory_tokens > 0 |
|
|
|
if num_memory_tokens > 0: |
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) |
|
|
|
|
|
|
|
self.attn_layers = attn_layers |
|
|
|
|
|
|
|
logits_dim = default(logits_dim, num_tokens) |
|
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() |
|
|
|
self.to_numerical_output = nn.Sequential( |
|
nn.Linear(dim, 1), |
|
Rearrange('... 1 -> ...') |
|
) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
x_num: Tensor, |
|
return_embeddings = False, |
|
return_intermediates = False, |
|
return_mems = False, |
|
mask = None, |
|
return_attn = False, |
|
mems = None, |
|
pos = None, |
|
prepend_embeds = None, |
|
**kwargs |
|
): |
|
assert x.shape == x_num.shape |
|
|
|
batch = x.shape[0] |
|
|
|
is_number_mask = x == self.numerical_token_id |
|
|
|
x = self.token_emb(x) |
|
|
|
scale = torch.where(is_number_mask, x_num, 1.) |
|
scale = rearrange(scale, '... -> ... 1') |
|
|
|
x = x * scale |
|
|
|
x = x + self.pos_emb(x, pos = pos) |
|
|
|
|
|
|
|
if self.has_memory_tokens: |
|
m = repeat(self.memory_tokens, 'm d -> b m d', b = batch) |
|
x, mem_ps = pack([m, x], 'b * d') |
|
|
|
if exists(mask): |
|
num_mems = m.shape[-2] |
|
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) |
|
|
|
|
|
|
|
if exists(prepend_embeds): |
|
_, prepend_dim = prepend_embeds.shape[1:] |
|
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' |
|
|
|
x = torch.cat((prepend_embeds, x), dim = -2) |
|
|
|
x = self.emb_dropout(x) |
|
|
|
|
|
|
|
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) |
|
|
|
|
|
|
|
if self.has_memory_tokens: |
|
m, x = unpack(x, mem_ps, 'b * d') |
|
intermediates.memory_tokens = m |
|
|
|
if not return_embeddings: |
|
logits = self.to_logits(x) |
|
numerical_pred = self.to_numerical_output(x) |
|
out = (logits, numerical_pred) |
|
else: |
|
out = x |
|
|
|
if return_intermediates: |
|
return out, intermediates |
|
|
|
if return_mems: |
|
hiddens = intermediates.hiddens |
|
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) |
|
return out, new_mems |
|
|
|
if return_attn: |
|
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) |
|
return out, attn_maps |
|
|
|
return out |
|
|
|
class XValAutoregressiveWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
net: XValTransformerWrapper, |
|
ignore_index = -100, |
|
pad_value = 0, |
|
numerical_loss_weight = 1. |
|
): |
|
super().__init__() |
|
self.net = net |
|
self.max_seq_len = net.max_seq_len |
|
self.numerical_loss_weight = numerical_loss_weight |
|
self.ignore_index = ignore_index |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
start_tokens: Tensor, |
|
start_numbers: Tensor, |
|
seq_len, |
|
filter_logits_fn: Callable = top_k, |
|
filter_kwargs: dict = dict(), |
|
temperature = 1., |
|
**kwargs |
|
): |
|
device = start_tokens.device |
|
was_training = self.net.training |
|
num_dims = len(start_tokens.shape) |
|
|
|
assert num_dims >= 2, 'number of dimensions of your start tokens must be greater or equal to 2' |
|
assert start_tokens.shape == start_numbers.shape |
|
|
|
b, t, device = *start_tokens.shape, start_tokens.device |
|
|
|
self.net.eval() |
|
out = start_tokens |
|
num_out = start_numbers |
|
|
|
for _ in range(seq_len): |
|
x = out[:, -self.max_seq_len:] |
|
x_num = num_out[:, -self.max_seq_len:] |
|
|
|
logits, numerical_pred = self.net(x, x_num, **kwargs) |
|
|
|
last_logits = logits[:, -1] |
|
last_num_pred = numerical_pred[:, -1:] |
|
|
|
filtered_logits = filter_logits_fn(last_logits, **filter_kwargs) |
|
|
|
probs = F.softmax(filtered_logits / temperature, dim=-1) |
|
|
|
sample = torch.multinomial(probs, 1) |
|
|
|
out = torch.cat((out, sample), dim = -1) |
|
num_out = torch.cat((num_out, last_num_pred), dim = -1) |
|
|
|
out = out[:, t:] |
|
num_out = num_out[:, t:] |
|
|
|
is_number = out == self.net.numerical_token_id |
|
num_out = torch.where(is_number, num_out, float('nan')) |
|
|
|
self.net.train(was_training) |
|
return GenerateReturn(out, num_out, is_number) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
x_num: Tensor, |
|
return_loss_breakdown = False, |
|
**kwargs |
|
): |
|
inp, target = x[:, :-1], x[:, 1:] |
|
x_num_inp, x_num_target = x_num[:, :-1], x_num[:, 1:] |
|
|
|
mask = kwargs.get('mask', None) |
|
if exists(mask) and mask.shape[1] == x.shape[1]: |
|
mask = mask[:, :-1] |
|
kwargs['mask'] = mask |
|
|
|
logits, numerical_pred = self.net(inp, x_num_inp, **kwargs) |
|
|
|
logits = rearrange(logits, 'b n c -> b c n') |
|
|
|
cross_entropy_loss = F.cross_entropy(logits, target, reduction = 'none', ignore_index = self.ignore_index) |
|
|
|
target_mask = target != self.ignore_index |
|
|
|
numerical_mse_loss = F.mse_loss(numerical_pred, x_num_target, reduction = 'none') |
|
|
|
numerical_mse_loss = numerical_mse_loss * target_mask |
|
|
|
loss = cross_entropy_loss + numerical_mse_loss * self.numerical_loss_weight |
|
|
|
if exists(mask): |
|
loss = loss[mask] |
|
|
|
loss = loss.mean() |
|
|
|
if not return_loss_breakdown: |
|
return loss |
|
|
|
return loss, LossBreakdown(cross_entropy_loss, numerical_mse_loss) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import importlib |
|
|
|
|
|
|
|
def instantiate_x_transformer_model(num_tokens=20000, |
|
max_seq_len=8192, |
|
dim=1024, |
|
depth=32, |
|
heads=32, |
|
attn_flash=True, |
|
ignore_index=-1, |
|
verbose=True): |
|
if verbose: |
|
print('=' * 70) |
|
print('Instantiating x-transformer model...') |
|
|
|
model = TransformerWrapper( |
|
num_tokens = num_tokens, |
|
max_seq_len = max_seq_len, |
|
attn_layers = Decoder( |
|
dim = dim, |
|
depth = depth, |
|
heads = heads, |
|
attn_flash = attn_flash |
|
) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, |
|
ignore_index=ignore_index |
|
) |
|
|
|
model.cuda() |
|
|
|
if verbose: |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
return model |
|
|
|
|
|
|
|
def save_x_transformer_model(model, |
|
checkpoint_dir='./', |
|
checkpoint_name='model_checkpoint', |
|
number_of_tokens=20000, |
|
ignore_index=-1, |
|
max_seq_len=8192, |
|
dim=1024, |
|
depth=32, |
|
heads=32, |
|
use_flash_attn=True, |
|
batch_size=4, |
|
grad_acc_rate=4, |
|
learning_rate=1e-4, |
|
num_epochs=1, |
|
num_steps=1, |
|
loss=0, |
|
accuracy=1, |
|
verbose=True |
|
): |
|
|
|
if verbose: |
|
print('=' * 70) |
|
print('Saving x-transformer model...') |
|
|
|
checkpoint_full_name = '' |
|
checkpoint_full_name += checkpoint_name + '_' |
|
checkpoint_full_name += str(num_epochs) + '_epochs_' |
|
checkpoint_full_name += str(num_steps) + '_steps_' |
|
checkpoint_full_name += str(loss) + '_loss_' |
|
checkpoint_full_name += str(accuracy) + '_acc' |
|
checkpoint_full_name += '.pth' |
|
|
|
checkpoint_full_path_and_name = os.path.join(checkpoint_dir, checkpoint_full_name) |
|
|
|
|
|
|
|
torch.save({ |
|
'model_state_dict': model.state_dict(), |
|
'class_name': model.__class__.__name__, |
|
'class_module': model.__class__.__module__, |
|
'num_tokens': number_of_tokens, |
|
'max_seq_len': max_seq_len, |
|
'attn_layers': { |
|
'dim': dim, |
|
'depth': depth, |
|
'heads': heads, |
|
'attn_flash': use_flash_attn |
|
}, |
|
'batch_size': batch_size, |
|
'grad_acc_rate': grad_acc_rate, |
|
'learning_rate': learning_rate, |
|
'ignore_index': ignore_index, |
|
'num_epochs': num_epochs, |
|
'num_steps': num_steps, |
|
'loss': loss, |
|
'accuracy': accuracy |
|
}, checkpoint_full_path_and_name |
|
) |
|
|
|
if verbose: |
|
print('Done!') |
|
print('=' * 70) |
|
print('Saved model name:', checkpoint_full_name) |
|
print('=' * 70) |
|
|
|
|
|
|
|
def load_x_transformer_model(checkpoint_file_path, |
|
verbose=True |
|
): |
|
|
|
if verbose: |
|
print('=' * 70) |
|
print('Loading x-transformer model...') |
|
|
|
checkpoint = torch.load(checkpoint_file_path) |
|
module = importlib.import_module(checkpoint['class_module']) |
|
class_ = getattr(module, checkpoint['class_name']) |
|
attn_layers = Decoder(**checkpoint['attn_layers']) |
|
transformer_model = TransformerWrapper(num_tokens=checkpoint['num_tokens'], |
|
max_seq_len=checkpoint['max_seq_len'], |
|
attn_layers=attn_layers) |
|
model = class_(transformer_model, ignore_index=checkpoint['ignore_index']) |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
model.cuda() |
|
|
|
if verbose: |
|
print('Done!') |
|
print('=' * 70) |
|
print('Model stats:') |
|
print('Number of tokens:', checkpoint['num_tokens']) |
|
print('Ignore index:', checkpoint['ignore_index']) |
|
print('Max sequence length::', checkpoint['max_seq_len']) |
|
print('Dimension:', checkpoint['attn_layers']['dim']) |
|
print('Depth:', checkpoint['attn_layers']['depth']) |
|
print('Number of heads:', checkpoint['attn_layers']['heads']) |
|
print('Flash attention:', checkpoint['attn_layers']['attn_flash']) |
|
print('Training batch size', checkpoint['batch_size']) |
|
print('Training gradient accumulation rate:', checkpoint['grad_acc_rate']) |
|
print('Training learining rate:', checkpoint['learning_rate']) |
|
print('Number of training epochs:', checkpoint['num_epochs']) |
|
print('Number of training steps:', checkpoint['num_steps']) |
|
print('Model loss:', checkpoint['loss']) |
|
print('Model accuracy:', checkpoint['accuracy']) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|