File size: 3,576 Bytes
d6ee042 a80e735 d6ee042 a80e735 d6ee042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
Allegro FAQ is a dataset for evaluating passage retrievers.
"""
_HOMEPAGE = ""
_LICENSE = ""
_FEATURES_PAIRS = datasets.Features(
{
"question_id": datasets.Value("int32"),
"question": datasets.Value("string"),
"passage_id": datasets.Value("int32"),
"answers": datasets.Value("string"),
"passage_title": datasets.Value("string"),
"passage_text": datasets.Value("string"),
"relevant": datasets.Value("bool"),
}
)
_FEATURES_PASSAGES = datasets.Features(
{
"id": datasets.Value("int32"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
_URLS = {
"pairs": {
"test": ["data/test.csv"],
},
"passages": {
"test": ["data/passages.jsonl"],
},
}
class AllegroFAQ(datasets.GeneratorBasedBuilder):
"""Allegro FAQ is a dataset for evaluating passage retrievers. """
BUILDER_CONFIGS = list(map(lambda x: datasets.BuilderConfig(name=x, version=datasets.Version("1.0.0")), _URLS.keys()))
DEFAULT_CONFIG_NAME = "pairs"
def _info(self):
if self.config.name == "pairs":
features = _FEATURES_PAIRS
else:
features = _FEATURES_PASSAGES
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": data_dir["test"],
},
),
]
@staticmethod
def _parse_bool(text):
if text == 'True':
return True
elif text == 'False':
return False
else:
raise ValueError
def _generate_examples(self, filepaths):
if self.config.name == "pairs":
boolean_features = [name for name, val in _FEATURES_PAIRS.items() if val.dtype == "bool"]
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
data = csv.DictReader(f)
for i, row in enumerate(data):
for boolean_feature in boolean_features:
row[boolean_feature] = self._parse_bool(row[boolean_feature])
yield i, row
else:
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for i, row in enumerate(f):
parsed_row = json.loads(row)
yield i, parsed_row
|