File size: 6,971 Bytes
2b58efe
 
 
2d9edd3
cc9f1ec
 
2b58efe
cc9f1ec
 
2b58efe
 
 
f4ff05c
 
 
2b58efe
f4ff05c
982d568
2b58efe
 
cc9f1ec
f4ff05c
2b58efe
 
f4ff05c
 
 
 
2b58efe
f4ff05c
 
 
 
 
 
 
 
 
 
 
 
 
2b58efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ff05c
 
982d568
 
 
 
 
 
2b58efe
 
982d568
 
 
2b58efe
982d568
f4ff05c
 
 
 
2b58efe
f4ff05c
 
2b58efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import logging
from typing import Union

from pie_modules.document.processing import (
    RegexPartitioner,
    RelationArgumentSorter,
    SpansViaRelationMerger,
    TextSpanTrimmer,
)
from pie_modules.documents import (
    TextDocumentWithLabeledMultiSpansAndBinaryRelations,
    TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
    TextDocumentWithLabeledSpansAndBinaryRelations,
    TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)
from pytorch_ie.core import Document

from pie_datasets.builders import BratBuilder, BratConfig
from pie_datasets.builders.brat import BratDocument, BratDocumentWithMergedSpans
from pie_datasets.core.dataset import DocumentConvertersType
from pie_datasets.document.processing import Caster, Pipeline

logger = logging.getLogger(__name__)

URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
SPLIT_PATHS = {"train": "compiled_corpus"}


def get_common_converter_pipeline_steps(target_document_type: type[Document]) -> dict:
    return dict(
        cast=Caster(
            document_type=target_document_type,
            field_mapping={"spans": "labeled_spans", "relations": "binary_relations"},
        ),
        trim_adus=TextSpanTrimmer(layer="labeled_spans"),
        sort_symmetric_relation_arguments=RelationArgumentSorter(
            relation_layer="binary_relations",
            label_whitelist=["parts_of_same", "semantically_same"],
        ),
    )


def get_common_converter_pipeline_steps_with_resolve_parts_of_same(
    target_document_type: type[Document],
) -> dict:
    return dict(
        cast=Caster(
            document_type=target_document_type,
            field_mapping={"spans": "labeled_multi_spans", "relations": "binary_relations"},
        ),
        trim_adus=TextSpanTrimmer(layer="labeled_multi_spans"),
        sort_symmetric_relation_arguments=RelationArgumentSorter(
            relation_layer="binary_relations",
            label_whitelist=["semantically_same"],
        ),
    )


def remove_duplicate_relations(document: Union[BratDocument, BratDocumentWithMergedSpans]) -> None:
    if len(document.relations) > len(set(document.relations)):
        added = set()
        i = 0
        while i < len(document.relations):
            relation = document.relations[i]
            if relation in added:
                logger.warning(f"doc_id={document.id}: Removing duplicate relation: {relation}")
                document.relations.pop(i)
            else:
                added.add(relation)
                i += 1


class SciArgConfig(BratConfig):
    def __init__(
        self,
        name: str,
        resolve_parts_of_same: bool = False,
        **kwargs,
    ):
        super().__init__(name=name, merge_fragmented_spans=True, **kwargs)
        self.resolve_parts_of_same = resolve_parts_of_same


class SciArg(BratBuilder):
    BASE_DATASET_PATH = "DFKI-SLT/brat"
    BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1"

    # Overwrite the default config to merge the span fragments.
    # The span fragments in SciArg come just from the new line splits, so we can merge them.
    # Actual span fragments are annotated via "parts_of_same" relations.
    BUILDER_CONFIGS = [
        SciArgConfig(name=BratBuilder.DEFAULT_CONFIG_NAME),
        SciArgConfig(name="resolve_parts_of_same", resolve_parts_of_same=True),
    ]
    DOCUMENT_TYPES = {
        BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans,
        "resolve_parts_of_same": BratDocument,
    }

    # we need to add None to the list of dataset variants to support the default dataset variant
    BASE_BUILDER_KWARGS_DICT = {
        dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
        for dataset_variant in ["default", "resolve_parts_of_same", None]
    }

    def _generate_document(self, example, **kwargs):
        document = super()._generate_document(example, **kwargs)
        if self.config.resolve_parts_of_same:
            document = SpansViaRelationMerger(
                relation_layer="relations",
                link_relation_label="parts_of_same",
                create_multi_spans=True,
                result_document_type=BratDocument,
                result_field_mapping={"spans": "spans", "relations": "relations"},
            )(document)
        else:
            # some documents have duplicate relations, remove them
            remove_duplicate_relations(document)

        return document

    @property
    def document_converters(self) -> DocumentConvertersType:
        regex_partitioner = RegexPartitioner(
            partition_layer_name="labeled_partitions",
            pattern="<([^>/]+)>.*</\\1>",
            label_group_id=1,
            label_whitelist=["Title", "Abstract", "H1"],
            skip_initial_partition=True,
            strip_whitespace=True,
        )
        if not self.config.resolve_parts_of_same:
            return {
                TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
                    **get_common_converter_pipeline_steps(
                        TextDocumentWithLabeledSpansAndBinaryRelations
                    )
                ),
                TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
                    **get_common_converter_pipeline_steps(
                        TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
                    ),
                    add_partitions=regex_partitioner,
                ),
            }
        else:
            return {
                #        TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
                #            **get_common_converter_pipeline_steps_with_resolve_parts_of_same(
                #                TextDocumentWithLabeledSpansAndBinaryRelations
                #            )
                #        ),
                #        TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
                #            **get_common_converter_pipeline_steps_with_resolve_parts_of_same(
                #                TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
                #            ),
                #            add_partitions=regex_partitioner,
                #        ),
                TextDocumentWithLabeledMultiSpansAndBinaryRelations: Pipeline(
                    **get_common_converter_pipeline_steps_with_resolve_parts_of_same(
                        TextDocumentWithLabeledMultiSpansAndBinaryRelations
                    )
                ),
                TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions: Pipeline(
                    **get_common_converter_pipeline_steps_with_resolve_parts_of_same(
                        TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
                    ),
                    add_partitions=regex_partitioner,
                ),
            }