File size: 8,582 Bytes
774e11b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Poleval 2019 dataset for Polish Translation"""
from __future__ import absolute_import, division, print_function
import os
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = ""
_DESCRIPTION = """\
PolEval is a SemEval-inspired evaluation campaign for natural language processing tools for Polish.\
Submitted solutions compete against one another within certain tasks selected by organizers, using available data and are evaluated according to\
pre-established procedures. One of the tasks in PolEval-2019 was Machine Translation (Task-4).\
The task is to train as good as possible machine translation system, using any technology,with limited textual resources.\
The competition will be done for 2 language pairs, more popular English-Polish (into Polish direction) and pair that can be called low resourced\
Russian-Polish (in both directions).
Here, Polish-English is also made available to allow for training in both directions. However, the test data is ONLY available for English-Polish.
"""
# Official homepage for the dataset
_HOMEPAGE = "http://2019.poleval.pl/"
# Licence
_LICENSE = ""
# All the urls for train data download
_TRAIN_URL = {
"ru-pl": {
"dev.pl": "https://drive.google.com/u/0/uc?id=1mwx_zyQeTZzkXEWMPoj4yghcbFq4ETWx&export=download",
"dev.ru": "https://drive.google.com/u/0/uc?id=1-z09ntfDYo6j3TBTpxqu6htE_a7IAWte&export=download",
"train.pl": "https://drive.google.com/u/0/uc?id=11EBGHMAswT5JDO60xh7gnZfYjpMQs7h7&export=download",
"train.ru": "https://drive.google.com/u/0/uc?id=1H7FphKVVCYoH49sUXl79CuztEfJLaKoF&export=download",
},
"en-pl": {
"dev.en": "https://drive.google.com/u/0/uc?id=1L6qQiO6kPLFj8BUK9XFNUH7bNyJVA7FC&export=download",
"dev.pl": "https://drive.google.com/u/0/uc?id=1CP3oHL04qE1nfu3h_zmaxz5fmEtlwzLs&export=download",
"train.en": "https://drive.google.com/u/0/uc?id=1NAeuWLgYBzLwU5jCdkrtj4_PRUocuvlb&export=download",
"train.pl": "https://drive.google.com/u/0/uc?id=13ZyFc2qepAYSg9WIFaeJ9y402gblsl2e&export=download",
},
}
# All the tsv files are present in the below link.
_TEST_URL = "http://2019.poleval.pl/task4/task4_test.zip"
# These are the supported languages in the parallel corpora in the PolEval-2019 MT task
_SUPPORTED_LANGUAGES = {
"ru": "Russian",
"en": "English",
}
class PolevalMTConfig(datasets.BuilderConfig):
"""BuilderConfig for PolEval-2019 MT corpus."""
def __init__(self, language_pair=(None, None), **kwargs):
"""BuilderConfig for PolEval-2019.
Args:
for the `datasets.features.text.TextEncoder` used for the features feature.
language_pair: pair of languages that will be used for translation. Should
contain 2-letter coded strings. First will be used at source and second
as target in supervised mode. For example: ("pl", "en").
**kwargs: keyword arguments forwarded to super.
"""
# Validate language pair.
name = "%s-%s" % (language_pair[0], language_pair[1])
assert "pl" in language_pair, ("Config language pair must contain `pl` (Polish), got: %s", language_pair)
source, target = language_pair
non_pl = source if target == "pl" else target
assert non_pl in _SUPPORTED_LANGUAGES.keys(), ("Invalid non-polish language in pair: %s", non_pl)
description = ("Translation dataset between Polish and %s") % (_SUPPORTED_LANGUAGES[non_pl])
super(PolevalMTConfig, self).__init__(
name=name,
description=description,
version=datasets.Version("1.0.0", ""),
**kwargs,
)
self.language_pair = language_pair
class Poleval2019Mt(datasets.GeneratorBasedBuilder):
"""Polish Translation Dataset"""
BUILDER_CONFIGS = [PolevalMTConfig(language_pair=(key, "pl")) for key, val in _SUPPORTED_LANGUAGES.items()] + [
PolevalMTConfig(language_pair=("pl", key)) for key, val in _SUPPORTED_LANGUAGES.items()
]
def _info(self):
source, target = self.config.language_pair
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
),
supervised_keys=(source, target),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
source, target = self.config.language_pair
if "en" in self.config.language_pair:
urls = _TRAIN_URL["en-pl"]
else:
urls = _TRAIN_URL["ru-pl"]
# Test path templates
test_tmpl = "tst_to_{target}.{source}" # Hardcode alert
files = {}
for split in ("train", "dev"):
dl_file_src = dl_manager.download_and_extract(urls[split + "." + source])
dl_file_dst = dl_manager.download_and_extract(urls[split + "." + target])
files[split] = {
"source_file": dl_file_src,
"target_file": dl_file_dst,
"split": split,
}
# To handle test split when english is the target language.
# This is because there is no Polish to English test file that is available in the default set
if "en" == source:
dl_dir_test = dl_manager.download_and_extract(_TEST_URL)
test_file = os.path.join(dl_dir_test, "task4_test", "tst.en")
elif "en" == target:
test_file = ""
else:
dl_dir_test = dl_manager.download_and_extract(_TEST_URL)
test_file = os.path.join(dl_dir_test, "task4_test", test_tmpl.format(target=target.upper(), source=source))
files["test"] = {"source_file": test_file, "target_file": "", "split": "test"}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["dev"]),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]),
]
def _generate_examples(self, source_file, target_file, split):
"""This function returns the examples in the raw (text) form."""
source, target = self.config.language_pair
# Returning an empty source and target just to handle the test file absence when English is the target
if split == "test":
if target == "en":
# Returning dummy info
result = {"translation": {source: "", target: ""}}
yield 0, result
else: # Handling cases for Polish and Russian languages
with open(source_file, encoding="utf-8") as f:
source_sentences = f.read().split("\n")
for idx, sent in enumerate(source_sentences):
if sent.strip() != "":
result = {"translation": {source: sent, target: ""}}
yield idx, result
else:
# Training and Dev sets examples
with open(source_file, encoding="utf-8") as f:
source_sentences = f.read().split("\n")
with open(target_file, encoding="utf-8") as f:
target_sentences = f.read().split("\n")
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
len(source_sentences),
len(target_sentences),
source_file,
target_file,
)
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
result = {"translation": {source: l1, target: l2}}
# Make sure that both translations are non-empty.
yield idx, result
|