Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-input-text-classification
Languages:
Catalan
Size:
10K - 100K
License:
# Loading script for the ReviewsFinder dataset. | |
import json | |
import csv | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ """ | |
_DESCRIPTION = """ Parafraseja is a dataset of 16,584 pairs of sentences with a label that indicates if they are paraphrases or not. The original sentences were collected from TE-ca and STS-ca. For each sentence, an annotator wrote a sentence that was a paraphrase and another that was not. The guidelines of this annotation are available. """ | |
_HOMEPAGE = """ https://huggingface.co/datasets/projecte-aina/Parafraseja/ """ | |
_URL = "https://huggingface.co/datasets/projecte-aina/Parafraseja/resolve/main/" | |
_TRAINING_FILE = "train.jsonl" | |
_DEV_FILE = "dev.jsonl" | |
_TEST_FILE = "test.jsonl" | |
class ParafrasejaConfig(datasets.BuilderConfig): | |
""" Builder config for the Parafraseja dataset """ | |
def __init__(self, **kwargs): | |
"""BuilderConfig for parafrasis. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(ParafrasejaConfig, self).__init__(**kwargs) | |
class Parafraseja(datasets.GeneratorBasedBuilder): | |
""" Parafrasis Dataset """ | |
BUILDER_CONFIGS = [ | |
ParafrasejaConfig( | |
name="Parafraseja", | |
version=datasets.Version("1.0.0"), | |
description="Parafraseja dataset", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence1": datasets.Value("string"), | |
"sentence2": datasets.Value("string"), | |
"label": datasets.features.ClassLabel | |
(names= | |
[ | |
"No Parafrasis", | |
"Parafrasis", | |
] | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
data = [json.loads(line) for line in f] | |
for id_, article in enumerate(data): | |
yield id_, { | |
"sentence1": article['original'], | |
"sentence2": article['new'], | |
"label": article['label'], | |
} | |