Datasets:
Tasks:
Image-to-Text
Formats:
parquet
Sub-tasks:
image-captioning
Languages:
English
Size:
100K - 1M
metadata
language:
- en
pretty_name: COCO2017
size_categories:
- 100K<n<1M
task_categories:
- image-to-text
task_ids:
- image-captioning
tags:
- coco
- image-captioning
dataset_info:
features:
- name: license
dtype: int64
- name: file_name
dtype: string
- name: coco_url
dtype: string
- name: height
dtype: int64
- name: width
dtype: int64
- name: date_captured
dtype: string
- name: flickr_url
dtype: string
- name: image_id
dtype: int64
- name: ids
sequence: int64
- name: captions
sequence: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 63908074
num_examples: 118287
- name: validation
num_bytes: 2679731
num_examples: 5000
download_size: 30187361
dataset_size: 66587805
coco2017
Image-text pairs from MS COCO2017.
Data origin
- Data originates from cocodataset.org
- While
coco-karpathy
uses a dense format (with several sentences and sendids per row),coco-karpathy-long
uses a long format with onesentence
(aka caption) andsendid
per row.coco-karpathy-long
uses the first five sentences and therefore is five times as long ascoco-karpathy
.phiyodr/coco2017
: One row corresponds one image with several sentences.phiyodr/coco2017-long
: One row correspond one sentence (aka caption). There are 5 rows (sometimes more) with the same image details.
Format
DatasetDict({
train: Dataset({
features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'],
num_rows: 118287
})
validation: Dataset({
features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'],
num_rows: 5000
})
})
Usage
- Download image data and unzip
cd PATH_TO_IMAGE_FOLDER
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
#wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip # zip not needed: everything you need is in load_dataset("phiyodr/coco2017")
unzip train2017.zip
unzip val2017.zip
- Load dataset in Python
import os
from datasets import load_dataset
PATH_TO_IMAGE_FOLDER = "COCO2017"
def create_full_path(example):
"""Create full path to image using `base_path` to COCO2017 folder."""
example["image_path"] = os.path.join(PATH_TO_IMAGE_FOLDER, example["filepath"], example["filename"])
return example
dataset = load_dataset("phiyodr/coco2017")
dataset = dataset.map(create_full_path)