Datasets:
ArXiv:
License:
File size: 8,821 Bytes
e44b64b 5b6c9ca e44b64b 5b6c9ca e44b64b 5b6c9ca e44b64b 5b6c9ca e44b64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
from enum import Enum
from typing import List
import datasets
import pandas as pd
from datasets import Features, Value, Array2D, Sequence, SplitGenerator, Split
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {philipphager/baidu-ultr_baidu-mlm-ctr},
author={Philipp Hager, Romain Deffayet},
year={2023}
}
"""
_DESCRIPTION = """\
Query-document vectors and clicks for a subset of the Baidu Unbiased Learning to Rank
dataset: https://arxiv.org/abs/2207.03051
This dataset uses the BERT cross-encoder with 12 layers from Baidu released
in the official starter-kit to compute query-document vectors (768 dims):
https://github.com/ChuXiaokai/baidu_ultr_dataset/
We link the model checkpoint also under `model/`.
"""
_HOMEPAGE = "https://huggingface.co/datasets/philipphager/baidu-ultr_baidu-mlm-ctr/"
_LICENSE = "cc-by-nc-4.0"
_VERSION = "0.1.0"
class Config(str, Enum):
ANNOTATIONS = "annotations"
CLICKS = "clicks"
class BaiduUltrBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=Config.CLICKS,
version=VERSION,
description="Load train/val/test clicks from the Baidu ULTR dataset",
),
datasets.BuilderConfig(
name=Config.ANNOTATIONS,
version=VERSION,
description="Load expert annotations from the Baidu ULTR dataset",
),
]
CLICK_FEATURES = Features(
{
"query_id": Value("string"),
"query": Array2D((None, 128), "int32"),
"title": Array2D((None, 128), "int32"),
"abstract": Array2D((None, 128), "int32"),
"query_md5": Value("string"),
"url_md5": Sequence(Value("string")),
"text_md5": Sequence(Value("string")),
"query_document_embedding": Array2D((None, 768), "float16"),
"click": Sequence(Value("int32")),
"n": Value("int32"),
"position": Sequence(Value("int32")),
"media_type": Sequence(Value("int32")),
"displayed_time": Sequence(Value("float32")),
"serp_height": Sequence(Value("int32")),
"slipoff_count_after_click": Sequence(Value("int32")),
"bm25": Sequence(Value("float32")),
"title_bm25": Sequence(Value("float32")),
"abstract_bm25": Sequence(Value("float32")),
"tf_idf": Sequence(Value("float32")),
"tf": Sequence(Value("float32")),
"idf": Sequence(Value("float32")),
"ql_jelinek_mercer_short": Sequence(Value("float32")),
"ql_jelinek_mercer_long": Sequence(Value("float32")),
"ql_dirichlet": Sequence(Value("float32")),
"query_length": Sequence(Value("int32")),
"document_length": Sequence(Value("int32")),
"title_length": Sequence(Value("int32")),
"abstract_length": Sequence(Value("int32")),
}
)
ANNOTATION_FEATURES = Features(
{
"query_id": Value("string"),
"query": Array2D((None, 128), "int32"),
"title": Array2D((None, 128), "int32"),
"abstract": Array2D((None, 128), "int32"),
"query_md5": Value("string"),
"text_md5": Value("string"),
"query_document_embedding": Array2D((None, 768), "float16"),
"label": Sequence(Value("int32")),
"n": Value("int32"),
"frequency_bucket": Value("int32"),
"bm25": Sequence(Value("float32")),
"title_bm25": Sequence(Value("float32")),
"abstract_bm25": Sequence(Value("float32")),
"tf_idf": Sequence(Value("float32")),
"tf": Sequence(Value("float32")),
"idf": Sequence(Value("float32")),
"ql_jelinek_mercer_short": Sequence(Value("float32")),
"ql_jelinek_mercer_long": Sequence(Value("float32")),
"ql_dirichlet": Sequence(Value("float32")),
"query_length": Sequence(Value("int32")),
"document_length": Sequence(Value("int32")),
"title_length": Sequence(Value("int32")),
"abstract_length": Sequence(Value("int32")),
}
)
DEFAULT_CONFIG_NAME = Config.CLICKS
def _info(self):
if self.config.name == Config.CLICKS:
features = self.CLICK_FEATURES
elif self.config.name == Config.ANNOTATIONS:
features = self.ANNOTATION_FEATURES
else:
raise ValueError(
f"Config {self.config.name} must be in ['clicks', 'annotations']"
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name == Config.CLICKS:
train_files = self.download_clicks(dl_manager, parts=[1, 2, 3])
test_files = self.download_clicks(dl_manager, parts=[0])
query_columns = [
"query_id",
"query_md5",
]
agg_columns = [
"query_md5",
"url_md5",
"text_md5",
"position",
"click",
"query_document_embedding",
"media_type",
"displayed_time",
"serp_height",
"slipoff_count_after_click",
]
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"files": train_files,
"query_columns": query_columns,
"agg_columns": agg_columns,
},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"files": test_files,
"query_columns": query_columns,
"agg_columns": agg_columns,
},
),
]
elif self.config.name == Config.ANNOTATIONS:
test_files = dl_manager.download(["parts/validation.feather"])
query_columns = [
"query_id",
"query_md5",
"frequency_bucket",
]
agg_columns = [
"text_md5",
"label",
"query_document_embedding",
]
return [
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"files": test_files,
"query_columns": query_columns,
"agg_columns": agg_columns,
},
)
]
else:
raise ValueError("Config name must be in ['clicks', 'annotations']")
def download_clicks(self, dl_manager, parts: List[int], splits_per_part: int = 10):
urls = [
f"parts/part-{p}_split-{s}.feather"
for p in parts
for s in range(splits_per_part)
]
return dl_manager.download(urls)
def _generate_examples(
self,
files: List[str],
query_columns: List[str],
agg_columns: List[str],
):
"""
Reads dataset partitions and aggregates document features per query.
:param files: List of .feather files to load from disk.
:param query_columns: Columns with one value per query. E.g., query_id,
frequency bucket, etc.
:param agg_columns: Columns with one value per document that should be
aggregated per query. E.g., click, position, query_document_embeddings, etc.
:return:
"""
for file in files:
df = pd.read_feather(file)
current_query_id = None
sample_key = None
sample = None
for i in range(len(df)):
row = df.iloc[i]
if current_query_id != row["query_id"]:
if current_query_id is not None:
yield sample_key, sample
current_query_id = row["query_id"]
sample_key = f"{file}-{current_query_id}"
sample = {"n": 0}
for column in query_columns:
sample[column] = row[column]
for column in agg_columns:
sample[column] = []
for column in agg_columns:
sample[column].append(row[column])
sample["n"] += 1
yield sample_key, sample
|