File size: 9,180 Bytes
5472d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5757aa
 
 
 
 
 
5472d34
f5757aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
title: "Demo spancat in a new pipeline (Span Categorization)"
description: "A minimal demo spancat project for spaCy v3"

# Variables can be referenced across the project.yml using ${vars.var_name}
vars:
  name: "placing_holocaust"
  lang: "en"
  annotations_file: "annotated_data_spans.jsonl"
  train: "train"
  dev: "dev"
  test: "test"
  version: "0.0.1"
  # Set a random seed
  seed: 0
  # Set your GPU ID, -1 is CPU
  gpu_id: -1
  vectors_model_md: "en_core_web_md"
  vectors_model_lg: "en_core_web_lg"

# These are the directories that the project needs. The project CLI will make
# sure that they always exist.
directories: ["assets", "corpus", "configs", "training", "scripts", "packages"]

# Assets that should be downloaded or available in the directory. We're shipping
# them with the project, so they won't have to be downloaded.
assets:
  - dest: "assets/train.jsonl"
    description: "Training data. For this project, they were chunked into sentences."
  - dest: "assets/dev.jsonl"
    description: "Validation data. For this project, they were chunked into sentences."
  - dest: "assets/test.jsonl"
    description: "Testing data. For this project, they were chunked into sentences."

  - dest: "assets/annotated_data.json/"
    description: "All data, including those without annotations because they are negative examples."

  - dest: "assets/annotated_data_spans.jsonl"
    description: "This is just the data that contained examples of span annotations."

  - dest: "corpus/train.spacy"
    description: "Training data in serialized format."
  - dest: "corpus/dev.spacy"
    description: "Validation data in serialized format."
  - dest: "corpus/test.spacy"
    description: "Testing data in serialized format."

  - dest: "gold-training-data/*"
    description: "The original outputs from Prodigy, the annotation software used."

  - dest: "notebooks/*"
    description: "A collection of notebooks for testing different features of the project."

  - dest: "configs/*"
    description: "A collection of config files used for training the spaCy models." 
# Workflows are sequences of commands (see below) executed in order. You can
# run them via "spacy project run [workflow]". If a commands's inputs/outputs
# haven't changed, it won't be re-run.
workflows:
  all-sm-sents:
    - convert-sents
    - split
    - create-config-sm
    - train-sm
    - evaluate-sm
  # all-trf:
  #   - download
  #   - convert
  #   - create-config
  #   - train-with-vectors
  #   - evaluate

# Project commands, specified in a style similar to CI config files (e.g. Azure
# pipelines). The name is the command name that lets you trigger the command
# via "spacy project run [command] [path]". The help message is optional and
# shown when executing "spacy project run [optional command] [path] --help".
commands:

#### DOWNLOADING VECTORS #####
  - name: "download-lg"
    help: "Download a spaCy model with pretrained vectors"
    script:
      - "python -m spacy download ${vars.vectors_model_lg}"

  - name: "download-md"
    help: "Download a spaCy model with pretrained vectors"
    script:
      - "python -m spacy download ${vars.vectors_model_md}"

#### PREPROCESSING #####
  - name: "convert"
    help: "Convert the data to spaCy's binary format"
    script:
      - "python scripts/convert.py ${vars.lang} assets/${vars.train}.jsonl corpus"
      - "python scripts/convert.py ${vars.lang} assets/${vars.dev}.jsonl corpus"
      - "python scripts/convert.py ${vars.lang} assets/${vars.test}.jsonl corpus"
    deps:
      - "assets/${vars.train}.jsonl"
      - "assets/${vars.dev}.jsonl"
      - "assets/${vars.test}.jsonl"
      - "scripts/convert.py"
    outputs:
      - "corpus/train.spacy"
      - "corpus/dev.spacy"
      - "corpus/test.spacy"

  - name: "convert-sents"
    help: "Convert the data to to sentences before converting to spaCy's binary format"
    script:
      - "python scripts/convert_sents.py ${vars.lang} assets/${vars.train}.jsonl corpus"
      - "python scripts/convert_sents.py ${vars.lang} assets/${vars.dev}.jsonl corpus"
      - "python scripts/convert_sents.py ${vars.lang} assets/${vars.test}.jsonl corpus"
    deps:
      - "assets/${vars.train}.jsonl"
      - "assets/${vars.dev}.jsonl"
      - "assets/${vars.test}.jsonl"
      - "scripts/convert.py"
    outputs:
      - "corpus/train.spacy"
      - "corpus/dev.spacy"
      - "corpus/test.spacy"

  - name: "split"
    help: "Split data into train/dev/test sets"
    script:
      - "python scripts/split.py assets/${vars.annotations_file}"
    deps:
      - "scripts/split.py"
    outputs:
      - "assets/train.jsonl"
      - "assets/dev.jsonl"
      - "assets/test.jsonl"



#### CONFIG CREATIONS #####

  - name: "create-config-sm"
    help: "Create a new config with a spancat pipeline component"
    script:
      - "python -m spacy init fill-config configs/base_config_sm.cfg configs/config_sm.cfg"
    deps:
      - configs/base_config_sm.cfg
    outputs:
      - "configs/config.cfg"


#### TRAINING #####

### small ###
  - name: "train-sm"
    help: "Train the spancat model"
    script:
      - >-
        python -m spacy train configs/config_sm.cfg --output training/sm/ 
        --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy
         --training.eval_frequency 50 
        --training.patience 0 
        --gpu-id ${vars.gpu_id}
        --system.seed ${vars.seed}
    deps:
      - "configs/config_lg.cfg"
      - "corpus/train.spacy"
      - "corpus/dev.spacy"
    outputs:
      - "training/model-best"


### medium ###
  - name: "train-md"
    help: "Train the spancat model with vectors"
    script:
      - >-
        python -m spacy train configs/config_md.cfg --output training/md/ 
        --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy 
        --training.eval_frequency 50 
        --training.patience 0 
        --gpu-id ${vars.gpu_id} 
        --initialize.vectors ${vars.vectors_model_md} 
        --system.seed ${vars.seed}
        --components.tok2vec.model.embed.include_static_vectors true
    deps:
      - "configs/config_md.cfg"
      - "corpus/train.spacy"
      - "corpus/dev.spacy"
    outputs:
      - "training/model-best"


### large ###
  - name: "train-lg"
    help: "Train the spancat model with vectors"
    script:
      - >-
        python -m spacy train configs/config_lg.cfg --output training/lg/ 
        --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy 
        --training.eval_frequency 50 
        --training.patience 0 
        --gpu-id ${vars.gpu_id} 
        --initialize.vectors ${vars.vectors_model_lg} 
        --system.seed ${vars.seed}
        --components.tok2vec.model.embed.include_static_vectors true
    deps:
      - "configs/config_lg.cfg"
      - "corpus/train.spacy"
      - "corpus/dev.spacy"
    outputs:
      - "training/model-best"


### transformer ###
  - name: "train-trf"
    help: "Train the spancat model"
    script:
      - >-
        python -m spacy train configs/config_trf.cfg --output training/trf/ 
        --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy 
        --training.patience 100
        --gpu-id ${vars.gpu_id}
        --system.seed ${vars.seed}
    deps:
      - "configs/config.cfg"
      - "corpus/train.spacy"
      - "corpus/dev.spacy"
    outputs:
      - "training/model-best"


#### EVALUATION #####

### small ###
  - name: "evaluate-sm"
    help: "Evaluate the model and export metrics"
    script:
      - "python -m spacy evaluate training/sm/model-best corpus/test.spacy --output training/sm/metrics.json"
    deps:
      - "corpus/test.spacy"
      - "training/sm/model-best"
    outputs:
      - "training/sm/metrics.json"

### medium ###

  - name: "evaluate-md"
    help: "Evaluate the model and export metrics"
    script:
      - "python -m spacy evaluate training/md/model-best corpus/test.spacy --output training/md/metrics.json"
    deps:
      - "corpus/test.spacy"
      - "training/md/model-best"
    outputs:
      - "training/md/metrics.json"

### large ###
  - name: "evaluate-lg"
    help: "Evaluate the model and export metrics"
    script:
      - "python -m spacy evaluate training/lg/model-best corpus/test.spacy --output training/lg/metrics.json"
    deps:
      - "corpus/test.spacy"
      - "training/lg/model-best"
    outputs:
      - "training/lg/metrics.json"


#### PACKAGING #####

  - name: "build-table"
    help: "builds a nice table from the metrics for README.md"
    script:
      - "python scripts/build-table.py"

  - name: "readme"
    help: "builds a nice table from the metrics for README.md"
    script:
      - "python scripts/readme.py"

  - name: package
    help: "Package the trained model as a pip package"
    script:
      - "python -m spacy package training/model-best packages --name ${vars.name} --version ${vars.version} --force"
    deps:
      - "training/model-best"
    outputs_no_cache:
      - "packages/${vars.lang}_${vars.name}-${vars.version}/dist/${vars.lang}_${vars.name}-${vars.version}.tar.gz"

  - name: clean
    help: "Remove intermediary directories"
    script:
      - "rm -rf corpus/*"
      - "rm -rf training/*"
      - "rm -rf metrics/*"