Parafraseja / OLD /Parafraseja.py
AnnaSallesRius's picture
Upload 4 files
4fd2d88 verified
raw
history blame
3.27 kB
# Loading script for the ReviewsFinder dataset.
import json
import csv
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """ """
_DESCRIPTION = """ Parafraseja is a dataset of 16,584 pairs of sentences with a label that indicates if they are paraphrases or not. The original sentences were collected from TE-ca and STS-ca. For each sentence, an annotator wrote a sentence that was a paraphrase and another that was not. The guidelines of this annotation are available. """
_HOMEPAGE = """ https://huggingface.co/datasets/projecte-aina/Parafraseja/ """
_URL = "https://huggingface.co/datasets/projecte-aina/Parafraseja/resolve/main/"
_TRAINING_FILE = "train.jsonl"
_DEV_FILE = "dev.jsonl"
_TEST_FILE = "test.jsonl"
class ParafrasejaConfig(datasets.BuilderConfig):
""" Builder config for the Parafraseja dataset """
def __init__(self, **kwargs):
"""BuilderConfig for parafrasis.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ParafrasejaConfig, self).__init__(**kwargs)
class Parafraseja(datasets.GeneratorBasedBuilder):
""" Parafrasis Dataset """
BUILDER_CONFIGS = [
ParafrasejaConfig(
name="Parafraseja",
version=datasets.Version("1.0.0"),
description="Parafraseja dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"label": datasets.features.ClassLabel
(names=
[
"No Parafrasis",
"Parafrasis",
]
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
data = [json.loads(line) for line in f]
for id_, article in enumerate(data):
yield id_, {
"sentence1": article['original'],
"sentence2": article['new'],
"label": article['label'],
}