Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Catalan
Size:
10K - 100K
License:
LuciaTormo
commited on
Commit
•
64bc5df
1
Parent(s):
96112f0
Delete PAWS-ca.py
Browse files- PAWS-ca.py +0 -97
PAWS-ca.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
# Loading script for the PAWS-ca dataset
|
2 |
-
import json
|
3 |
-
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
|
7 |
-
_CITATION = """
|
8 |
-
"""
|
9 |
-
|
10 |
-
_DESCRIPTION = """
|
11 |
-
The PAWS-ca dataset (Paraphrase Adversaries from Word Scrambling in Catalan) is a translation of the English PAWS dataset into Catalan, commissioned by BSC LangTech Unit.
|
12 |
-
|
13 |
-
This dataset contains 4,000 human translated PAWS pairs and 49,000 machine translated pairs.
|
14 |
-
|
15 |
-
"""
|
16 |
-
|
17 |
-
_HOMEPAGE = "https://zenodo.org/record/"
|
18 |
-
|
19 |
-
_URL = "https://huggingface.co/datasets/projecte-aina/paws-ca/resolve/main/"
|
20 |
-
_TRAIN_FILE = "train.json"
|
21 |
-
_DEV_FILE = "dev_2k.json"
|
22 |
-
_TEST_FILE = "test_2k.json"
|
23 |
-
|
24 |
-
|
25 |
-
class PAWSXConfig(datasets.BuilderConfig):
|
26 |
-
"""BuilderConfig for PAWSX-ca."""
|
27 |
-
|
28 |
-
def __init__(self, **kwargs):
|
29 |
-
"""Constructs a PAWSXConfig.
|
30 |
-
Args:
|
31 |
-
**kwargs: keyword arguments forwarded to super.
|
32 |
-
"""
|
33 |
-
super(PAWSXConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs),
|
34 |
-
|
35 |
-
|
36 |
-
class PAWSX(datasets.GeneratorBasedBuilder):
|
37 |
-
"""PAWS-ca, a Catalan version of PAWS."""
|
38 |
-
|
39 |
-
VERSION = datasets.Version("1.1.0")
|
40 |
-
|
41 |
-
BUILDER_CONFIGS = [
|
42 |
-
PAWSXConfig(
|
43 |
-
name="paws-ca",
|
44 |
-
description="PAWS-ca dataset",
|
45 |
-
),
|
46 |
-
]
|
47 |
-
|
48 |
-
|
49 |
-
def _info(self):
|
50 |
-
features = datasets.Features(
|
51 |
-
{
|
52 |
-
"id": datasets.Value("int32"),
|
53 |
-
"sentence1": datasets.Value("string"),
|
54 |
-
"sentence2": datasets.Value("string"),
|
55 |
-
"label": datasets.features.ClassLabel(names=["0", "1"]),
|
56 |
-
}
|
57 |
-
)
|
58 |
-
return datasets.DatasetInfo(
|
59 |
-
# This is the description that will appear on the datasets page.
|
60 |
-
description=_DESCRIPTION,
|
61 |
-
# This defines the different columns of the dataset and their types
|
62 |
-
features=features, # Here we define them above because they are different between the two configurations
|
63 |
-
# If there's a common (input, target) tuple from the features,
|
64 |
-
# specify them here. They'll be used if as_supervised=True in
|
65 |
-
# builder.as_dataset.
|
66 |
-
supervised_keys=None,
|
67 |
-
# Homepage of the dataset for documentation
|
68 |
-
homepage=_HOMEPAGE,
|
69 |
-
)
|
70 |
-
|
71 |
-
def _split_generators(self, dl_manager):
|
72 |
-
"""Returns SplitGenerators."""
|
73 |
-
urls_to_download = {
|
74 |
-
"train": f"{_URL}{_TRAIN_FILE}",
|
75 |
-
"dev": f"{_URL}{_DEV_FILE}",
|
76 |
-
"test": f"{_URL}{_TEST_FILE}",
|
77 |
-
}
|
78 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
79 |
-
|
80 |
-
return [
|
81 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
82 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
83 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
84 |
-
]
|
85 |
-
|
86 |
-
def _generate_examples(self, filepath):
|
87 |
-
with open(filepath, encoding='utf-8') as f:
|
88 |
-
data = json.load(f)
|
89 |
-
for i, row in enumerate(data):
|
90 |
-
yield i, {
|
91 |
-
'id': row['id'],
|
92 |
-
'sentence1': row['sentence1'],
|
93 |
-
'sentence2': row['sentence2'],
|
94 |
-
'label': row['label'],
|
95 |
-
}
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|