File size: 1,868 Bytes
42b4c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c451a2
42b4c87
 
 
 
 
 
 
c87f1b7
42b4c87
 
 
 
 
 
 
 
 
 
1c451a2
42b4c87
 
 
 
 
 
 
 
 
 
 
 
 
1c451a2
42b4c87
 
 
1c451a2
42b4c87
 
 
 
 
 
1c451a2
42b4c87
1c451a2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""The BookCorpus dataset."""

import datasets
import os
import json

_DESCRIPTION = """\
Dataset of jira comments from different projects of Apache and more.
"""

_CITATION = """\
@InProceedings{Zhu_2015_ICCV,
    title = {Jira commentaries for MLM},
    author = {Filipp Abapolov},
    month = {Fubruary},
    year = {2023}
}
"""

_REPO = "https://huggingface.co/datasets/pheepa/jira-commentaries-mlm/resolve/main"
_URL = f"{_REPO}/data/jira-commentaries.tar.gz"


class JiraComments(datasets.GeneratorBasedBuilder):
    """JiraComments dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name='jira-commentaries-mlm',
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "comments": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            citation=_CITATION
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(data_dir, "train-all-jira-comments.txt")}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir, "test-all-jira-comments.txt")}
            )
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, 'r') as f:
            comments = f.read().split('\n')

        for i, comment in enumerate(comments):
            yield i, {'comments': comment}