File size: 5,062 Bytes
92c5f80
 
 
 
 
b5d2f8e
92c5f80
b5d2f8e
92c5f80
 
 
 
 
 
 
 
 
 
 
981fd41
b55accf
886e4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b6f94
 
 
886e4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b6f94
 
 
886e4ce
 
92c5f80
 
 
 
 
 
 
981fd41
92c5f80
 
 
981fd41
 
92c5f80
 
 
 
 
 
 
 
 
 
 
 
 
18abd3a
92c5f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18abd3a
 
 
886e4ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
annotations_creators:
- found
language_creators:
- found
language:
- pl
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
paperswithcode_id: null
pretty_name: Poleval 2019 cyberbullying
dataset_info:
- config_name: task01
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: '0'
          1: '1'
  splits:
  - name: train
    num_bytes: 1104322
    num_examples: 10041
  - name: test
    num_bytes: 109681
    num_examples: 1000
  download_size: 410001
  dataset_size: 1214003
- config_name: task02
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: '0'
          1: '1'
          2: '2'
  splits:
  - name: train
    num_bytes: 1104322
    num_examples: 10041
  - name: test
    num_bytes: 109681
    num_examples: 1000
  download_size: 410147
  dataset_size: 1214003
---

# Dataset Card for Poleval 2019 cyberbullying

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** http://2019.poleval.pl/index.php/tasks/task6
- **Repository:** 
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

Task 6-1: Harmful vs non-harmful

In this task, the participants are to distinguish between normal/non-harmful tweets (class: 0) and tweets that contain any kind of harmful
information (class: 1). This includes cyberbullying, hate speech and related phenomena. The data for the task is available now and can be
downloaded from the link provided below.

Task 6-2: Type of harmfulness

In this task, the participants shall distinguish between three classes of tweets: 0 (non-harmful), 1 (cyberbullying), 2 (hate-speech). There
are various definitions of both cyberbullying and hate-speech, some of them even putting those two phenomena in the same group. The specific
conditions on which we based our annotations for both cyberbullying and hate-speech, which have been worked out during ten years of research
will be summarized in an introductory paper for the task, however, the main and definitive condition to distinguish the two is whether the
harmful action is addressed towards a private person(s) (cyberbullying), or a public person/entity/large group (hate-speech).

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

Polish

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

- text: the provided tweet
- label: for task 6-1 the label can be 0 (non-harmful) or 1 (harmful)
         for task 6-2 the label can be 0 (non-harmful), 1 (cyberbullying) or 2 (hate-speech)

### Data Splits

Train and Test

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@proceedings{ogr:kob:19:poleval,
  editor    = {Maciej Ogrodniczuk and Łukasz Kobyliński},
  title     = {{Proceedings of the PolEval 2019 Workshop}},
  year      = {2019},
  address   = {Warsaw, Poland},
  publisher = {Institute of Computer Science, Polish Academy of Sciences},
  url       = {http://2019.poleval.pl/files/poleval2019.pdf},
  isbn      = "978-83-63159-28-3"}
}
```

### Contributions

Thanks to [@czabo](https://github.com/czabo) for adding this dataset.