File size: 2,204 Bytes
40cd7fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
#!/bin/env python
"""
(Similar to graph-embeddings, but for SDXL)
This program requires two files as arguments:
A text encoder model (SDXL style), and matching config.json
You can get the fancy SDXL "vit-bigg" based text encoding model and config, from
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/text_encoder_2
Take the config.json and one of the .safetensors files
The sd1.5 encoding model resides at
https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder
Once it has read those files in, it asks for 1-2 text prompts, and then graphs them.
(and pops up a prog to display the output)
"""
import sys
import torch
from transformers import CLIPProcessor, CLIPTextModel
if len(sys.argv) <3:
print("Error: require clipmodel file and config file as arguments")
exit(1)
# 1. Load the pretrained model
# Note that it doesnt like a leading "/" in the name!!
#
model_path = sys.argv[1]
model_config = sys.argv[2]
print("loading",model_path)
model = CLIPTextModel.from_pretrained(
model_path,config=model_config,local_files_only=True,use_safetensors=True)
# This is the tokenizer for sd1 and sdxl
CLIPname = "openai/clip-vit-large-patch14"
print("getting processor",CLIPname)
processor = CLIPProcessor.from_pretrained(CLIPname)
def embed_from_text(text):
print("getting tokens for",text)
inputs = processor(text=text, return_tensors="pt")
outputs = model(**inputs)
embeddings = outputs.pooler_output
return embeddings
import PyQt5
import matplotlib
matplotlib.use('QT5Agg') # Set the backend to TkAgg
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
text1 = input("First prompt: ")
text2 = input("Second prompt(or leave blank): ")
emb1 = embed_from_text(text1)
print("shape of emb1:",emb1.shape)
graph1=emb1[0].tolist()
ax.plot(graph1, label=text1[:20])
if len(text2) >0:
emb2 = embed_from_text(text2)
graph2=emb2[0].tolist()
ax.plot(graph2, label=text2[:20])
# Add labels, title, and legend
#ax.set_xlabel('Index')
ax.set_ylabel('Values')
ax.set_title(f"Graph of Embeddings in {model_path}")
ax.legend()
# Display the graph
print("Pulling up the graph")
plt.show()
|