fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
prodBinaryFanIsLimit (X Y : TopCat.{u}) : IsLimit (prodBinaryFan X Y) where lift := fun S : BinaryFan X Y => ofHom { toFun := fun s => (S.fst s, S.snd s) continuous_toFun := by continuity } fac := by rintro S (_ | _) <;> {dsimp; ext; rfl} uniq := by intro S m h ext x refine Prod.ext ?_ ?_ · specialize h ⟨WalkingPair.left⟩ apply_fun fun e => e x at h exact h · specialize h ⟨WalkingPair.right⟩ apply_fun fun e => e x at h exact h
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodBinaryFanIsLimit
The constructed binary fan is indeed a limit
prodIsoProd (X Y : TopCat.{u}) : X ⨯ Y ≅ TopCat.of (X × Y) := (limit.isLimit _).conePointUniqueUpToIso (prodBinaryFanIsLimit X Y) @[reassoc (attr := simp)]
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodIsoProd
The homeomorphism between `X ⨯ Y` and the set-theoretic product of `X` and `Y`, equipped with the product topology.
prodIsoProd_hom_fst (X Y : TopCat.{u}) : (prodIsoProd X Y).hom ≫ prodFst = Limits.prod.fst := by simp [← Iso.eq_inv_comp, prodIsoProd] rfl @[reassoc (attr := simp)]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodIsoProd_hom_fst
null
prodIsoProd_hom_snd (X Y : TopCat.{u}) : (prodIsoProd X Y).hom ≫ prodSnd = Limits.prod.snd := by simp [← Iso.eq_inv_comp, prodIsoProd] rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodIsoProd_hom_snd
null
prodIsoProd_hom_apply {X Y : TopCat.{u}} (x : ↑(X ⨯ Y)) : (prodIsoProd X Y).hom x = ((Limits.prod.fst : X ⨯ Y ⟶ _) x, (Limits.prod.snd : X ⨯ Y ⟶ _) x) := by ext · exact ConcreteCategory.congr_hom (prodIsoProd_hom_fst X Y) x · exact ConcreteCategory.congr_hom (prodIsoProd_hom_snd X Y) x @[reassoc (attr := simp), elementwise]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodIsoProd_hom_apply
null
prodIsoProd_inv_fst (X Y : TopCat.{u}) : (prodIsoProd X Y).inv ≫ Limits.prod.fst = prodFst := by simp [Iso.inv_comp_eq] @[reassoc (attr := simp), elementwise]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodIsoProd_inv_fst
null
prodIsoProd_inv_snd (X Y : TopCat.{u}) : (prodIsoProd X Y).inv ≫ Limits.prod.snd = prodSnd := by simp [Iso.inv_comp_eq]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodIsoProd_inv_snd
null
prod_topology {X Y : TopCat.{u}} : (X ⨯ Y).str = induced (Limits.prod.fst : X ⨯ Y ⟶ _) X.str ⊓ induced (Limits.prod.snd : X ⨯ Y ⟶ _) Y.str := by let homeo := homeoOfIso (prodIsoProd X Y) refine homeo.isInducing.eq_induced.trans ?_ change induced homeo (_ ⊓ _) = _ simp [induced_compose] rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prod_topology
null
range_prod_map {W X Y Z : TopCat.{u}} (f : W ⟶ Y) (g : X ⟶ Z) : Set.range (Limits.prod.map f g) = (Limits.prod.fst : Y ⨯ Z ⟶ _) ⁻¹' Set.range f ∩ (Limits.prod.snd : Y ⨯ Z ⟶ _) ⁻¹' Set.range g := by ext x constructor · rintro ⟨y, rfl⟩ simp_rw [Set.mem_inter_iff, Set.mem_preimage, Set.mem_range, ← ConcreteCategory.comp_apply, Limits.prod.map_fst, Limits.prod.map_snd, ConcreteCategory.comp_apply, exists_apply_eq_apply, and_self_iff] · rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩⟩ use (prodIsoProd W X).inv (x₁, x₂) apply Concrete.limit_ext rintro ⟨⟨⟩⟩ · rw [← ConcreteCategory.comp_apply] erw [Limits.prod.map_fst] rw [ConcreteCategory.comp_apply, TopCat.prodIsoProd_inv_fst_apply] exact hx₁ · rw [← ConcreteCategory.comp_apply] erw [Limits.prod.map_snd] rw [ConcreteCategory.comp_apply, TopCat.prodIsoProd_inv_snd_apply] exact hx₂
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
range_prod_map
null
isInducing_prodMap {W X Y Z : TopCat.{u}} {f : W ⟶ X} {g : Y ⟶ Z} (hf : IsInducing f) (hg : IsInducing g) : IsInducing (Limits.prod.map f g) := by constructor simp_rw [prod_topology, induced_inf, induced_compose, ← coe_comp, prod.map_fst, prod.map_snd, coe_comp, ← induced_compose (g := f), ← induced_compose (g := g)] rw [← hf.eq_induced, ← hg.eq_induced]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
isInducing_prodMap
null
isEmbedding_prodMap {W X Y Z : TopCat.{u}} {f : W ⟶ X} {g : Y ⟶ Z} (hf : IsEmbedding f) (hg : IsEmbedding g) : IsEmbedding (Limits.prod.map f g) := ⟨isInducing_prodMap hf.isInducing hg.isInducing, by haveI := (TopCat.mono_iff_injective _).mpr hf.injective haveI := (TopCat.mono_iff_injective _).mpr hg.injective exact (TopCat.mono_iff_injective _).mp inferInstance⟩
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
isEmbedding_prodMap
null
protected binaryCofan (X Y : TopCat.{u}) : BinaryCofan X Y := BinaryCofan.mk (ofHom ⟨Sum.inl, by continuity⟩) (ofHom ⟨Sum.inr, by continuity⟩)
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
binaryCofan
The binary coproduct cofan in `TopCat`.
binaryCofanIsColimit (X Y : TopCat.{u}) : IsColimit (TopCat.binaryCofan X Y) := by refine Limits.BinaryCofan.isColimitMk (fun s => ofHom { toFun := Sum.elim s.inl s.inr, continuous_toFun := ?_ }) ?_ ?_ ?_ · continuity · intro s ext rfl · intro s ext rfl · intro s m h₁ h₂ ext (x | x) exacts [ConcreteCategory.congr_hom h₁ x, ConcreteCategory.congr_hom h₂ x]
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
binaryCofanIsColimit
The constructed binary coproduct cofan in `TopCat` is the coproduct.
binaryCofan_isColimit_iff {X Y : TopCat} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ IsOpenEmbedding c.inl ∧ IsOpenEmbedding c.inr ∧ IsCompl (range c.inl) (range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCofanIsColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCofanIsColimit X Y) ⟨WalkingPair.right⟩] dsimp refine ⟨(homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.isOpenEmbedding.comp .inl, (homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.isOpenEmbedding.comp .inr, ?_⟩ rw [Set.range_comp, ← eq_compl_iff_isCompl] conv_rhs => rw [Set.range_comp] erw [← Set.image_compl_eq (homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.bijective, Set.compl_range_inr, Set.image_comp] · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine ⟨BinaryCofan.IsColimit.mk _ ?_ ?_ ?_ ?_⟩ · intro T f g refine ofHom (ContinuousMap.mk ?_ ?_) · exact fun x => if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁.injective).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂.injective).symm ⟨x, (this x).resolve_left h⟩) rw [continuous_iff_continuousAt] intro x by_cases h : x ∈ Set.range c.inl · revert h x apply (IsOpen.continuousOn_iff _).mp · rw [continuousOn_iff_continuous_restrict] convert_to Continuous (f ∘ h₁.isEmbedding.toHomeomorph.symm) · ext ⟨x, hx⟩ exact dif_pos hx continuity · exact h₁.isOpen_range · revert h x apply (IsOpen.continuousOn_iff _).mp · rw [continuousOn_iff_continuous_restrict] have : ∀ a, a ∉ Set.range c.inl → a ∈ Set.range c.inr := by rintro a (h : a ∈ (Set.range c.inl)ᶜ) rwa [eq_compl_iff_isCompl.mpr h₃.symm] convert_to Continuous (g ∘ h₂.isEmbedding.toHomeomorph.symm ∘ Subtype.map _ this) · ext ⟨x, hx⟩ exact dif_neg hx apply Continuous.comp ...
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
binaryCofan_isColimit_iff
null
pullbackFst (f : X ⟶ Z) (g : Y ⟶ Z) : TopCat.of { p : X × Y // f p.1 = g p.2 } ⟶ X := ofHom ⟨Prod.fst ∘ Subtype.val, by fun_prop⟩
abbrev
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackFst
The first projection from the pullback.
pullbackFst_apply (f : X ⟶ Z) (g : Y ⟶ Z) (x) : pullbackFst f g x = x.1.1 := rfl
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackFst_apply
null
pullbackSnd (f : X ⟶ Z) (g : Y ⟶ Z) : TopCat.of { p : X × Y // f p.1 = g p.2 } ⟶ Y := ofHom ⟨Prod.snd ∘ Subtype.val, by fun_prop⟩
abbrev
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackSnd
The second projection from the pullback.
pullbackSnd_apply (f : X ⟶ Z) (g : Y ⟶ Z) (x) : pullbackSnd f g x = x.1.2 := rfl
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackSnd_apply
null
pullbackCone (f : X ⟶ Z) (g : Y ⟶ Z) : PullbackCone f g := PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (by dsimp [pullbackFst, pullbackSnd, Function.comp_def] ext ⟨x, h⟩ simpa)
def
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackCone
The explicit pullback cone of `X, Y` given by `{ p : X × Y // f p.1 = g p.2 }`.
pullbackConeIsLimit (f : X ⟶ Z) (g : Y ⟶ Z) : IsLimit (pullbackCone f g) := PullbackCone.isLimitAux' _ (by intro S constructor; swap · exact ofHom { toFun := fun x => ⟨⟨S.fst x, S.snd x⟩, by simpa using ConcreteCategory.congr_hom S.condition x⟩ continuous_toFun := by fun_prop } refine ⟨?_, ?_, ?_⟩ · delta pullbackCone ext a dsimp · delta pullbackCone ext a dsimp · intro m h₁ h₂ ext x apply Subtype.ext apply Prod.ext · simpa using ConcreteCategory.congr_hom h₁ x · simpa using ConcreteCategory.congr_hom h₂ x)
def
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackConeIsLimit
The constructed cone is a limit.
pullbackIsoProdSubtype (f : X ⟶ Z) (g : Y ⟶ Z) : pullback f g ≅ TopCat.of { p : X × Y // f p.1 = g p.2 } := (limit.isLimit _).conePointUniqueUpToIso (pullbackConeIsLimit f g) @[reassoc (attr := simp)]
def
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype
The pullback of two maps can be identified as a subspace of `X × Y`.
pullbackIsoProdSubtype_inv_fst (f : X ⟶ Z) (g : Y ⟶ Z) : (pullbackIsoProdSubtype f g).inv ≫ pullback.fst _ _ = pullbackFst f g := by simp [pullbackCone, pullbackIsoProdSubtype]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_inv_fst
null
pullbackIsoProdSubtype_inv_fst_apply (f : X ⟶ Z) (g : Y ⟶ Z) (x : { p : X × Y // f p.1 = g p.2 }) : pullback.fst f g ((pullbackIsoProdSubtype f g).inv x) = (x : X × Y).fst := ConcreteCategory.congr_hom (pullbackIsoProdSubtype_inv_fst f g) x @[reassoc (attr := simp)]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_inv_fst_apply
null
pullbackIsoProdSubtype_inv_snd (f : X ⟶ Z) (g : Y ⟶ Z) : (pullbackIsoProdSubtype f g).inv ≫ pullback.snd _ _ = pullbackSnd f g := by simp [pullbackCone, pullbackIsoProdSubtype]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_inv_snd
null
pullbackIsoProdSubtype_inv_snd_apply (f : X ⟶ Z) (g : Y ⟶ Z) (x : { p : X × Y // f p.1 = g p.2 }) : pullback.snd f g ((pullbackIsoProdSubtype f g).inv x) = (x : X × Y).snd := ConcreteCategory.congr_hom (pullbackIsoProdSubtype_inv_snd f g) x
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_inv_snd_apply
null
pullbackIsoProdSubtype_hom_fst (f : X ⟶ Z) (g : Y ⟶ Z) : (pullbackIsoProdSubtype f g).hom ≫ pullbackFst f g = pullback.fst _ _ := by rw [← Iso.eq_inv_comp, pullbackIsoProdSubtype_inv_fst]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_hom_fst
null
pullbackIsoProdSubtype_hom_snd (f : X ⟶ Z) (g : Y ⟶ Z) : (pullbackIsoProdSubtype f g).hom ≫ pullbackSnd f g = pullback.snd _ _ := by rw [← Iso.eq_inv_comp, pullbackIsoProdSubtype_inv_snd]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_hom_snd
null
pullbackIsoProdSubtype_hom_apply {f : X ⟶ Z} {g : Y ⟶ Z} (x : ↑(pullback f g)) : (pullbackIsoProdSubtype f g).hom x = ⟨⟨pullback.fst f g x, pullback.snd f g x⟩, by simpa using CategoryTheory.congr_fun pullback.condition x⟩ := by apply Subtype.ext; apply Prod.ext exacts [ConcreteCategory.congr_hom (pullbackIsoProdSubtype_hom_fst f g) x, ConcreteCategory.congr_hom (pullbackIsoProdSubtype_hom_snd f g) x]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackIsoProdSubtype_hom_apply
null
pullback_topology {X Y Z : TopCat.{u}} (f : X ⟶ Z) (g : Y ⟶ Z) : (pullback f g).str = induced (pullback.fst f g) X.str ⊓ induced (pullback.snd f g) Y.str := by let homeo := homeoOfIso (pullbackIsoProdSubtype f g) refine homeo.isInducing.eq_induced.trans ?_ change induced homeo (induced _ ( (induced Prod.fst X.str) ⊓ (induced Prod.snd Y.str))) = _ simp only [induced_compose, induced_inf] rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_topology
null
range_pullback_to_prod {X Y Z : TopCat} (f : X ⟶ Z) (g : Y ⟶ Z) : Set.range (prod.lift (pullback.fst f g) (pullback.snd f g)) = { x | (Limits.prod.fst ≫ f) x = (Limits.prod.snd ≫ g) x } := by ext x constructor · rintro ⟨y, rfl⟩ simp only [← ConcreteCategory.comp_apply, Set.mem_setOf_eq] simp [pullback.condition] · rintro (h : f (_, _).1 = g (_, _).2) use (pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, h⟩ apply Concrete.limit_ext rintro ⟨⟨⟩⟩ <;> rw [← ConcreteCategory.comp_apply, ← ConcreteCategory.comp_apply, limit.lift_π] <;> cat_disch
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
range_pullback_to_prod
null
noncomputable pullbackHomeoPreimage {X Y Z : Type*} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (f : X → Z) (hf : Continuous f) (g : Y → Z) (hg : IsEmbedding g) : { p : X × Y // f p.1 = g p.2 } ≃ₜ f ⁻¹' Set.range g where toFun := fun x ↦ ⟨x.1.1, _, x.2.symm⟩ invFun := fun x ↦ ⟨⟨x.1, Exists.choose x.2⟩, (Exists.choose_spec x.2).symm⟩ left_inv := by intro x ext <;> dsimp apply hg.injective convert x.prop exact Exists.choose_spec (p := fun y ↦ g y = f (↑x : X × Y).1) _ continuous_toFun := by fun_prop continuous_invFun := by apply Continuous.subtype_mk refine continuous_subtype_val.prodMk <| hg.isInducing.continuous_iff.mpr ?_ convert hf.comp continuous_subtype_val ext x exact Exists.choose_spec x.2
def
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackHomeoPreimage
The pullback along an embedding is (isomorphic to) the preimage.
isInducing_pullback_to_prod {X Y Z : TopCat.{u}} (f : X ⟶ Z) (g : Y ⟶ Z) : IsInducing <| ⇑(prod.lift (pullback.fst f g) (pullback.snd f g)) := ⟨by simp [prod_topology, pullback_topology, induced_compose, ← coe_comp]⟩
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
isInducing_pullback_to_prod
null
isEmbedding_pullback_to_prod {X Y Z : TopCat.{u}} (f : X ⟶ Z) (g : Y ⟶ Z) : IsEmbedding <| ⇑(prod.lift (pullback.fst f g) (pullback.snd f g)) := ⟨isInducing_pullback_to_prod f g, (TopCat.mono_iff_injective _).mp inferInstance⟩
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
isEmbedding_pullback_to_prod
null
range_pullback_map {W X Y Z S T : TopCat} (f₁ : W ⟶ S) (f₂ : X ⟶ S) (g₁ : Y ⟶ T) (g₂ : Z ⟶ T) (i₁ : W ⟶ Y) (i₂ : X ⟶ Z) (i₃ : S ⟶ T) [H₃ : Mono i₃] (eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁) (eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂) : Set.range (pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) = (pullback.fst g₁ g₂) ⁻¹' Set.range i₁ ∩ (pullback.snd g₁ g₂) ⁻¹' Set.range i₂ := by ext constructor · rintro ⟨y, rfl⟩ simp only [Set.mem_inter_iff, Set.mem_preimage, Set.mem_range] rw [← ConcreteCategory.comp_apply, ← ConcreteCategory.comp_apply] simp only [limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app] exact ⟨exists_apply_eq_apply _ _, exists_apply_eq_apply _ _⟩ rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩⟩ have : f₁ x₁ = f₂ x₂ := by apply (TopCat.mono_iff_injective _).mp H₃ rw [← ConcreteCategory.comp_apply, eq₁, ← ConcreteCategory.comp_apply, eq₂, ConcreteCategory.comp_apply, ConcreteCategory.comp_apply, hx₁, hx₂, ← ConcreteCategory.comp_apply, pullback.condition, ConcreteCategory.comp_apply] use (pullbackIsoProdSubtype f₁ f₂).inv ⟨⟨x₁, x₂⟩, this⟩ apply Concrete.limit_ext rintro (_ | _ | _) <;> rw [← ConcreteCategory.comp_apply, ← ConcreteCategory.comp_apply] · simp [hx₁, ← limit.w _ WalkingCospan.Hom.inl] · simp [hx₁] · simp [hx₂]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
range_pullback_map
If the map `S ⟶ T` is mono, then there is a description of the image of `W ×ₛ X ⟶ Y ×ₜ Z`.
pullback_fst_range {X Y S : TopCat} (f : X ⟶ S) (g : Y ⟶ S) : Set.range (pullback.fst f g) = { x : X | ∃ y : Y, f x = g y } := by ext x constructor · rintro ⟨y, rfl⟩ use pullback.snd f g y exact CategoryTheory.congr_fun pullback.condition y · rintro ⟨y, eq⟩ use (TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨x, y⟩, eq⟩ rw [pullbackIsoProdSubtype_inv_fst_apply]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_fst_range
null
pullback_snd_range {X Y S : TopCat} (f : X ⟶ S) (g : Y ⟶ S) : Set.range (pullback.snd f g) = { y : Y | ∃ x : X, f x = g y } := by ext y constructor · rintro ⟨x, rfl⟩ use pullback.fst f g x exact CategoryTheory.congr_fun pullback.condition x · rintro ⟨x, eq⟩ use (TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨x, y⟩, eq⟩ rw [pullbackIsoProdSubtype_inv_snd_apply]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_snd_range
null
pullback_map_isEmbedding {W X Y Z S T : TopCat.{u}} (f₁ : W ⟶ S) (f₂ : X ⟶ S) (g₁ : Y ⟶ T) (g₂ : Z ⟶ T) {i₁ : W ⟶ Y} {i₂ : X ⟶ Z} (H₁ : IsEmbedding i₁) (H₂ : IsEmbedding i₂) (i₃ : S ⟶ T) (eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁) (eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂) : IsEmbedding (pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) := by refine .of_comp (ContinuousMap.continuous_toFun _) (show Continuous (prod.lift (pullback.fst g₁ g₂) (pullback.snd g₁ g₂)) from ContinuousMap.continuous_toFun _) ?_ suffices IsEmbedding (prod.lift (pullback.fst f₁ f₂) (pullback.snd f₁ f₂) ≫ Limits.prod.map i₁ i₂) by simpa [← coe_comp] using this rw [coe_comp] exact (isEmbedding_prodMap H₁ H₂).comp (isEmbedding_pullback_to_prod _ _)
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_map_isEmbedding
If there is a diagram where the morphisms `W ⟶ Y` and `X ⟶ Z` are embeddings, then the induced morphism `W ×ₛ X ⟶ Y ×ₜ Z` is also an embedding. ``` W ⟶ Y ↘ ↘ S ⟶ T ↗ ↗ X ⟶ Z ```
pullback_map_isOpenEmbedding {W X Y Z S T : TopCat.{u}} (f₁ : W ⟶ S) (f₂ : X ⟶ S) (g₁ : Y ⟶ T) (g₂ : Z ⟶ T) {i₁ : W ⟶ Y} {i₂ : X ⟶ Z} (H₁ : IsOpenEmbedding i₁) (H₂ : IsOpenEmbedding i₂) (i₃ : S ⟶ T) [H₃ : Mono i₃] (eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁) (eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂) : IsOpenEmbedding (pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) := by constructor · apply pullback_map_isEmbedding f₁ f₂ g₁ g₂ H₁.isEmbedding H₂.isEmbedding i₃ eq₁ eq₂ · rw [range_pullback_map] apply IsOpen.inter <;> apply Continuous.isOpen_preimage · apply ContinuousMap.continuous_toFun · exact H₁.isOpen_range · apply ContinuousMap.continuous_toFun · exact H₂.isOpen_range
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_map_isOpenEmbedding
If there is a diagram where the morphisms `W ⟶ Y` and `X ⟶ Z` are open embeddings, and `S ⟶ T` is mono, then the induced morphism `W ×ₛ X ⟶ Y ×ₜ Z` is also an open embedding. ``` W ⟶ Y ↘ ↘ S ⟶ T ↗ ↗ X ⟶ Z ```
snd_isEmbedding_of_left {X Y S : TopCat} {f : X ⟶ S} (H : IsEmbedding f) (g : Y ⟶ S) : IsEmbedding <| ⇑(pullback.snd f g) := by convert (homeoOfIso (asIso (pullback.snd (𝟙 S) g))).isEmbedding.comp (pullback_map_isEmbedding (i₂ := 𝟙 Y) f g (𝟙 S) g H (homeoOfIso (Iso.refl _)).isEmbedding (𝟙 _) rfl (by simp)) simp [homeoOfIso, ← coe_comp]
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
snd_isEmbedding_of_left
null
fst_isEmbedding_of_right {X Y S : TopCat} (f : X ⟶ S) {g : Y ⟶ S} (H : IsEmbedding g) : IsEmbedding <| ⇑(pullback.fst f g) := by convert (homeoOfIso (asIso (pullback.fst f (𝟙 S)))).isEmbedding.comp (pullback_map_isEmbedding (i₁ := 𝟙 X) f g f (𝟙 _) (homeoOfIso (Iso.refl _)).isEmbedding H (𝟙 _) rfl (by simp)) simp [homeoOfIso, ← coe_comp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
fst_isEmbedding_of_right
null
isEmbedding_of_pullback {X Y S : TopCat} {f : X ⟶ S} {g : Y ⟶ S} (H₁ : IsEmbedding f) (H₂ : IsEmbedding g) : IsEmbedding (limit.π (cospan f g) WalkingCospan.one) := by convert H₂.comp (snd_isEmbedding_of_left H₁ g) rw [← coe_comp, ← limit.w _ WalkingCospan.Hom.inr] rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
isEmbedding_of_pullback
null
snd_isOpenEmbedding_of_left {X Y S : TopCat} {f : X ⟶ S} (H : IsOpenEmbedding f) (g : Y ⟶ S) : IsOpenEmbedding <| ⇑(pullback.snd f g) := by convert (homeoOfIso (asIso (pullback.snd (𝟙 S) g))).isOpenEmbedding.comp (pullback_map_isOpenEmbedding (i₂ := 𝟙 Y) f g (𝟙 _) g H (homeoOfIso (Iso.refl _)).isOpenEmbedding (𝟙 _) rfl (by simp)) simp [homeoOfIso, ← coe_comp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
snd_isOpenEmbedding_of_left
null
fst_isOpenEmbedding_of_right {X Y S : TopCat} (f : X ⟶ S) {g : Y ⟶ S} (H : IsOpenEmbedding g) : IsOpenEmbedding <| ⇑(pullback.fst f g) := by convert (homeoOfIso (asIso (pullback.fst f (𝟙 S)))).isOpenEmbedding.comp (pullback_map_isOpenEmbedding (i₁ := 𝟙 X) f g f (𝟙 _) (homeoOfIso (Iso.refl _)).isOpenEmbedding H (𝟙 _) rfl (by simp)) simp [homeoOfIso, ← coe_comp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
fst_isOpenEmbedding_of_right
null
isOpenEmbedding_of_pullback {X Y S : TopCat} {f : X ⟶ S} {g : Y ⟶ S} (H₁ : IsOpenEmbedding f) (H₂ : IsOpenEmbedding g) : IsOpenEmbedding (limit.π (cospan f g) WalkingCospan.one) := by convert H₂.comp (snd_isOpenEmbedding_of_left H₁ g) rw [← coe_comp, ← limit.w _ WalkingCospan.Hom.inr] rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
isOpenEmbedding_of_pullback
If `X ⟶ S`, `Y ⟶ S` are open embeddings, then so is `X ×ₛ Y ⟶ S`.
fst_iso_of_right_embedding_range_subset {X Y S : TopCat} (f : X ⟶ S) {g : Y ⟶ S} (hg : IsEmbedding g) (H : Set.range f ⊆ Set.range g) : IsIso (pullback.fst f g) := by let esto : (pullback f g : TopCat) ≃ₜ X := (fst_isEmbedding_of_right f hg).toHomeomorph.trans { toFun := Subtype.val invFun := fun x => ⟨x, by rw [pullback_fst_range] exact ⟨_, (H (Set.mem_range_self x)).choose_spec.symm⟩⟩ } convert (isoOfHomeo esto).isIso_hom
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
fst_iso_of_right_embedding_range_subset
null
snd_iso_of_left_embedding_range_subset {X Y S : TopCat} {f : X ⟶ S} (hf : IsEmbedding f) (g : Y ⟶ S) (H : Set.range g ⊆ Set.range f) : IsIso (pullback.snd f g) := by let esto : (pullback f g : TopCat) ≃ₜ Y := (snd_isEmbedding_of_left hf g).toHomeomorph.trans { toFun := Subtype.val invFun := fun x => ⟨x, by rw [pullback_snd_range] exact ⟨_, (H (Set.mem_range_self x)).choose_spec⟩⟩ } convert (isoOfHomeo esto).isIso_hom
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
snd_iso_of_left_embedding_range_subset
null
pullback_snd_image_fst_preimage (f : X ⟶ Z) (g : Y ⟶ Z) (U : Set X) : (pullback.snd f g) '' ((pullback.fst f g) ⁻¹' U) = g ⁻¹' (f '' U) := by ext x constructor · rintro ⟨y, hy, rfl⟩ exact ⟨(pullback.fst f g) y, hy, CategoryTheory.congr_fun pullback.condition y⟩ · rintro ⟨y, hy, eq⟩ refine ⟨(TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, eq⟩, ?_, ?_⟩ · simp only [coe_of, Set.mem_preimage] convert hy rw [pullbackIsoProdSubtype_inv_fst_apply] · rw [pullbackIsoProdSubtype_inv_snd_apply]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_snd_image_fst_preimage
null
pullback_fst_image_snd_preimage (f : X ⟶ Z) (g : Y ⟶ Z) (U : Set Y) : (pullback.fst f g) '' ((pullback.snd f g) ⁻¹' U) = f ⁻¹' (g '' U) := by ext x constructor · rintro ⟨y, hy, rfl⟩ exact ⟨(pullback.snd f g) y, hy, (CategoryTheory.congr_fun pullback.condition y).symm⟩ · rintro ⟨y, hy, eq⟩ refine ⟨(TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, eq.symm⟩, ?_, ?_⟩ · simp only [coe_of, Set.mem_preimage] convert hy rw [pullbackIsoProdSubtype_inv_snd_apply] · rw [pullbackIsoProdSubtype_inv_fst_apply]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullback_fst_image_snd_preimage
null
isOpen_iff_of_isColimit_cofork (c : Cofork f g) (hc : IsColimit c) (U : Set c.pt) : IsOpen U ↔ IsOpen (c.π ⁻¹' U) := by rw [isOpen_iff_of_isColimit _ hc] constructor · intro h exact h .one · rintro h (_ | _) · rw [← c.w .left] exact Continuous.isOpen_preimage f.hom.continuous (c.π ⁻¹' U) h · exact h
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
isOpen_iff_of_isColimit_cofork
null
isQuotientMap_of_isColimit_cofork (c : Cofork f g) (hc : IsColimit c) : IsQuotientMap c.π := by rw [isQuotientMap_iff] constructor · simpa only [← epi_iff_surjective] using epi_of_isColimit_cofork hc · exact isOpen_iff_of_isColimit_cofork c hc
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
isQuotientMap_of_isColimit_cofork
null
coequalizer_isOpen_iff (U : Set ((coequalizer f g :) : Type u)) : IsOpen U ↔ IsOpen (coequalizer.π f g ⁻¹' U) := isOpen_iff_of_isColimit_cofork _ (coequalizerIsCoequalizer f g) _
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
coequalizer_isOpen_iff
null
OnePoint (X : Type*) := Option X
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
OnePoint
The OnePoint extension of an arbitrary topological space `X`
@[match_pattern] infty : OnePoint X := none @[inherit_doc] scoped notation "∞" => OnePoint.infty
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
infty
The repr uses the notation from the `OnePoint` locale. -/ instance [Repr X] : Repr (OnePoint X) := ⟨fun o _ => match o with | none => "∞" | some a => "↑" ++ repr a⟩ namespace OnePoint /-- The point at infinity
@[coe, match_pattern] some : X → OnePoint X := Option.some @[simp]
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
some
Coercion from `X` to `OnePoint X`.
some_eq_iff (x₁ x₂ : X) : (some x₁ = some x₂) ↔ (x₁ = x₂) := by rw [iff_eq_eq] exact Option.some.injEq x₁ x₂
lemma
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
some_eq_iff
null
infinite [Infinite X] : Infinite (OnePoint X) := inferInstanceAs (Infinite (Option X))
instance
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
infinite
null
coe_injective : Function.Injective ((↑) : X → OnePoint X) := Option.some_injective X @[norm_cast]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
coe_injective
null
coe_eq_coe {x y : X} : (x : OnePoint X) = y ↔ x = y := coe_injective.eq_iff @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
coe_eq_coe
null
coe_ne_infty (x : X) : (x : OnePoint X) ≠ ∞ := nofun @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
coe_ne_infty
null
infty_ne_coe (x : X) : ∞ ≠ (x : OnePoint X) := nofun
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
infty_ne_coe
null
@[elab_as_elim, induction_eliminator, cases_eliminator] protected rec {C : OnePoint X → Sort*} (infty : C ∞) (coe : ∀ x : X, C x) : ∀ z : OnePoint X, C z | ∞ => infty | (x : X) => coe x
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
rec
Recursor for `OnePoint` using the preferred forms `∞` and `↑x`.
@[inline] protected elim : OnePoint X → Y → (X → Y) → Y := Option.elim @[simp] theorem elim_infty (y : Y) (f : X → Y) : ∞.elim y f = y := rfl @[simp] theorem elim_some (y : Y) (f : X → Y) (x : X) : (some x).elim y f = f x := rfl
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
elim
An elimination principle for `OnePoint`.
isCompl_range_coe_infty : IsCompl (range ((↑) : X → OnePoint X)) {∞} := isCompl_range_some_none X
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isCompl_range_coe_infty
null
range_coe_union_infty : range ((↑) : X → OnePoint X) ∪ {∞} = univ := range_some_union_none X @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
range_coe_union_infty
null
insert_infty_range_coe : insert ∞ (range (@some X)) = univ := insert_none_range_some _ @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
insert_infty_range_coe
null
range_coe_inter_infty : range ((↑) : X → OnePoint X) ∩ {∞} = ∅ := range_some_inter_none X @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
range_coe_inter_infty
null
compl_range_coe : (range ((↑) : X → OnePoint X))ᶜ = {∞} := compl_range_some X
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
compl_range_coe
null
compl_infty : ({∞}ᶜ : Set (OnePoint X)) = range ((↑) : X → OnePoint X) := (@isCompl_range_coe_infty X).symm.compl_eq
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
compl_infty
null
compl_image_coe (s : Set X) : ((↑) '' s : Set (OnePoint X))ᶜ = (↑) '' sᶜ ∪ {∞} := by rw [coe_injective.compl_image_eq, compl_range_coe]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
compl_image_coe
null
ne_infty_iff_exists {x : OnePoint X} : x ≠ ∞ ↔ ∃ y : X, (y : OnePoint X) = x := by induction x using OnePoint.rec <;> simp
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
ne_infty_iff_exists
null
canLift : CanLift (OnePoint X) X (↑) fun x => x ≠ ∞ := WithTop.canLift
instance
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
canLift
null
notMem_range_coe_iff {x : OnePoint X} : x ∉ range some ↔ x = ∞ := by rw [← mem_compl_iff, compl_range_coe, mem_singleton_iff] @[deprecated (since := "2025-05-23")] alias not_mem_range_coe_iff := notMem_range_coe_iff
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
notMem_range_coe_iff
null
infty_notMem_range_coe : ∞ ∉ range ((↑) : X → OnePoint X) := notMem_range_coe_iff.2 rfl @[deprecated (since := "2025-05-23")] alias infty_not_mem_range_coe := infty_notMem_range_coe
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
infty_notMem_range_coe
null
infty_notMem_image_coe {s : Set X} : ∞ ∉ ((↑) : X → OnePoint X) '' s := notMem_subset (image_subset_range _ _) infty_notMem_range_coe @[deprecated (since := "2025-05-23")] alias infty_not_mem_image_coe := infty_notMem_image_coe @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
infty_notMem_image_coe
null
coe_preimage_infty : ((↑) : X → OnePoint X) ⁻¹' {∞} = ∅ := by ext simp
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
coe_preimage_infty
null
protected map (f : X → Y) : OnePoint X → OnePoint Y := Option.map f @[simp] theorem map_infty (f : X → Y) : OnePoint.map f ∞ = ∞ := rfl @[simp] theorem map_some (f : X → Y) (x : X) : (x : OnePoint X).map f = f x := rfl @[simp] theorem map_id : OnePoint.map (id : X → X) = id := Option.map_id
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
map
Extend a map `f : X → Y` to a map `OnePoint X → OnePoint Y` by sending infinity to infinity.
map_comp {Z : Type*} (f : Y → Z) (g : X → Y) : OnePoint.map (f ∘ g) = OnePoint.map f ∘ OnePoint.map g := (Option.map_comp_map _ _).symm /-!
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
map_comp
null
isOpen_def : IsOpen s ↔ (∞ ∈ s → IsCompact ((↑) ⁻¹' s : Set X)ᶜ) ∧ IsOpen ((↑) ⁻¹' s : Set X) := Iff.rfl
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_def
null
isOpen_iff_of_mem' (h : ∞ ∈ s) : IsOpen s ↔ IsCompact ((↑) ⁻¹' s : Set X)ᶜ ∧ IsOpen ((↑) ⁻¹' s : Set X) := by simp [isOpen_def, h]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_iff_of_mem'
null
isOpen_iff_of_mem (h : ∞ ∈ s) : IsOpen s ↔ IsClosed ((↑) ⁻¹' s : Set X)ᶜ ∧ IsCompact ((↑) ⁻¹' s : Set X)ᶜ := by simp only [isOpen_iff_of_mem' h, isClosed_compl_iff, and_comm]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_iff_of_mem
null
isOpen_iff_of_notMem (h : ∞ ∉ s) : IsOpen s ↔ IsOpen ((↑) ⁻¹' s : Set X) := by simp [isOpen_def, h] @[deprecated (since := "2025-05-23")] alias isOpen_iff_of_not_mem := isOpen_iff_of_notMem
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_iff_of_notMem
null
isClosed_iff_of_mem (h : ∞ ∈ s) : IsClosed s ↔ IsClosed ((↑) ⁻¹' s : Set X) := by have : ∞ ∉ sᶜ := fun H => H h rw [← isOpen_compl_iff, isOpen_iff_of_notMem this, ← isOpen_compl_iff, preimage_compl]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isClosed_iff_of_mem
null
isClosed_iff_of_notMem (h : ∞ ∉ s) : IsClosed s ↔ IsClosed ((↑) ⁻¹' s : Set X) ∧ IsCompact ((↑) ⁻¹' s : Set X) := by rw [← isOpen_compl_iff, isOpen_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl] @[deprecated (since := "2025-05-23")] alias isClosed_iff_of_not_mem := isClosed_iff_of_notMem @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isClosed_iff_of_notMem
null
isOpen_image_coe {s : Set X} : IsOpen ((↑) '' s : Set (OnePoint X)) ↔ IsOpen s := by rw [isOpen_iff_of_notMem infty_notMem_image_coe, preimage_image_eq _ coe_injective]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_image_coe
null
isOpen_compl_image_coe {s : Set X} : IsOpen ((↑) '' s : Set (OnePoint X))ᶜ ↔ IsClosed s ∧ IsCompact s := by rw [isOpen_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective] exact infty_notMem_image_coe @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_compl_image_coe
null
isClosed_image_coe {s : Set X} : IsClosed ((↑) '' s : Set (OnePoint X)) ↔ IsClosed s ∧ IsCompact s := by rw [← isOpen_compl_iff, isOpen_compl_image_coe]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isClosed_image_coe
null
opensOfCompl (s : Set X) (h₁ : IsClosed s) (h₂ : IsCompact s) : TopologicalSpace.Opens (OnePoint X) := ⟨((↑) '' s)ᶜ, isOpen_compl_image_coe.2 ⟨h₁, h₂⟩⟩
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
opensOfCompl
An open set in `OnePoint X` constructed from a closed compact set in `X`
infty_mem_opensOfCompl {s : Set X} (h₁ : IsClosed s) (h₂ : IsCompact s) : ∞ ∈ opensOfCompl s h₁ h₂ := mem_compl infty_notMem_image_coe @[continuity]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
infty_mem_opensOfCompl
null
continuous_coe : Continuous ((↑) : X → OnePoint X) := continuous_def.mpr fun _s hs => hs.right
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuous_coe
null
isOpenMap_coe : IsOpenMap ((↑) : X → OnePoint X) := fun _ => isOpen_image_coe.2
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpenMap_coe
null
isOpenEmbedding_coe : IsOpenEmbedding ((↑) : X → OnePoint X) := .of_continuous_injective_isOpenMap continuous_coe coe_injective isOpenMap_coe
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpenEmbedding_coe
null
isOpen_range_coe : IsOpen (range ((↑) : X → OnePoint X)) := isOpenEmbedding_coe.isOpen_range
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isOpen_range_coe
null
isClosed_infty : IsClosed ({∞} : Set (OnePoint X)) := by rw [← compl_range_coe, isClosed_compl_iff] exact isOpen_range_coe
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isClosed_infty
null
nhds_coe_eq (x : X) : 𝓝 ↑x = map ((↑) : X → OnePoint X) (𝓝 x) := (isOpenEmbedding_coe.map_nhds_eq x).symm
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhds_coe_eq
null
nhdsWithin_coe_image (s : Set X) (x : X) : 𝓝[(↑) '' s] (x : OnePoint X) = map (↑) (𝓝[s] x) := (isOpenEmbedding_coe.isEmbedding.map_nhdsWithin_eq _ _).symm
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhdsWithin_coe_image
null
nhdsWithin_coe (s : Set (OnePoint X)) (x : X) : 𝓝[s] ↑x = map (↑) (𝓝[(↑) ⁻¹' s] x) := (isOpenEmbedding_coe.map_nhdsWithin_preimage_eq _ _).symm
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhdsWithin_coe
null
comap_coe_nhds (x : X) : comap ((↑) : X → OnePoint X) (𝓝 x) = 𝓝 x := (isOpenEmbedding_coe.isInducing.nhds_eq_comap x).symm
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
comap_coe_nhds
null
nhdsNE_coe_neBot (x : X) [h : NeBot (𝓝[≠] x)] : NeBot (𝓝[≠] (x : OnePoint X)) := by simpa [nhdsWithin_coe, preimage, coe_eq_coe] using h.map some @[deprecated (since := "2025-03-02")] alias nhdsWithin_compl_coe_neBot := nhdsNE_coe_neBot
instance
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhdsNE_coe_neBot
If `x` is not an isolated point of `X`, then `x : OnePoint X` is not an isolated point of `OnePoint X`.
nhdsNE_infty_eq : 𝓝[≠] (∞ : OnePoint X) = map (↑) (coclosedCompact X) := by refine (nhdsWithin_basis_open ∞ _).ext (hasBasis_coclosedCompact.map _) ?_ ?_ · rintro s ⟨hs, hso⟩ refine ⟨_, (isOpen_iff_of_mem hs).mp hso, ?_⟩ simp · rintro s ⟨h₁, h₂⟩ refine ⟨_, ⟨mem_compl infty_notMem_image_coe, isOpen_compl_image_coe.2 ⟨h₁, h₂⟩⟩, ?_⟩ simp [compl_image_coe, ← diff_eq] @[deprecated (since := "2025-03-02")] alias nhdsWithin_compl_infty_eq := nhdsNE_infty_eq
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhdsNE_infty_eq
null
nhdsNE_infty_neBot [NoncompactSpace X] : NeBot (𝓝[≠] (∞ : OnePoint X)) := by rw [nhdsNE_infty_eq] infer_instance @[deprecated (since := "2025-03-02")] alias nhdsWithin_compl_infty_neBot := nhdsNE_infty_neBot
instance
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhdsNE_infty_neBot
If `X` is a non-compact space, then `∞` is not an isolated point of `OnePoint X`.