Datasets:
Tasks:
Text Classification
Sub-tasks:
intent-classification
Languages:
Polish
Size:
10K<n<100K
License:
File size: 5,062 Bytes
92c5f80 b5d2f8e 92c5f80 b5d2f8e 92c5f80 981fd41 b55accf 886e4ce 36b6f94 886e4ce 36b6f94 886e4ce 92c5f80 981fd41 92c5f80 981fd41 92c5f80 18abd3a 92c5f80 18abd3a 886e4ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
annotations_creators:
- found
language_creators:
- found
language:
- pl
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
paperswithcode_id: null
pretty_name: Poleval 2019 cyberbullying
dataset_info:
- config_name: task01
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: '0'
1: '1'
splits:
- name: train
num_bytes: 1104322
num_examples: 10041
- name: test
num_bytes: 109681
num_examples: 1000
download_size: 410001
dataset_size: 1214003
- config_name: task02
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: '0'
1: '1'
2: '2'
splits:
- name: train
num_bytes: 1104322
num_examples: 10041
- name: test
num_bytes: 109681
num_examples: 1000
download_size: 410147
dataset_size: 1214003
---
# Dataset Card for Poleval 2019 cyberbullying
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://2019.poleval.pl/index.php/tasks/task6
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Task 6-1: Harmful vs non-harmful
In this task, the participants are to distinguish between normal/non-harmful tweets (class: 0) and tweets that contain any kind of harmful
information (class: 1). This includes cyberbullying, hate speech and related phenomena. The data for the task is available now and can be
downloaded from the link provided below.
Task 6-2: Type of harmfulness
In this task, the participants shall distinguish between three classes of tweets: 0 (non-harmful), 1 (cyberbullying), 2 (hate-speech). There
are various definitions of both cyberbullying and hate-speech, some of them even putting those two phenomena in the same group. The specific
conditions on which we based our annotations for both cyberbullying and hate-speech, which have been worked out during ten years of research
will be summarized in an introductory paper for the task, however, the main and definitive condition to distinguish the two is whether the
harmful action is addressed towards a private person(s) (cyberbullying), or a public person/entity/large group (hate-speech).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Polish
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- text: the provided tweet
- label: for task 6-1 the label can be 0 (non-harmful) or 1 (harmful)
for task 6-2 the label can be 0 (non-harmful), 1 (cyberbullying) or 2 (hate-speech)
### Data Splits
Train and Test
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@proceedings{ogr:kob:19:poleval,
editor = {Maciej Ogrodniczuk and Łukasz Kobyliński},
title = {{Proceedings of the PolEval 2019 Workshop}},
year = {2019},
address = {Warsaw, Poland},
publisher = {Institute of Computer Science, Polish Academy of Sciences},
url = {http://2019.poleval.pl/files/poleval2019.pdf},
isbn = "978-83-63159-28-3"}
}
```
### Contributions
Thanks to [@czabo](https://github.com/czabo) for adding this dataset. |