r'''############################################################################ #=============================================================================== # # X Trasformer Module # # x-transformers code With useful modifications # # Version 1.27.16 # # Original source code courtesy of lucidrains # https://github.com/lucidrains/x-transformers # # Source code retrieved on 02/20/2024 # # Project Los Angeles # Tegridy Code 2024 # #=============================================================================== # # Critical dependencies # # !pip install torch # !pip install einops # #=============================================================================== # # Basic use example # # from x_transformer_1_27_16 import * # # model = instantiate_x_transformer_model() # save_x_transformer_model(model) # load_x_transformer_model('model_checkpoint_1_epochs_1_steps_0_loss_1_acc.pth') # #=============================================================================== ''' ################################################################################ ################################################################################ # Code for x-transformers Python module attend.py ################################################################################ from functools import partial from typing import Optional, Tuple import torch from torch import nn, einsum, Tensor import torch.nn.functional as F from collections import namedtuple from functools import wraps from packaging import version from dataclasses import dataclass from einops import rearrange, repeat # constants @dataclass class Intermediates: qk_similarities: Optional[Tensor] = None pre_softmax_attn: Optional[Tensor] = None post_softmax_attn: Optional[Tensor] = None cached_kv: Optional[Tuple[Tensor, Tensor]] = None def to_tuple(self): return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def compact(arr): return [*filter(exists, arr)] def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # functions for creating causal mask # need a special one for onnx cpu (no support for .triu) def create_causal_mask(i, j, device): return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) def onnx_create_causal_mask(i, j, device): r = torch.arange(i, device = device) causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') causal_mask = F.pad(causal_mask, (j - i, 0), value = False) return causal_mask # main class class Attend(nn.Module): def __init__( self, *, dropout = 0., causal = False, heads = None, talking_heads = False, sparse_topk = None, scale = None, qk_norm = False, flash = False, add_zero_kv = False, onnxable = False, sdp_kwargs: dict = dict( enable_flash = True, enable_math = True, enable_mem_efficient = True ) ): super().__init__() self.scale = scale self.qk_norm = qk_norm self.causal = causal self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) # talking heads assert not (flash and talking_heads), 'talking heads not compatible with flash attention' self.talking_heads = talking_heads if talking_heads: self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) # sparse topk assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' self.sparse_topk = sparse_topk # add a key / value token composed of zeros # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html self.add_zero_kv = add_zero_kv # flash attention self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' self.sdp_kwargs = sdp_kwargs def flash_attn( self, q, k, v, mask = None, attn_bias = None ): batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = repeat(k, 'b ... -> b h ...', h = q.shape[1]) if v.ndim == 3: v = repeat(v, 'b ... -> b h ...', h = q.shape[1]) # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention if self.qk_norm: default_scale = q.shape[-1] ** -0.5 q = q * (self.scale / default_scale) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L causal = self.causal # in the case of kv caching with one token (q_len == 1), just turn off causal masking # in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there if q_len == 1 and causal: causal = False # expand key padding mask if exists(mask): assert mask.ndim == 4 mask = mask.expand(batch, heads, q_len, k_len) # handle kv cache - this should be bypassable in updated flash attention 2 if k_len > q_len and causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) if not exists(mask): mask = ~causal_mask else: mask = mask & ~causal_mask causal = False # manually handle causal mask, if another mask was given row_is_entirely_masked = None if exists(mask) and causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) mask = mask & ~causal_mask # protect against an entire row being masked out row_is_entirely_masked = ~mask.any(dim = -1) mask[..., 0] = mask[..., 0] | row_is_entirely_masked causal = False # handle alibi positional bias # convert from bool to float if exists(attn_bias): attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) # if mask given, the mask would already contain the causal mask from above logic # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number mask_value = -torch.finfo(q.dtype).max if exists(mask): attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) elif causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) causal = False # scaled_dot_product_attention handles attn_mask either as bool or additive bias # make it an additive bias here mask = attn_bias # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = causal ) # for a row that is entirely masked out, should zero out the output of that row token if exists(row_is_entirely_masked): out = out.masked_fill(row_is_entirely_masked[..., None], 0.) return out, Intermediates() def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device scale = default(self.scale, q.shape[-1] ** -0.5) causal = self.causal # handle kv cached decoding if n == 1 and causal: causal = False # handle grouped multi-query attention if kv_heads == 1: k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v)) elif kv_heads < heads: k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v)) # handle zero kv, as means for allowing network to attend to nothing if self.add_zero_kv: k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) if exists(mask): mask = F.pad(mask, (1, 0), value = True) if exists(attn_bias): attn_bias = F.pad(attn_bias, (1, 0), value = 0.) if self.flash: assert not exists(prev_attn), 'residual attention not compatible with flash attention' return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale if exists(prev_attn): dots = dots + prev_attn qk_similarities = dots.clone() if self.talking_heads: dots = self.pre_softmax_talking_heads(dots) if exists(attn_bias): dots = dots + attn_bias i, j, dtype = *dots.shape[-2:], dots.dtype mask_value = -torch.finfo(dots.dtype).max if exists(self.sparse_topk) and self.sparse_topk < j: top_values, _ = dots.topk(self.sparse_topk, dim = -1) sparse_topk_mask = dots < top_values[..., -1:] mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask if exists(mask): dots = dots.masked_fill(~mask, mask_value) if causal: causal_mask = self.create_causal_mask(i, j, device = device) dots = dots.masked_fill(causal_mask, mask_value) pre_softmax_attn = dots.clone() attn = self.attn_fn(dots, dim = -1) attn = attn.type(dtype) post_softmax_attn = attn.clone() attn = self.attn_dropout(attn) if self.talking_heads: attn = self.post_softmax_talking_heads(attn) out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) intermediates = Intermediates( qk_similarities = qk_similarities, pre_softmax_attn = pre_softmax_attn, post_softmax_attn = post_softmax_attn ) return out, intermediates ################################################################################ ################################################################################ # Code for x-transformers Python module x_transformers.py ################################################################################ import math from random import random from typing import Dict from packaging import version import torch from torch import nn, einsum, Tensor import torch.nn.functional as F from torch.cuda.amp import autocast from functools import partial, wraps from collections import namedtuple from dataclasses import dataclass from typing import List, Callable, Optional, Union from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange # constants DEFAULT_DIM_HEAD = 64 @dataclass class LayerIntermediates: hiddens: Optional[List[Tensor]] = None # all hiddens, before the final norm (in pre-norm architecture) last_hidden: Optional[Tensor] = None # very last hidden after all attention layers, after the final norm attn_intermediates: Optional[List[Intermediates]] = None layer_hiddens: Optional[List[Tensor]] = None attn_z_loss: Optional[Tensor] = None mems: Optional[Tensor] = None memory_tokens: Optional[Tensor] = None # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth def divisible_by(num, den): return (num % den) == 0 def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner def at_most_one_of(*bools): return sum(map(int, bools)) <= 1 class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def Sequential(*modules): return nn.Sequential(*filter(exists, modules)) # tensor helpers def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t, groups = 1): t = rearrange(t, '... (g d) -> ... g d', g = groups) t = F.normalize(t, p = 2, dim = -1) return rearrange(t, '... g d -> ... (g d)') def pad_at_dim(t, pad, dim = -1, value = 0.): dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) zeros = ((0, 0) * dims_from_right) return F.pad(t, (*zeros, *pad), value = value) def or_reduce(masks): head, *body = masks for rest in body: head = head | rest return head # auxiliary loss helpers def calc_z_loss( pre_softmax_attns: List[Tensor], mask = None, weight = 1. ): # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects # also used in PaLM as one of the measures lse = 0. for attn in pre_softmax_attns: lse = lse + attn.logsumexp(dim = -1) loss = torch.square(lse) loss = reduce(loss, 'b h n -> b n', 'sum') if not exists(mask): return loss.mean() * weight loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) return loss * weight # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # structured dropout, more effective than traditional attention dropouts def dropout_seq(seq, mask, dropout): b, n, *_, device = *seq.shape, seq.device logits = torch.randn(b, n, device = device) if exists(mask): mask_value = max_neg_value(logits) logits = logits.masked_fill(~mask, mask_value) keep_prob = 1. - dropout num_keep = max(1, int(keep_prob * n)) keep_indices = logits.topk(num_keep, dim = 1).indices batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, 'b -> b 1') seq = seq[batch_indices, keep_indices] if exists(mask): seq_counts = mask.sum(dim = -1) seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') mask = mask[batch_indices, keep_indices] & keep_mask return seq, mask # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # embedding class TokenEmbedding(nn.Module): def __init__(self, dim, num_tokens, l2norm_embed = False): super().__init__() self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(num_tokens, dim) def forward(self, x): token_emb = self.emb(x.long()) return l2norm(token_emb) if self.l2norm_embed else token_emb # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, l2norm_embed = False): super().__init__() self.scale = dim ** -0.5 if not l2norm_embed else 1. self.max_seq_len = max_seq_len self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x, pos = None, seq_start_pos = None): seq_len, device = x.shape[1], x.device assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' if not exists(pos): pos = torch.arange(seq_len, device = device) if exists(seq_start_pos): pos = (pos - seq_start_pos[..., None]).clamp(min = 0) pos_emb = self.emb(pos) pos_emb = pos_emb * self.scale return l2norm(pos_emb) if self.l2norm_embed else pos_emb class ScaledSinusoidalEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() assert divisible_by(dim, 2) self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) half_dim = dim // 2 freq_seq = torch.arange(half_dim).float() / half_dim inv_freq = theta ** -freq_seq self.register_buffer('inv_freq', inv_freq, persistent = False) def forward(self, x, pos = None, seq_start_pos = None): seq_len, device = x.shape[1], x.device if not exists(pos): pos = torch.arange(seq_len, device = device) if exists(seq_start_pos): pos = pos - seq_start_pos[..., None] emb = einsum('i, j -> i j', pos, self.inv_freq) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb * self.scale class RelativePositionBias(nn.Module): def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret @property def device(self): return next(self.parameters()).device def forward(self, i, j): device = self.device q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> h i j') return bias * self.scale class DynamicPositionBias(nn.Module): def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): super().__init__() assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' self.log_distance = log_distance self.mlp = nn.ModuleList([]) self.mlp.append(Sequential( nn.Linear(1, dim), LayerNorm(dim) if norm else None, nn.SiLU() )) for _ in range(depth - 1): self.mlp.append(Sequential( nn.Linear(dim, dim), nn.LayerNorm(dim) if norm else None, nn.SiLU() )) self.mlp.append(nn.Linear(dim, heads)) @property def device(self): return next(self.parameters()).device def forward(self, i, j): assert i == j n, device = j, self.device # get the (n x n) matrix of distances seq_arange = torch.arange(n, device = device) context_arange = torch.arange(n, device = device) indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') indices += (n - 1) # input to continuous positions MLP pos = torch.arange(-n + 1, n, device = device).float() pos = rearrange(pos, '... -> ... 1') if self.log_distance: pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) for layer in self.mlp: pos = layer(pos) # get position biases bias = pos[indices] bias = rearrange(bias, 'i j h -> h i j') return bias class AlibiPositionalBias(nn.Module): def __init__(self, heads, total_heads, **kwargs): super().__init__() self.heads = heads self.total_heads = total_heads slopes = Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] @property def device(self): return next(self.buffers()).device def forward(self, i, j): h, device = self.total_heads, self.device if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: return self.bias[..., -i:, -j:] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) self.register_buffer('bias', bias, persistent = False) return self.bias class RotaryEmbedding(nn.Module): def __init__( self, dim, use_xpos = False, scale_base = 512, interpolation_factor = 1., base = 10000, base_rescale_factor = 1. ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ base *= base_rescale_factor ** (dim / (dim - 2)) inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) assert interpolation_factor >= 1. self.interpolation_factor = interpolation_factor if not use_xpos: self.register_buffer('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = scale_base self.register_buffer('scale', scale) def forward_from_seq_len(self, seq_len): device = self.inv_freq.device t = torch.arange(seq_len, device = device) return self.forward(t) @autocast(enabled = False) def forward(self, t): max_pos = t.max()+1 freqs = torch.einsum('i , j -> i j', t.type_as(self.inv_freq), self.inv_freq) / self.interpolation_factor freqs = torch.cat((freqs, freqs), dim = -1) if not exists(self.scale): return freqs, 1. power = (t - (max_pos // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) @autocast(enabled = False) def apply_rotary_pos_emb(t, freqs, scale = 1): rot_dim, seq_len = freqs.shape[-1], t.shape[-2] freqs = freqs[-seq_len:, :] scale = scale[-seq_len:, :] if isinstance(scale, torch.Tensor) else scale if t.ndim == 4 and freqs.ndim == 3: freqs = rearrange(freqs, 'b n d -> b 1 n d') # partial rotary embeddings, Wang et al. GPT-J t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) return torch.cat((t, t_unrotated), dim = -1) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) return x / norm.clamp(min = self.eps) * self.g class LayerNorm(nn.Module): def __init__(self, dim): """ bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less """ super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) if version.parse(torch.__version__) >= version.parse('2.1.0'): LayerNorm = partial(nn.LayerNorm, bias = False) class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.g class SimpleRMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 def forward(self, x): return F.normalize(x, dim = -1) * self.scale # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None self.scale_residual_constant = scale_residual_constant def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale if self.scale_residual_constant != 1: residual = residual * self.scale_residual_constant return x + residual class GRUGating(nn.Module): def __init__(self, dim, scale_residual = False, **kwargs): super().__init__() self.gru = nn.GRUCell(dim, dim) self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # token shifting def shift(t, amount, mask = None): if amount == 0: return t else: amount = min(amount, t.shape[1]) if exists(mask): t = t.masked_fill(~mask[..., None], 0.) return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) class ShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): mask = kwargs.get('mask', None) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim = -1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim = -1) return self.fn(x, **kwargs) # feedforward class GLU(nn.Module): def __init__( self, dim_in, dim_out, activation: Callable, mult_bias = False ): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x * self.act(gate) * self.mult_bias class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, glu = False, glu_mult_bias = False, swish = False, relu_squared = False, post_act_ln = False, dropout = 0., no_bias = False, zero_init_output = False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) if relu_squared: activation = ReluSquared() elif swish: activation = nn.SiLU() else: activation = nn.GELU() if glu: project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) else: project_in = nn.Sequential( nn.Linear(dim, inner_dim, bias = not no_bias), activation ) self.ff = Sequential( project_in, LayerNorm(inner_dim) if post_act_ln else None, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out, bias = not no_bias) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.ff[-1]) def forward(self, x): return self.ff(x) # attention. it is all we need class Attention(nn.Module): def __init__( self, dim, dim_head = DEFAULT_DIM_HEAD, dim_context = None, heads = 8, causal = False, flash = False, talking_heads = False, head_scale = False, sparse_topk = None, num_mem_kv = 0, dropout = 0., on_attn = False, gate_value_heads = False, swiglu_values = False, gate_values = False, zero_init_output = False, max_attend_past = None, qk_norm = False, qk_norm_groups = 1, qk_norm_scale = 10, qk_norm_dim_scale = False, one_kv_head = False, kv_heads = None, shared_kv = False, value_dim_head = None, tensor_product = False, # https://arxiv.org/abs/2208.06061 add_zero_kv = False, # same as add_zero_attn in pytorch rotary_embed_values = False, onnxable = False ): super().__init__() dim_kv = default(dim_context, dim) self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both' value_dim_head = default(value_dim_head, dim_head) kv_heads = default(kv_heads, heads) kv_heads = 1 if one_kv_head else kv_heads assert divisible_by(heads, kv_heads) self.kv_heads = kv_heads q_dim = dim_head * heads k_dim = dim_head * kv_heads v_dim = value_dim_head * kv_heads out_dim = value_dim_head * heads self.to_q = nn.Linear(dim, q_dim, bias = False) self.to_k = nn.Linear(dim_kv, k_dim, bias = False) # shared key / values, for further memory savings during inference assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' self.to_v = nn.Linear(dim_kv, v_dim, bias = False) if not shared_kv else None # relations projection from tp-attention self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, out_dim) self.to_v_gate_activation = F.silu if swiglu_values else F.sigmoid nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 10) # add per head gating of the output values, from 'Attend to nothing' paper self.to_v_head_gate = None if gate_value_heads: self.to_v_head_gate = nn.Linear(dim, heads) nn.init.constant_(self.to_v_head_gate.weight, 0) nn.init.constant_(self.to_v_head_gate.bias, 10) # cosine sim attention self.qk_norm = qk_norm self.qk_norm_groups = qk_norm_groups self.qk_norm_scale = qk_norm_scale # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 self.qk_norm_dim_scale = qk_norm_dim_scale self.qk_norm_q_scale = self.qk_norm_k_scale = 1 if qk_norm and qk_norm_dim_scale: self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups' assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' # attend class - includes core attention algorithm + talking heads self.attend = Attend( heads = heads, causal = causal, talking_heads = talking_heads, dropout = dropout, sparse_topk = sparse_topk, qk_norm = qk_norm, scale = qk_norm_scale if qk_norm else self.scale, add_zero_kv = add_zero_kv, flash = flash, onnxable = onnxable ) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(kv_heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(kv_heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) # whether to rotate positions into values, for absolute positions in addition to relative self.rotary_embed_values = rotary_embed_values # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, rel_pos = None, rotary_pos_emb = None, prev_attn = None, mem = None, mem_mask = None, return_intermediates = False, cache: Optional[Intermediates] = None, ): b, n, h, kv_h, head_scale, device, has_context = x.shape[0], x.shape[1], self.heads, self.kv_heads, self.head_scale, x.device, exists(context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input r_input = x if exists(mem): k_input, mem_packed_shape = pack([mem, k_input], 'b * d') v_input, _ = pack([mem, v_input], 'b * d') q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if exists(self.to_v) else k r = self.to_r(r_input) if exists(self.to_r) else None q = rearrange(q, 'b n (h d) -> b h n d', h = h) k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r)) if exists(cache) and not has_context: ck, cv = cache.cached_kv if exists(mem): mk, k = unpack(k, mem_packed_shape, 'b h * d') mv, v = unpack(v, mem_packed_shape, 'b h * d') k = torch.cat((ck, k), dim = -2) v = torch.cat((cv, v), dim = -2) if exists(mem): k = torch.cat((mk, k), dim = -2) v = torch.cat((mv, v), dim = -2) if return_intermediates: mem_len = mem.shape[-2] if exists(mem) else 0 cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :]) if self.qk_norm: qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) q, k = map(qk_l2norm, (q, k)) scale = self.qk_norm_scale q = q * self.qk_norm_q_scale k = k * self.qk_norm_k_scale if exists(rotary_pos_emb) and not has_context: freqs, xpos_scale = rotary_pos_emb q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) q = apply_rotary_pos_emb(q, freqs, q_xpos_scale) k = apply_rotary_pos_emb(k, freqs, k_xpos_scale) if self.rotary_embed_values: v = apply_rotary_pos_emb(v, freqs, k_xpos_scale) input_mask = context_mask if not exists(input_mask) and not has_context: input_mask = mask if (exists(input_mask) or exists(mem_mask)) and exists(mem): seq_len, mem_len = n, mem.shape[-2] if not exists(mem_mask): input_mask = pad_at_dim(input_mask, (mem_len, 0), dim = -1, value = True) elif not exists(input_mask): input_mask = pad_at_dim(mem_mask, (0, seq_len), dim = -1, value = True) else: input_mask = torch.cat((mem_mask, input_mask), dim = -1) if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) if self.qk_norm: mem_k = l2norm(mem_k) mem_k = mem_k * self.qk_norm_k_scale k = torch.cat((mem_k, k), dim = -2) v = torch.cat((mem_v, v), dim = -2) if exists(input_mask): input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) i, j = map(lambda t: t.shape[-2], (q, k)) # determine masking mask_value = max_neg_value(q) masks = [] final_attn_mask = None if exists(input_mask): input_mask = rearrange(input_mask, 'b j -> b 1 1 j') masks.append(~input_mask) if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') masks.append(~attn_mask) if exists(self.max_attend_past): range_q = torch.arange(j - i, j, device = device) range_k = torch.arange(j, device = device) dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') max_attend_past_mask = dist > self.max_attend_past masks.append(max_attend_past_mask) if len(masks) > 0: final_attn_mask = ~or_reduce(masks) # prepare relative positional bias, if needed attn_bias = None if exists(rel_pos): attn_bias = rel_pos(i, j) # attention is all we need out, intermediates = self.attend( q, k, v, mask = final_attn_mask, attn_bias = attn_bias, prev_attn = prev_attn ) # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients if exists(r): out = out * r + out # normformer scaling of heads if head_scale: out = out * self.head_scale_params # per head gating, from https://arxiv.org/abs/2306.12929 if exists(self.to_v_head_gate): head_gate = self.to_v_head_gate(x) out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid() # merge heads out = rearrange(out, 'b h n d -> b n (h d)') # alphafold2 styled gating of the values if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * self.to_v_gate_activation(gates) # combine the heads out = self.to_out(out) if exists(mask): mask = rearrange(mask, 'b n -> b n 1') out = out.masked_fill(~mask, 0.) if not return_intermediates: return out intermediates.cached_kv = cached_kv return out, intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads = 8, causal = False, cross_attend = False, only_cross = False, use_scalenorm = False, use_rmsnorm = False, use_simple_rmsnorm = False, alibi_pos_bias = False, alibi_num_heads = None, rel_pos_bias = False, rel_pos_num_buckets = 32, rel_pos_max_distance = 128, dynamic_pos_bias = False, dynamic_pos_bias_log_distance = False, dynamic_pos_bias_mlp_depth = 2, dynamic_pos_bias_norm = False, rotary_pos_emb = False, rotary_emb_dim = None, rotary_xpos = False, rotary_interpolation_factor = 1., rotary_xpos_scale_base = 512, rotary_base_rescale_factor = 1., custom_layers = None, sandwich_coef = None, par_ratio = None, weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942 layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders residual_attn = False, cross_residual_attn = False, macaron = False, pre_norm = True, pre_norm_has_final_norm = True, gate_residual = False, scale_residual = False, scale_residual_constant = 1., shift_tokens = 0, sandwich_norm = False, resi_dual = False, resi_dual_scale = 1., zero_init_branch_output = False, layer_dropout = 0., cross_attn_tokens_dropout = 0., disable_abs_pos_emb = None, **kwargs ): super().__init__() rotary_pos_emb = rotary_pos_emb or rotary_xpos ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) cross_attn_kwargs, kwargs = groupby_prefix_and_trim('cross_attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.causal = causal self.layers = nn.ModuleList([]) self.disable_abs_pos_emb = default(disable_abs_pos_emb, (rel_pos_bias or rotary_pos_emb)) rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' # relative positional bias flash_attn = attn_kwargs.get('flash', False) assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' self.rel_pos = None if rel_pos_bias: assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) elif dynamic_pos_bias: assert not flash_attn, 'flash attention not compatible with dynamic positional bias' self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) elif alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' if resi_dual: pre_norm = False self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.resi_dual = resi_dual assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' self.resi_dual_scale = resi_dual_scale self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' self.cross_attend = cross_attend assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' if use_scalenorm: norm_class = ScaleNorm elif use_rmsnorm: norm_class = RMSNorm elif use_simple_rmsnorm: norm_class = SimpleRMSNorm else: norm_class = LayerNorm norm_fn = partial(norm_class, dim) if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # setup weight tying, which is a special case of `layer_execute_order` assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))])) if weight_tie_layers: assert not exists(layers_execute_order) layers_execute_order = tuple(range(len(default_block))) * depth depth = 1 # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types)))) assert all([i < len(self.layer_types) for i in self.layers_execute_order]) self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # stochastic depth self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) # structured dropout for cross attending self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # whether it has post norm self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads = heads, **{**attn_kwargs, **cross_attn_kwargs}) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if layer_shift_tokens > 0: shift_range_upper = layer_shift_tokens + 1 shift_range_lower = -layer_shift_tokens if not causal else 0 layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) residual_fn = GRUGating if gate_residual else Residual residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) pre_branch_norm = norm_fn() if pre_norm else None post_branch_norm = norm_fn() if sandwich_norm else None post_main_norm = norm_fn() if not pre_norm else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, self_attn_kv_mask = None, mems = None, mem_masks = None, seq_start_pos: Optional[Tensor] = None, cache: Optional[LayerIntermediates] = None, cache_age = 1, return_hiddens = False, rotary_pos_emb = None ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' # initialize accums hiddens = [] layer_hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers mem_masks = mem_masks.copy() if exists(mem_masks) else [None] * self.num_attn_layers # handle left padded sequences if exists(seq_start_pos): seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long) left_pad_mask = seq_arange >= seq_start_pos[..., None] if exists(self_attn_kv_mask): self_attn_kv_mask = self_attn_kv_mask & left_pad_mask else: self_attn_kv_mask = left_pad_mask # rotary positions if not exists(rotary_pos_emb) and exists(self.rotary_pos_emb): maybe_mem = mems[0] # todo - handle edge case where different layers get different memory lengths. don't think this will ever come up but who knows mem_len = maybe_mem.shape[1] if exists(maybe_mem) else 0 pos = torch.arange(x.shape[1] + mem_len, device = x.device) - mem_len rotary_pos_emb = self.rotary_pos_emb(pos) # assume cached key / values attn_cache = [] if exists(cache): assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))]) if cache_age > 0: x = x[:, -cache_age:] # for spec decoding, may be greater than 1 attn_cache = cache.attn_intermediates iter_attn_cache = iter(attn_cache) # outer residual - for resiDual paper outer_residual = x * self.resi_dual_scale # get layers to be executed layer_variables = ( self.layer_types, self.layers, self.layer_dropouts ) layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables) # go through the attention and feedforward layers for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)): is_last = ind == (len(self.layers) - 1) if self.training and layer_dropout > 0. and random() < layer_dropout: continue if layer_type == 'a': if return_hiddens: hiddens.append(x) layer_mem = mems.pop(0) if mems else None layer_mem_mask = mem_masks.pop(0) if mem_masks else None if layer_type == 'c': if self.training and self.cross_attn_tokens_dropout > 0.: context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) inner_residual = x if return_hiddens: layer_hiddens.append(x) pre_norm, post_branch_norm, post_main_norm = norm if exists(pre_norm): x = pre_norm(x) if layer_type == 'a' and exists(layer_mem): layer_mem = pre_norm(layer_mem) if layer_type == 'a': out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, return_intermediates = True) elif layer_type == 'c': out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True) elif layer_type == 'f': out = block(x) if self.resi_dual: outer_residual = outer_residual + out * self.resi_dual_scale if exists(post_branch_norm): out = post_branch_norm(out) x = residual_fn(out, inner_residual) if layer_type in ('a', 'c') and return_hiddens: intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x) if return_hiddens: layer_hiddens.append(x) if self.resi_dual: x = x + self.final_norm(outer_residual) else: x = self.final_norm(x) if not return_hiddens: return x intermediates = LayerIntermediates( hiddens = hiddens, last_hidden = x, attn_intermediates = intermediates, layer_hiddens = layer_hiddens, ) return x, intermediates class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal = False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = True, **kwargs) class PrefixDecoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = False, **kwargs) def forward( self, x, *args, attn_mask = None, prefix_attn_len = None, **kwargs ): b, n, device = x.shape[0], x.shape[1], x.device causal_mask = torch.ones((n, n), device = device, dtype = torch.bool).triu(1) forwarded_mask = ~causal_mask if exists(prefix_attn_len): if isinstance(prefix_attn_len, int): prefix_attn_len = torch.full((b,), prefix_attn_len, device = device) prefix_mask = torch.arange(n, device = device) < rearrange(prefix_attn_len, 'b -> b 1 1 1') forwarded_mask = forwarded_mask | prefix_mask if exists(attn_mask): forwarded_mask = forwarded_mask & attn_mask return super().forward(x, *args, attn_mask = forwarded_mask, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend = True, only_cross = True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers: Encoder, channels = 3, num_classes = None, post_emb_norm = False, num_register_tokens = 0, emb_dropout = 0. ): super().__init__() assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) has_register_tokens = num_register_tokens > 0 self.has_register_tokens = has_register_tokens if has_register_tokens: self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) self.patch_to_embedding = nn.Sequential( LayerNorm(patch_dim), nn.Linear(patch_dim, dim), LayerNorm(dim) ) self.post_emb_norm = LayerNorm(dim) if post_emb_norm else nn.Identity() self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() def forward( self, img, return_embeddings = False, return_logits_and_embeddings = False ): b, p = img.shape[0], self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) x = self.patch_to_embedding(x) n = x.shape[1] x = x + self.pos_embedding[:, :n] x = self.post_emb_norm(x) x = self.dropout(x) if self.has_register_tokens: r = repeat(self.register_tokens, 'n d -> b n d', b = b) x, ps = pack((x, r), 'b * d') embed = self.attn_layers(x) if self.has_register_tokens: embed, _ = unpack(embed, ps, 'b * d') assert at_most_one_of(return_embeddings, return_logits_and_embeddings) if not exists(self.mlp_head) or return_embeddings: return embed pooled = embed.mean(dim = -2) logits = self.mlp_head(pooled) if not return_logits_and_embeddings: return logits return logits, embed class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers: AttentionLayers, embed_num_tokens: Dict[str, int] = dict(), emb_dim = None, max_mem_len = 0, shift_mem_down = 0, emb_dropout = 0., post_emb_norm = False, num_memory_tokens = None, memory_tokens_interspersed_every = None, tie_embedding = False, logits_dim = None, use_abs_pos_emb = True, scaled_sinu_pos_emb = False, l2norm_embed = False, emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 attn_z_loss_weight = 1e-4, ): super().__init__() dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.emb_dim = emb_dim self.num_tokens = num_tokens self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.l2norm_embed = l2norm_embed self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) no_abs_pos_emb = max_seq_len == 0 or not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb) if no_abs_pos_emb: self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) else: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) # additional embeddings - say type embedding from BERT self.embeds = None if len(embed_num_tokens) > 0: self.embeds = nn.ModuleDict({f'{name}_embed': nn.Embedding(num_tokens, emb_dim) for name, num_tokens in embed_num_tokens.items()}) # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 self.emb_frac_gradient = emb_frac_gradient self.post_emb_norm = LayerNorm(emb_dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.init_() logits_dim = default(logits_dim, num_tokens) self.to_logits = nn.Linear(dim, logits_dim, bias = False) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) self.memory_tokens_interspersed_every = memory_tokens_interspersed_every # whether can do cached kv decoding self.can_cache_kv = self.num_memory_tokens == 0 self.can_cache_kv_outside_max_seq_len = no_abs_pos_emb def init_(self): if self.l2norm_embed: nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) if not isinstance(self.pos_emb, always): nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) return nn.init.kaiming_normal_(self.token_emb.emb.weight) def forward( self, x, return_embeddings = False, return_logits_and_embeddings = False, return_intermediates = False, mask = None, return_mems = False, return_attn = False, mems = None, mem_masks = None, pos = None, prepend_embeds = None, prepend_mask = None, embed_ids: Dict[str, Tensor] = dict(), sum_embeds = None, return_attn_z_loss = False, attn_z_loss_weight = 1e-4, seq_start_pos = None, cache: Optional[LayerIntermediates] = None, **kwargs ): b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss # absolute positional embedding external_pos_emb = exists(pos) and pos.dtype != torch.long pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos x = self.token_emb(x) + pos_emb # add additional embeddings if exists(self.embeds): assert len(embed_ids) == len(self.embeds) for name, embed_id in embed_ids.items(): embed_key = f'{name}_embed' assert embed_key in self.embeds embed = self.embeds[embed_key](embed_id) x = x + embed # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training if exists(sum_embeds): x = x + sum_embeds # post embedding norm, purportedly leads to greater stabilization x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): prepend_seq, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) if exists(prepend_mask) or exists(mask): mask = default(mask, lambda: torch.ones((b, n), device = device, dtype = torch.bool)) prepend_mask = default(prepend_mask, lambda: torch.ones((b, prepend_seq), device = device, dtype = torch.bool)) mask = torch.cat((prepend_mask, mask), dim = -1) # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model if emb_frac_gradient < 1: assert emb_frac_gradient > 0 x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) # embedding dropout x = self.emb_dropout(x) x = self.project_emb(x) if has_memory_tokens: mem_every = self.memory_tokens_interspersed_every if exists(mem_every): assert mem_every > 0 assert isinstance(self.attn_layers, Decoder), 'only for decoder' next_seq_len = math.ceil(n / mem_every) * mem_every x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.) x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every) mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0]) x, mem_packed_shape = pack((mem, x), 'b * d') # auto-handle masking after appending memory tokens if not exists(mem_every) and exists(mask): mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) if exists(mem_every): x = rearrange(x, '(b n) m d -> b (n m) d', b = b) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] x, intermediates = self.attn_layers(x, mask = mask, mems = mems, mem_masks = mem_masks, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs) if has_memory_tokens: if exists(mem_every): x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems)) mem, x = unpack(x, mem_packed_shape, 'b * d') intermediates.memory_tokens = mem if exists(mem_every): x = rearrange(x, '(b n) m d -> b (n m) d', b = b) x = x[:, :n] if return_logits_and_embeddings: out = (self.to_logits(x), x) elif return_embeddings: out = x else: out = self.to_logits(x) if return_attn_z_loss: pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) return_intermediates = True if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) if not return_intermediates: return out, new_mems intermediates.mems = new_mems if return_intermediates: return out, intermediates if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class XTransformer(nn.Module): def __init__( self, *, dim, tie_token_emb = False, ignore_index = -100, pad_value = 0, cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories self.encoder = TransformerWrapper( **enc_transformer_kwargs, attn_layers = Encoder(dim = dim, **enc_kwargs) ) self.decoder = TransformerWrapper( **dec_transformer_kwargs, attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) ) if tie_token_emb: self.decoder.token_emb = self.encoder.token_emb self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) @torch.no_grad() def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) if exists(src_prepend_embeds) and exists(mask): mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) if self.training and self.cross_attn_tokens_dropout > 0: enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) out = self.decoder(tgt, context = enc, context_mask = mask) return out ################################################################################ ################################################################################ # Code for x-transformers Python module continuous.py ################################################################################ import torch from torch import nn import torch.nn.functional as F from einops import pack, repeat, unpack # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d # main classes class ContinuousTransformerWrapper(nn.Module): def __init__( self, *, max_seq_len, attn_layers: AttentionLayers, dim_in = None, dim_out = None, emb_dim = None, max_mem_len = 0, num_memory_tokens = None, post_emb_norm = False, emb_dropout = 0., use_abs_pos_emb = True, scaled_sinu_pos_emb = False ): super().__init__() dim = attn_layers.dim self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len if not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(dim) else: self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) self.post_emb_norm = LayerNorm(dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) # memory tokens num_memory_tokens = default(num_memory_tokens, 0) self.has_memory_tokens = num_memory_tokens > 0 if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) # attention layers self.attn_layers = attn_layers # project in and out self.project_in = nn.Linear(dim_in, dim, bias = False) if exists(dim_in) else nn.Identity() self.project_out = nn.Linear(dim, dim_out, bias = False) if exists(dim_out) else nn.Identity() def forward( self, x, return_embeddings = False, return_intermediates = False, return_mems = False, mask = None, return_attn = False, mems = None, mem_masks = None, pos = None, prepend_embeds = None, prepend_mask = None, **kwargs ): batch, seq, device = *x.shape[:2], x.device x = self.project_in(x) x = x + self.pos_emb(x, pos = pos) x = self.post_emb_norm(x) # memory tokens if self.has_memory_tokens: m = repeat(self.memory_tokens, 'm d -> b m d', b = batch) x, mem_ps = pack([m, x], 'b * d') if exists(mask): num_mems = m.shape[-2] mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): prepend_seq, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) if exists(prepend_mask) or exists(mask): mask = default(mask, lambda: torch.ones((batch, seq), device = device, dtype = torch.bool)) prepend_mask = default(prepend_mask, lambda: torch.ones((batch, prepend_seq), device = device, dtype = torch.bool)) mask = torch.cat((prepend_mask, mask), dim = -1) x = self.emb_dropout(x) # attention layers x, intermediates = self.attn_layers(x, mask = mask, mems = mems, mem_masks = mem_masks, return_hiddens = True, **kwargs) # splice out memory tokens if self.has_memory_tokens: m, x = unpack(x, mem_ps, 'b * d') intermediates.memory_tokens = m out = self.project_out(x) if not return_embeddings else x if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class ContinuousAutoregressiveWrapper(nn.Module): def __init__( self, net: ContinuousTransformerWrapper, ignore_index = -100, pad_value = 0, loss_fn = nn.MSELoss(reduction = 'none') ): super().__init__() self.net = net self.max_seq_len = net.max_seq_len self.loss_fn = loss_fn @torch.no_grad() def generate(self, start_tokens, seq_len, **kwargs): device = start_tokens.device was_training = self.net.training num_dims = len(start_tokens.shape) assert num_dims >= 2, 'number of dimensions of your start tokens must be greater or equal to 2' if num_dims == 2: start_tokens = start_tokens[None, :] b, t, _, device = *start_tokens.shape, start_tokens.device self.net.eval() out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] last = self.net(x, **kwargs)[:, -1:] out = torch.cat((out, last), dim = -2) out = out[:, t:] if num_dims == 2: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, **kwargs): inp, target = x[:, :-1], x[:, 1:] assert 'prepend_embeds' not in kwargs mask = kwargs.get('mask', None) if exists(mask) and mask.shape[1] == x.shape[1]: mask = mask[:, :-1] kwargs['mask'] = mask out = self.net(inp, **kwargs) loss = self.loss_fn(out, target) if exists(mask): assert loss.ndim > 1, 'loss should not be reduced if mask is passed in' loss = loss[mask] return loss.mean() ################################################################################ ################################################################################ # Code for x-transformers Python module dpo.py ################################################################################ from copy import deepcopy import torch from torch.nn import Module import torch.nn.functional as F from einops import rearrange # helper functions def exists(v): return v is not None def freeze_all_layers_(module): for param in module.parameters(): param.requires_grad = False def log_prob_from_model_and_seq(model, seq): logits = model(seq) log_prob = logits.log_softmax(dim = -1) indices = rearrange(seq, '... -> ... 1') log_probs = log_prob.gather(-1, indices) return rearrange(log_probs, '... 1 -> ...') def masked_mean(log_probs, mask = None): if not exists(mask): return log_probs.mean(dim = -1) log_probs = log_probs.masked_fill(~mask, 0.) num = log_probs.sum(dim = -1) den = mask.sum(dim = -1) return num / den.clamp(min = 1e-5) def maybe_and_mask(*masks): masks = [*filter(exists, masks)] if len(masks) == 0: return None mask, *rest_masks = masks for rest_mask in rest_masks: mask = mask & rest_mask return mask # main class class DPO(Module): def __init__( self, model: TransformerWrapper, *, beta = 0.1, pad_id = None ): super().__init__() self.policy_model = model self.ref_model = deepcopy(model) freeze_all_layers_(self.ref_model) self.beta = beta self.pad_id = pad_id def parameters(self): return self.policy_model.parameters() def forward( self, preferred_seq, unpreferred_seq, *, prompt_mask, preferred_seq_mask = None, unpreferred_seq_mask = None, ): assert preferred_seq.ndim == 2 assert preferred_seq.shape == unpreferred_seq.shape if exists(self.pad_id): if not exists(preferred_seq_mask): preferred_seq_mask = preferred_seq != self.pad_id if not exists(unpreferred_seq_mask): unpreferred_seq_mask = unpreferred_seq != self.pad_id """ Following Appendix B in https://arxiv.org/abs/2305.18290 """ with torch.no_grad(): self.ref_model.eval() ref_preferred_logprob = log_prob_from_model_and_seq(self.ref_model, preferred_seq) ref_unpreferred_logprob = log_prob_from_model_and_seq(self.ref_model, unpreferred_seq) policy_preferred_logprob = log_prob_from_model_and_seq(self.policy_model, preferred_seq) policy_unpreferred_logprob = log_prob_from_model_and_seq(self.policy_model, unpreferred_seq) # masked mean of log probs preferred_seq_mask = maybe_and_mask(~prompt_mask, preferred_seq_mask) unpreferred_seq_mask = maybe_and_mask(~prompt_mask, unpreferred_seq_mask) ref_preferred_logprob, policy_preferred_logprob = map(lambda t: masked_mean(t, preferred_seq_mask), (ref_preferred_logprob, policy_preferred_logprob)) ref_unpreferred_logprob, policy_unpreferred_logprob = map(lambda t: masked_mean(t, unpreferred_seq_mask), (ref_unpreferred_logprob, policy_unpreferred_logprob)) # main dpo formula policy_logratios = policy_preferred_logprob - policy_unpreferred_logprob ref_logratios = ref_preferred_logprob - ref_unpreferred_logprob losses = -F.logsigmoid(self.beta * (policy_logratios - ref_logratios)) return losses.mean() ################################################################################ ################################################################################ # Code for x-transformers Python module nonautoregressive_wrapper.py ################################################################################ import math from random import random from contextlib import nullcontext from collections import namedtuple import torch import torch.nn.functional as F from torch import nn from einops import rearrange, repeat, pack, unpack from typing import Optional # constants Losses = namedtuple('Losses', ['loss', 'generator_loss', 'critic_loss']) # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # sampling helpers def top_k(logits, thres = 0.9): k = math.ceil((1 - thres) * logits.shape[-1]) val, ind = logits.topk(k, dim = -1) probs = torch.full_like(logits, float('-inf')) probs.scatter_(2, ind, val) return probs def log(t, eps = 1e-10): return torch.log(t + eps) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim) # prob helpers def sample_prob(prob): return random() < prob def coin_flip(): return sample_prob(0.5) # tensor helpers def get_mask_subset_prob(mask, prob, min_mask = 0): batch, seq, device = *mask.shape, mask.device num_to_mask = (mask.sum(dim = -1, keepdim = True) * prob).clamp(min = min_mask) logits = torch.rand((batch, seq), device = device) logits = logits.masked_fill(~mask, -1) randperm = logits.argsort(dim = -1).float() num_padding = (~mask).sum(dim = -1, keepdim = True) randperm -= num_padding subset_mask = randperm < num_to_mask subset_mask.masked_fill_(~mask, False) return subset_mask # schedules def linear_schedule(t): return 1 - t def cosine_schedule(t): """ https://arxiv.org/abs/2202.04200 """ return torch.cos(t * math.pi / 2) # self token critic # inspired by Nijkamp et al. - https://aclanthology.org/2021.naacl-main.409/ class SelfCritic(nn.Module): def __init__(self, net): super().__init__() self.net = net dim = net.attn_layers.dim self.to_logits = nn.Linear(dim, 1) def forward(self, x): embed = self.net(x, return_embeddings = True) return self.to_logits(embed) class NonAutoregressiveWrapper(nn.Module): """ https://arxiv.org/abs/1904.09324 https://arxiv.org/abs/2202.04200 """ def __init__( self, net, *, mask_id, steps = 18, self_cond = False, self_cond_train_prob = 0.75, no_replace_prob = 0.15, # which percentage of the tokens masked will stay the same, done in original MLM paper random_token_prob = 0.1, # which percentage of tokens to be replaced with random token, done in original MLM paper schedule = 'linear', can_mask_prev_unmasked = False, # when unmasking, whether it can remask previously unmasked token_critic: Optional[TransformerWrapper] = None, self_token_critic = False, critic_loss_weight = 1. ): super().__init__() assert not (self_token_critic and exists(token_critic)) self.net = net dim = net.emb_dim self.dim = dim self.num_tokens = net.num_tokens self.mask_id = mask_id # afaict, maskgit paper did not do this # but may help for self conditioning, as used successfully in original BERT self.no_replace_prob = no_replace_prob self.random_token_prob = random_token_prob self.max_seq_len = net.max_seq_len self.steps = steps if callable(schedule): self.schedule_fn = schedule if schedule == 'linear': self.schedule_fn = linear_schedule elif schedule == 'cosine': self.schedule_fn = cosine_schedule else: raise ValueError(f'invalid schedule {schedule}') self.can_mask_prev_unmasked = can_mask_prev_unmasked # self conditioning self.self_cond = self_cond if self_cond: self.null_embed = nn.Parameter(torch.randn(dim)) self.to_self_cond = nn.Linear(dim, dim, bias = False) if self_cond else None self.self_cond_train_prob = self_cond_train_prob # token critic self.token_critic = token_critic if self_token_critic: self.token_critic = SelfCritic(net) self.critic_loss_weight = critic_loss_weight @torch.no_grad() def generate( self, batch_size = None, start_temperature = 1., filter_thres = 0.7, noise_level_scale = 1., **kwargs ): sample_one = not exists(batch_size) batch_size = default(batch_size, 1) device = next(self.net.parameters()).device was_training = self.training self.eval() times = torch.linspace(0., 1., self.steps + 1) # sequence starts off as all masked shape = (batch_size, self.max_seq_len) seq = torch.full(shape, self.mask_id, device = device) mask = torch.full(shape, True, device = device) # slowly demask all_mask_num_tokens = (self.schedule_fn(times[1:]) * self.max_seq_len).long() # self conditioning has_self_cond = self.self_cond last_embed = self.null_embed if has_self_cond else None for mask_num_tokens, steps_until_x0 in zip(all_mask_num_tokens.tolist(), reversed(range(self.steps))): self_cond = self.to_self_cond(last_embed) if has_self_cond else None logits, embeds = self.net( seq, sum_embeds = self_cond, return_logits_and_embeddings = True, **kwargs ) if has_self_cond: last_embed = embeds if exists(filter_thres): logits = top_k(logits, filter_thres) annealing_scale = steps_until_x0 / self.steps temperature = start_temperature * annealing_scale probs = (logits / max(temperature, 1e-3)).softmax(dim = -1) sampled_ids = gumbel_sample(logits, temperature = max(temperature, 1e-3)) seq = torch.where(mask, sampled_ids, seq) if exists(self.token_critic): scores = self.token_critic(seq) scores = rearrange(scores, 'b n 1 -> b n') scores = scores + noise_level_scale * gumbel_noise(scores) * annealing_scale else: scores = 1 - logits.softmax(dim = -1) scores = scores.gather(2, rearrange(sampled_ids, 'b n -> b n 1')) scores = rearrange(scores, 'b n 1 -> b n') if mask_num_tokens == 0: pass if not self.can_mask_prev_unmasked: scores = scores.masked_fill(~mask, -torch.finfo(scores.dtype).max) mask_indices = scores.topk(mask_num_tokens, dim = -1).indices mask = torch.zeros_like(scores, dtype = torch.bool).scatter(1, mask_indices, True) seq = seq.masked_fill(mask, self.mask_id) self.train(was_training) if sample_one: seq = rearrange(seq, '1 n -> n') return seq def forward( self, x, only_train_generator = False, only_train_critic = False, generator_sample_temperature = None, **kwargs ): b, n, device = *x.shape, x.device assert n == self.max_seq_len orig_seq = x.clone() rand_times = torch.empty(b, device = device).uniform_(0, 1) batched_randperm = torch.rand((b, n), device = device).argsort(dim = -1).float() rand_probs = self.schedule_fn(rand_times) num_tokens_mask = (rand_probs * n).clamp(min = 1.) mask = batched_randperm < rearrange(num_tokens_mask, 'b -> b 1') # to ensure all tokens produce embeddings, instead of just the ones with [mask] input, as done in seminal BERT MLM paper # potentially needed for self-conditioning (on embedding) to work well replace_mask_id_mask = mask.clone() frac_seq_left = 1. if self.no_replace_prob > 0. and coin_flip(): frac_seq_left -= self.no_replace_prob no_replace_prob_mask = get_mask_subset_prob(mask, self.no_replace_prob) replace_mask_id_mask &= ~no_replace_prob_mask if self.random_token_prob > 0. and coin_flip(): random_token_prob_mask = get_mask_subset_prob(replace_mask_id_mask, self.random_token_prob * frac_seq_left) random_tokens = torch.randint(0, self.num_tokens, (b, n), device = device) x = torch.where(random_token_prob_mask, random_tokens, x) replace_mask_id_mask &= ~random_token_prob_mask masked = torch.where(replace_mask_id_mask, self.mask_id, x) # self conditioning if self.self_cond: self_cond = self.null_embed if sample_prob(self.self_cond_train_prob): with torch.no_grad(): self_cond = self.net(masked, return_embeddings = True, **kwargs).detach() kwargs.update(sum_embeds = self.to_self_cond(self_cond)) # logits context = torch.no_grad if only_train_critic else nullcontext with context(): logits = self.net(masked, **kwargs) # cross entropy loss loss = F.cross_entropy( logits[mask], orig_seq[mask] ) if not exists(self.token_critic) or only_train_generator: return Losses(loss, loss, None) sampled_ids = gumbel_sample(logits, temperature = default(generator_sample_temperature, random())) generated = torch.where(mask, sampled_ids, orig_seq) critic_logits = self.token_critic(generated) critic_labels = (sampled_ids != orig_seq).float() critic_loss = F.binary_cross_entropy_with_logits( rearrange(critic_logits, '... 1 -> ...'), critic_labels ) # determine losses to be returned based on what researcher wants to train if only_train_critic: total_loss = critic_loss loss = None else: total_loss = loss + critic_loss * self.critic_loss_weight return Losses(total_loss, loss, critic_loss) ################################################################################ ################################################################################ # Code for x-transformers Python module autoregressive_wrapper.py ################################################################################ from math import ceil, log from typing import Optional, Union, Tuple, Callable import torch from torch import nn, Tensor from torch.nn import Module import torch.nn.functional as F from einops import rearrange, pack, unpack def exists(val): return val is not None def default(val, d): return val if exists(val) else d def identity(t, *args, **kwargs): return t def cast_tuple(t, length = 1): return t if isinstance(t, tuple) else (t,) * length def eval_decorator(fn): def inner(self, *args, **kwargs): was_training = self.training self.eval() out = fn(self, *args, **kwargs) self.train(was_training) return out return inner # for variable lengthed prefixes def align_right(t, lens, pad_id = 0): batch, seq_len, device, dtype = *t.shape, t.device, t.dtype assert lens.ndim == 1 and lens.shape[0] == batch assert lens.amax() <= seq_len pad_lens = seq_len - lens max_pad_len = pad_lens.amax() batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None] prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long) t = F.pad(t, (max_pad_len, 0), value = 0) offset = max_pad_len - pad_lens aligned = t[batch_arange, prompt_len_arange + offset[..., None]] return aligned # nucleus def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending = True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1) sorted_indices_to_remove = cum_probs > thres sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False) sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) # topk def top_k(logits, frac_num_tokens = 0.1, k = None): num_tokens = logits.shape[-1] k = default(k, ceil(frac_num_tokens * num_tokens)) k = min(k, num_tokens) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # top_a def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02): probs = F.softmax(logits, dim = -1) max_probs = torch.amax(probs, dim = -1, keepdim = True) limit = torch.pow(max_probs, min_p_pow) * min_p_ratio return torch.where(probs < limit, float('-inf'), logits) # contrastive decoding function def contrastive_decode_fn( expert_logits, amateur_logits, alpha = 0.1, beta = 0.5 ): """ Appendix A Algorithm 2 https://arxiv.org/abs/2309.09117 """ cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True) diffs = (1 + beta) * expert_logits - beta * amateur_logits contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max) return contrastive_decode_logits # autoregressive wrapper class class AutoregressiveWrapper(Module): def __init__( self, net, ignore_index = -100, pad_value = 0, mask_prob = 0., add_attn_z_loss = False ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 assert mask_prob < 1. self.mask_prob = mask_prob # whether to add router z-loss self.add_attn_z_loss = add_attn_z_loss @torch.no_grad() @eval_decorator def generate( self, prompts, seq_len, eos_token = None, temperature = 1., prompt_lens: Optional[Tensor] = None, filter_logits_fn: Callable = top_k, restrict_to_max_seq_len = True, amateur_model: Optional[Union[Module, Tuple[Module]]] = None, filter_kwargs: dict = dict(), contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict( beta = 0.5, alpha = 0.1 ), cache_kv = False, verbose=True, return_prime=False, **kwargs ): max_seq_len, greedy, device = self.max_seq_len, temperature == 0., prompts.device prompts, ps = pack([prompts], '* n') b, t = prompts.shape # handle variable lengthed prompts (prefixes) seq_start_pos = None if exists(prompt_lens): prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value) seq_start_pos = t - prompt_lens # output from which sampled tokens appended to out = prompts if verbose: print("Generating sequence of max length:", seq_len) # kv caches cache = None # if doing contrastive decoding, turn off filter automatically if exists(amateur_model): amateur_model = cast_tuple(amateur_model) contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs) assert len(amateur_model) == len(contrastive_decode_kwargs) amateur_caches = [None] * len(amateur_model) filter_logits_fn = identity for i, module in enumerate(amateur_model): if isinstance(module, AutoregressiveWrapper): amateur_model[i] = module.net module.eval() # sampling up to seq_len for sl in range(seq_len): if restrict_to_max_seq_len: max_len_exceeded = out.shape[-1] > max_seq_len assert not (cache_kv and max_len_exceeded and not self.net.can_cache_kv_outside_max_seq_len), 'the network cannot use cached key values when decoding outside the max sequence length. most likely because you are using absolute positional embeeding. you can switch to rotary embeddings to resolve this issue' x = out[:, -max_seq_len:] if exists(cache): for inter in cache.attn_intermediates: inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv] logits, new_cache = self.net( x, return_intermediates = True, cache = cache, seq_start_pos = seq_start_pos, **kwargs ) if cache_kv and self.net.can_cache_kv: cache = new_cache logits = logits[:, -1] # handle contrastive decoding, Li et al. # https://arxiv.org/abs/2210.15097 if exists(amateur_model): for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)): amateur_logits, next_amateur_cache = amateur( x, return_intermediates = True, cache = amateur_cache, seq_start_pos = seq_start_pos, **kwargs ) amateur_logits = amateur_logits[:, -1] assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model' logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs) if cache_kv and amateur.can_cache_kv: amateur_caches[i] = next_amateur_cache # filter by top_k, top_p (nucleus), top_a, or custom if greedy: sample = logits.argmax(dim = -1, keepdim = True) else: filtered_logits = filter_logits_fn(logits, **filter_kwargs) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) # concat sample out = torch.cat((out, sample), dim=-1) if verbose: if sl % 32 == 0: print(sl, '/', seq_len) if not exists(eos_token): continue is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): if verbose: print('Model called the end of sequence at:', sl, '/', seq_len) break if exists(eos_token): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) if return_prime: return out[:, :] else: return out[:, t:] # out, = unpack(out, ps, '* n') # return out def compute_accuracy(self, logits, labels): out = torch.argmax(logits, dim=-1) out = out.flatten() labels = labels.flatten() mask = (labels != self.ignore_index) # can also be self.pad_value (your choice) out = out[mask] labels = labels[mask] num_right = (out == labels) num_right = torch.sum(num_right).type(torch.float32) acc = num_right / len(labels) return acc def forward(self, x, return_outputs = False, **kwargs): seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss inp, target = x[:, :-1], x[:, 1:] inp = torch.where(inp == ignore_index, self.pad_value, inp) if self.mask_prob > 0.: rand = torch.randn(inp.shape, device = x.device) rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out num_mask = min(int(seq * self.mask_prob), seq - 1) indices = rand.topk(num_mask, dim = -1).indices mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() kwargs.update(self_attn_kv_mask = mask) logits, cache = self.net( inp, return_intermediates = True, return_attn_z_loss = add_attn_z_loss, **kwargs ) acc = self.compute_accuracy(logits, target) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), target, ignore_index = ignore_index ) if add_attn_z_loss: loss = loss + cache.attn_z_loss if not return_outputs: return loss, acc return loss, acc, (logits, cache) ################################################################################ ################################################################################ # Code for x-transformers Python module xl_autoregressive_wrapper.py ################################################################################ from math import ceil import torch from torch import nn import torch.nn.functional as F from einops import rearrange, pack, unpack # helper functions def exists(val): return val is not None def divisible_by(numer, denom): return (numer % denom) == 0 # xl autoregressive wrapper class class XLAutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0 ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, mems = None, **kwargs ): device, max_seq_len = start_tokens.device, self.max_seq_len start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape *all_leading_tokens, _ = start_tokens.split(max_seq_len, dim = -1) # catch the memory up to the current segment for leading_tokens in all_leading_tokens: _, mems = self.net( leading_tokens, mems = mems, return_mems = True, **kwargs ) # now start sampling from the current segment curr_pos = len(all_leading_tokens) * max_seq_len curr_mems = mems cache = None out = start_tokens for _ in range(seq_len): curr_segment_len = out.shape[-1] is_last_segment_tokens = divisible_by(curr_segment_len, max_seq_len) x = out[:, curr_pos:] logits, cache = self.net( x, mems = curr_mems, cache = cache, return_mems = True, return_intermediates = True, **kwargs ) mems = cache.mems logits = logits[:, -1] filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) if is_last_segment_tokens: curr_pos = curr_segment_len curr_mems = mems out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward( self, x, mems = None, **kwargs ): ignore_index, max_seq_len = self.ignore_index, self.max_seq_len x, labels = x[:, :-1], x[:, 1:] seq_len = x.shape[1] # prepare chunks split_x = x.split(max_seq_len, dim = -1) split_labels = labels.split(max_seq_len, dim = -1) loss_weights = tuple(map(lambda t: t.shape[-1] / seq_len, split_x)) # go through each chunk and derive weighted losses total_loss = 0. for chunk, chunk_labels, loss_weight in zip(split_x, split_labels, loss_weights): logits, mems = self.net( chunk, mems = mems, return_mems = True, **kwargs ) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), chunk_labels, ignore_index = ignore_index ) total_loss = total_loss + loss * loss_weight return total_loss ################################################################################ ################################################################################ # Code for x-transformers Python module xval.py ################################################################################ """ regular transformer with discrete tokens, but continuous for number generalizes better for arithmetic https://arxiv.org/abs/2310.02989 """ import torch from torch import nn, Tensor import torch.nn.functional as F from typing import Callable from collections import namedtuple from einops import rearrange from einops.layers.torch import Rearrange # constants LossBreakdown = namedtuple('LossBreakdown', ['cross_entropy_loss', 'numerical_mse_loss']) GenerateReturn = namedtuple('GenerateReturn', ['sampled_token_ids', 'sampled_numbers', 'is_number_mask']) # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d # main classes class XValTransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, numerical_token_id, attn_layers: AttentionLayers, emb_dim = None, logits_dim = None, tie_embedding = False, max_mem_len = 0, num_memory_tokens = None, emb_dropout = 0., use_abs_pos_emb = True, scaled_sinu_pos_emb = False ): super().__init__() dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.emb_dim = emb_dim self.token_emb = TokenEmbedding(emb_dim, num_tokens) self.numerical_token_id = numerical_token_id self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len if not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(dim) else: self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) self.emb_dropout = nn.Dropout(emb_dropout) # memory tokens num_memory_tokens = default(num_memory_tokens, 0) self.has_memory_tokens = num_memory_tokens > 0 if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) # attention layers self.attn_layers = attn_layers # to logits logits_dim = default(logits_dim, num_tokens) self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() self.to_numerical_output = nn.Sequential( nn.Linear(dim, 1), Rearrange('... 1 -> ...') ) def forward( self, x: Tensor, x_num: Tensor, return_embeddings = False, return_intermediates = False, return_mems = False, mask = None, return_attn = False, mems = None, pos = None, prepend_embeds = None, **kwargs ): assert x.shape == x_num.shape batch = x.shape[0] is_number_mask = x == self.numerical_token_id x = self.token_emb(x) scale = torch.where(is_number_mask, x_num, 1.) scale = rearrange(scale, '... -> ... 1') x = x * scale x = x + self.pos_emb(x, pos = pos) # memory tokens if self.has_memory_tokens: m = repeat(self.memory_tokens, 'm d -> b m d', b = batch) x, mem_ps = pack([m, x], 'b * d') if exists(mask): num_mems = m.shape[-2] mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): _, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) x = self.emb_dropout(x) # attention layers x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) # splice out memory tokens if self.has_memory_tokens: m, x = unpack(x, mem_ps, 'b * d') intermediates.memory_tokens = m if not return_embeddings: logits = self.to_logits(x) numerical_pred = self.to_numerical_output(x) out = (logits, numerical_pred) else: out = x if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class XValAutoregressiveWrapper(nn.Module): def __init__( self, net: XValTransformerWrapper, ignore_index = -100, pad_value = 0, numerical_loss_weight = 1. ): super().__init__() self.net = net self.max_seq_len = net.max_seq_len self.numerical_loss_weight = numerical_loss_weight self.ignore_index = ignore_index @torch.no_grad() def generate( self, start_tokens: Tensor, start_numbers: Tensor, seq_len, filter_logits_fn: Callable = top_k, filter_kwargs: dict = dict(), temperature = 1., **kwargs ): device = start_tokens.device was_training = self.net.training num_dims = len(start_tokens.shape) assert num_dims >= 2, 'number of dimensions of your start tokens must be greater or equal to 2' assert start_tokens.shape == start_numbers.shape b, t, device = *start_tokens.shape, start_tokens.device self.net.eval() out = start_tokens num_out = start_numbers for _ in range(seq_len): x = out[:, -self.max_seq_len:] x_num = num_out[:, -self.max_seq_len:] logits, numerical_pred = self.net(x, x_num, **kwargs) last_logits = logits[:, -1] last_num_pred = numerical_pred[:, -1:] filtered_logits = filter_logits_fn(last_logits, **filter_kwargs) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim = -1) num_out = torch.cat((num_out, last_num_pred), dim = -1) out = out[:, t:] num_out = num_out[:, t:] is_number = out == self.net.numerical_token_id num_out = torch.where(is_number, num_out, float('nan')) self.net.train(was_training) return GenerateReturn(out, num_out, is_number) def forward( self, x: Tensor, x_num: Tensor, return_loss_breakdown = False, **kwargs ): inp, target = x[:, :-1], x[:, 1:] x_num_inp, x_num_target = x_num[:, :-1], x_num[:, 1:] mask = kwargs.get('mask', None) if exists(mask) and mask.shape[1] == x.shape[1]: mask = mask[:, :-1] kwargs['mask'] = mask logits, numerical_pred = self.net(inp, x_num_inp, **kwargs) logits = rearrange(logits, 'b n c -> b c n') cross_entropy_loss = F.cross_entropy(logits, target, reduction = 'none', ignore_index = self.ignore_index) target_mask = target != self.ignore_index numerical_mse_loss = F.mse_loss(numerical_pred, x_num_target, reduction = 'none') numerical_mse_loss = numerical_mse_loss * target_mask loss = cross_entropy_loss + numerical_mse_loss * self.numerical_loss_weight if exists(mask): loss = loss[mask] loss = loss.mean() if not return_loss_breakdown: return loss return loss, LossBreakdown(cross_entropy_loss, numerical_mse_loss) ################################################################################ ################################################################################ # Code for instantiating, saving and loading a simple model ################################################################################ import os import importlib #=============================================================================== def instantiate_x_transformer_model(num_tokens=20000, max_seq_len=8192, dim=1024, depth=32, heads=32, attn_flash=True, ignore_index=-1, verbose=True): if verbose: print('=' * 70) print('Instantiating x-transformer model...') model = TransformerWrapper( num_tokens = num_tokens, max_seq_len = max_seq_len, attn_layers = Decoder( dim = dim, depth = depth, heads = heads, attn_flash = attn_flash ) ) model = AutoregressiveWrapper(model, ignore_index=ignore_index ) model.cuda() if verbose: print('Done!') print('=' * 70) return model #=============================================================================== def save_x_transformer_model(model, checkpoint_dir='./', checkpoint_name='model_checkpoint', number_of_tokens=20000, ignore_index=-1, max_seq_len=8192, dim=1024, depth=32, heads=32, use_flash_attn=True, batch_size=4, grad_acc_rate=4, learning_rate=1e-4, num_epochs=1, num_steps=1, loss=0, accuracy=1, verbose=True ): if verbose: print('=' * 70) print('Saving x-transformer model...') checkpoint_full_name = '' checkpoint_full_name += checkpoint_name + '_' checkpoint_full_name += str(num_epochs) + '_epochs_' checkpoint_full_name += str(num_steps) + '_steps_' checkpoint_full_name += str(loss) + '_loss_' checkpoint_full_name += str(accuracy) + '_acc' checkpoint_full_name += '.pth' checkpoint_full_path_and_name = os.path.join(checkpoint_dir, checkpoint_full_name) #=============================================================================== torch.save({ 'model_state_dict': model.state_dict(), 'class_name': model.__class__.__name__, 'class_module': model.__class__.__module__, 'num_tokens': number_of_tokens, 'max_seq_len': max_seq_len, 'attn_layers': { 'dim': dim, 'depth': depth, 'heads': heads, 'attn_flash': use_flash_attn }, 'batch_size': batch_size, 'grad_acc_rate': grad_acc_rate, 'learning_rate': learning_rate, 'ignore_index': ignore_index, 'num_epochs': num_epochs, 'num_steps': num_steps, 'loss': loss, 'accuracy': accuracy }, checkpoint_full_path_and_name ) if verbose: print('Done!') print('=' * 70) print('Saved model name:', checkpoint_full_name) print('=' * 70) #=============================================================================== def load_x_transformer_model(checkpoint_file_path, verbose=True ): if verbose: print('=' * 70) print('Loading x-transformer model...') checkpoint = torch.load(checkpoint_file_path) module = importlib.import_module(checkpoint['class_module']) class_ = getattr(module, checkpoint['class_name']) attn_layers = Decoder(**checkpoint['attn_layers']) transformer_model = TransformerWrapper(num_tokens=checkpoint['num_tokens'], max_seq_len=checkpoint['max_seq_len'], attn_layers=attn_layers) model = class_(transformer_model, ignore_index=checkpoint['ignore_index']) model.load_state_dict(checkpoint['model_state_dict']) model.cuda() if verbose: print('Done!') print('=' * 70) print('Model stats:') print('Number of tokens:', checkpoint['num_tokens']) print('Ignore index:', checkpoint['ignore_index']) print('Max sequence length::', checkpoint['max_seq_len']) print('Dimension:', checkpoint['attn_layers']['dim']) print('Depth:', checkpoint['attn_layers']['depth']) print('Number of heads:', checkpoint['attn_layers']['heads']) print('Flash attention:', checkpoint['attn_layers']['attn_flash']) print('Training batch size', checkpoint['batch_size']) print('Training gradient accumulation rate:', checkpoint['grad_acc_rate']) print('Training learining rate:', checkpoint['learning_rate']) print('Number of training epochs:', checkpoint['num_epochs']) print('Number of training steps:', checkpoint['num_steps']) print('Model loss:', checkpoint['loss']) print('Model accuracy:', checkpoint['accuracy']) print('=' * 70) ################################################################################ # This is the end of x-transformer Python module ################################################################################