fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
sum_to_range : Set.range (sum_to C ho) = GoodProducts (π C (ord I · < o)) ∪ MaxProducts C ho := by have h : Set.range (sum_to C ho) = _ ∪ _ := Set.Sum.elim_range _ _; rw [h]; congr <;> ext l · exact ⟨fun ⟨m,hm⟩ ↦ by rw [← hm]; exact m.prop, fun hl ↦ ⟨⟨l,hl⟩, rfl⟩⟩ · exact ⟨fun ⟨m,hm⟩ ↦ by rw [← hm]; exact m.prop, fun hl ↦ ⟨⟨l,hl⟩, rfl⟩⟩
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
sum_to_range
null
noncomputable sum_equiv (hsC : contained C (Order.succ o)) (ho : o < Ordinal.type (· < · : I → I → Prop)) : GoodProducts (π C (ord I · < o)) ⊕ (MaxProducts C ho) ≃ GoodProducts C := calc _ ≃ Set.range (sum_to C ho) := Equiv.ofInjective (sum_to C ho) (injective_sum_to C ho) _ ≃ _ := Equiv.setCongr <| by rw [sum_to_range C ho, union_succ C hsC ho]
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
sum_equiv
The equivalence from the sum of `GoodProducts (π C (ord I · < o))` and `(MaxProducts C ho)` to `GoodProducts C`.
sum_equiv_comp_eval_eq_elim : eval C ∘ (sum_equiv C hsC ho).toFun = (Sum.elim (fun (l : GoodProducts (π C (ord I · < o))) ↦ Products.eval C l.1) (fun (l : MaxProducts C ho) ↦ Products.eval C l.1)) := by ext ⟨_, _⟩ <;> [rfl; rfl]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
sum_equiv_comp_eval_eq_elim
null
SumEval : GoodProducts (π C (ord I · < o)) ⊕ MaxProducts C ho → LocallyConstant C ℤ := Sum.elim (fun l ↦ l.1.eval C) (fun l ↦ l.1.eval C) include hsC in
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
SumEval
Let `N := LocallyConstant (π C (ord I · < o)) ℤ` `M := LocallyConstant C ℤ` `P := LocallyConstant (C' C ho) ℤ` `ι := GoodProducts (π C (ord I · < o))` `ι' := GoodProducts (C' C ho')` `v : ι → N := GoodProducts.eval (π C (ord I · < o))` Then `SumEval C ho` is the map `u` in the diagram below. It is linearly independent if and only if `GoodProducts.eval C` is, see `linearIndependent_iff_sum`. The top row is the exact sequence given by `succ_exact` and `succ_mono`. The left square commutes by `GoodProducts.square_commutes`. ``` 0 --→ N --→ M --→ P ↑ ↑ ↑ v| u| | ι → ι ⊕ ι' ← ι' ```
linearIndependent_iff_sum : LinearIndependent ℤ (eval C) ↔ LinearIndependent ℤ (SumEval C ho) := by rw [← linearIndependent_equiv (sum_equiv C hsC ho), SumEval, ← sum_equiv_comp_eval_eq_elim C hsC ho] exact Iff.rfl include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
linearIndependent_iff_sum
null
span_sum : Set.range (eval C) = Set.range (Sum.elim (fun (l : GoodProducts (π C (ord I · < o))) ↦ Products.eval C l.1) (fun (l : MaxProducts C ho) ↦ Products.eval C l.1)) := by rw [← sum_equiv_comp_eval_eq_elim C hsC ho, Equiv.toFun_as_coe, EquivLike.range_comp (e := sum_equiv C hsC ho)]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
span_sum
null
square_commutes : SumEval C ho ∘ Sum.inl = ModuleCat.ofHom (πs C o) ∘ eval (π C (ord I · < o)) := by ext l dsimp [SumEval] rw [← Products.eval_πs C (Products.prop_of_isGood _ _ l.prop)] simp [eval]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
square_commutes
null
swapTrue_eq_true (x : I → Bool) : SwapTrue o x (term I ho) = true := by simp only [SwapTrue, ord_term_aux, ite_true]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
swapTrue_eq_true
null
mem_C'_eq_false : ∀ x, x ∈ C' C ho → x (term I ho) = false := by rintro x ⟨_, y, _, rfl⟩ simp only [Proj, ord_term_aux, lt_self_iff_false, ite_false]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
mem_C'_eq_false
null
Products.Tail (l : Products I) : Products I := ⟨l.val.tail, List.IsChain.tail l.prop⟩
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Products.Tail
`List.tail` as a `Products`.
Products.max_eq_o_cons_tail [Inhabited I] (l : Products I) (hl : l.val ≠ []) (hlh : l.val.head! = term I ho) : l.val = term I ho :: l.Tail.val := by rw [← List.cons_head!_tail hl, hlh] simp [Tail]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Products.max_eq_o_cons_tail
null
Products.max_eq_o_cons_tail' [Inhabited I] (l : Products I) (hl : l.val ≠ []) (hlh : l.val.head! = term I ho) (hlc : List.IsChain (· > ·) (term I ho :: l.Tail.val)) : l = ⟨term I ho :: l.Tail.val, hlc⟩ := by simp_rw [← max_eq_o_cons_tail ho l hl hlh, Subtype.coe_eta] include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Products.max_eq_o_cons_tail'
null
GoodProducts.head!_eq_o_of_maxProducts [Inhabited I] (l : ↑(MaxProducts C ho)) : l.val.val.head! = term I ho := by rw [eq_comm, ← ord_term ho] have hm := l.prop.2 have := Products.prop_of_isGood_of_contained C _ l.prop.1 hsC l.val.val.head! (List.head!_mem_self (List.ne_nil_of_mem hm)) simp only [Order.lt_succ_iff] at this refine eq_of_le_of_not_lt this (not_lt.mpr ?_) have h : ord I (term I ho) ≤ ord I l.val.val.head! := by simp only [ord, Ordinal.typein_le_typein, not_lt] exact Products.rel_head!_of_mem hm rwa [ord_term_aux] at h include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
GoodProducts.head
null
GoodProducts.max_eq_o_cons_tail (l : MaxProducts C ho) : l.val.val = (term I ho) :: l.val.Tail.val := have : Inhabited I := ⟨term I ho⟩ Products.max_eq_o_cons_tail ho l.val (List.ne_nil_of_mem l.prop.2) (head!_eq_o_of_maxProducts _ hsC ho l)
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
GoodProducts.max_eq_o_cons_tail
null
Products.evalCons {I} [LinearOrder I] {C : Set (I → Bool)} {l : List I} {a : I} (hla : (a::l).IsChain (· > ·)) : Products.eval C ⟨a::l,hla⟩ = (e C a) * Products.eval C ⟨l,List.IsChain.sublist hla (List.tail_sublist (a::l))⟩ := by simp only [eval.eq_1, List.map, List.prod_cons]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Products.evalCons
null
Products.max_eq_eval [Inhabited I] (l : Products I) (hl : l.val ≠ []) (hlh : l.val.head! = term I ho) : Linear_CC' C hsC ho (l.eval C) = l.Tail.eval (C' C ho) := by have hlc : ((term I ho) :: l.Tail.val).IsChain (· > ·) := by rw [← max_eq_o_cons_tail ho l hl hlh]; exact l.prop rw [max_eq_o_cons_tail' ho l hl hlh hlc, Products.evalCons] ext x simp only [Linear_CC', Linear_CC'₁, LocallyConstant.comapₗ, Linear_CC'₀, Subtype.coe_eta, LinearMap.sub_apply, LinearMap.coe_mk, AddHom.coe_mk, LocallyConstant.sub_apply, LocallyConstant.coe_comap, LocallyConstant.coe_mul, ContinuousMap.coe_mk, Function.comp_apply, Pi.mul_apply] rw [CC'₁, CC'₀, Products.eval_eq, Products.eval_eq, Products.eval_eq] simp only [mul_ite, mul_one, mul_zero] have hi' : ∀ i, i ∈ l.Tail.val → (x.val i = SwapTrue o x.val i) := by intro i hi simp only [SwapTrue, @eq_comm _ (x.val i), ite_eq_right_iff, ord_term ho] rintro rfl exact ((List.IsChain.rel_cons hlc hi).ne rfl).elim have H : (∀ i, i ∈ l.Tail.val → (x.val i = true)) = (∀ i, i ∈ l.Tail.val → (SwapTrue o x.val i = true)) := by apply forall_congr; intro i; apply forall_congr; intro hi; rw [hi' i hi] simp only [H] split_ifs with h₁ h₂ h₃ <;> try (dsimp [e]) · rw [if_pos (swapTrue_eq_true _ _), if_neg] · rfl · simp [mem_C'_eq_false C ho x x.prop] · push_neg at h₂; obtain ⟨i, hi⟩ := h₂; exfalso; rw [hi' i hi.1] at hi; exact hi.2 (h₁ i hi.1) · push_neg at h₁; obtain ⟨i, hi⟩ := h₁; exfalso; rw [← hi' i hi.1] at hi; exact hi.2 (h₃ i hi.1)
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Products.max_eq_eval
null
max_eq_eval (l : MaxProducts C ho) : Linear_CC' C hsC ho (l.val.eval C) = l.val.Tail.eval (C' C ho) := have : Inhabited I := ⟨term I ho⟩ Products.max_eq_eval _ _ _ _ (List.ne_nil_of_mem l.prop.2) (head!_eq_o_of_maxProducts _ hsC ho l)
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
max_eq_eval
null
max_eq_eval_unapply : (Linear_CC' C hsC ho) ∘ (fun (l : MaxProducts C ho) ↦ Products.eval C l.val) = (fun l ↦ l.val.Tail.eval (C' C ho)) := by ext1 l exact max_eq_eval _ _ _ _ include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
max_eq_eval_unapply
null
isChain_cons_of_lt (l : MaxProducts C ho) (q : Products I) (hq : q < l.val.Tail) : List.IsChain (fun x x_1 ↦ x > x_1) (term I ho :: q.val) := by have : Inhabited I := ⟨term I ho⟩ rw [List.isChain_iff_pairwise] simp only [gt_iff_lt, List.pairwise_cons] refine ⟨fun a ha ↦ lt_of_le_of_lt (Products.rel_head!_of_mem ha) ?_, List.isChain_iff_pairwise.mp q.prop⟩ refine lt_of_le_of_lt (Products.head!_le_of_lt hq (q.val.ne_nil_of_mem ha)) ?_ by_cases hM : l.val.Tail.val = [] · rw [Products.lt_iff_lex_lt, hM] at hq simp only [List.not_lex_nil] at hq · have := l.val.prop rw [max_eq_o_cons_tail C hsC ho l, List.isChain_iff_pairwise] at this exact List.rel_of_pairwise_cons this (List.head!_mem_self hM) @[deprecated (since := "2025-09-24")] alias chain'_cons_of_lt := isChain_cons_of_lt include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
isChain_cons_of_lt
null
good_lt_maxProducts (q : GoodProducts (π C (ord I · < o))) (l : MaxProducts C ho) : List.Lex (· < ·) q.val.val l.val.val := by have : Inhabited I := ⟨term I ho⟩ by_cases h : q.val.val = [] · rw [h, max_eq_o_cons_tail C hsC ho l] exact List.Lex.nil · rw [← List.cons_head!_tail h, max_eq_o_cons_tail C hsC ho l] apply List.Lex.rel rw [← Ordinal.typein_lt_typein (· < ·)] simp only [term, Ordinal.typein_enum] exact Products.prop_of_isGood C _ q.prop q.val.val.head! (List.head!_mem_self h) include hC hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
good_lt_maxProducts
null
maxTail_isGood (l : MaxProducts C ho) (h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (ord I · < o))))) : l.val.Tail.isGood (C' C ho) := by have : Inhabited I := ⟨term I ho⟩ intro h rw [Finsupp.mem_span_image_iff_linearCombination, ← max_eq_eval C hsC ho] at h obtain ⟨m, ⟨hmmem, hmsum⟩⟩ := h rw [Finsupp.linearCombination_apply] at hmsum have : (Linear_CC' C hsC ho) (l.val.eval C) = (Linear_CC' C hsC ho) (Finsupp.sum m fun i a ↦ a • ((term I ho :: i.1).map (e C)).prod) := by rw [← hmsum] simp only [map_finsuppSum] apply Finsupp.sum_congr intro q hq rw [LinearMap.map_smul] rw [Finsupp.mem_supported] at hmmem have hx'' : q < l.val.Tail := hmmem hq have : ∃ (p : Products I), p.val ≠ [] ∧ p.val.head! = term I ho ∧ q = p.Tail := ⟨⟨term I ho :: q.val, isChain_cons_of_lt C hsC ho l q hx''⟩, ⟨List.cons_ne_nil _ _, by simp only [List.head!_cons], by simp only [Products.Tail, List.tail_cons, Subtype.coe_eta]⟩⟩ obtain ⟨p, hp⟩ := this rw [hp.2.2, ← Products.max_eq_eval C hsC ho p hp.1 hp.2.1] dsimp [Products.eval] rw [Products.max_eq_o_cons_tail ho p hp.1 hp.2.1, List.map_cons, List.prod_cons] have hse := succ_exact C hC hsC ho rw [ShortComplex.moduleCat_exact_iff_range_eq_ker] at hse dsimp [ModuleCat.ofHom] at hse rw [← LinearMap.sub_mem_ker_iff, ← hse] at this obtain ⟨(n : LocallyConstant (π C (ord I · < o)) ℤ), hn⟩ := this rw [eq_sub_iff_add_eq] at hn have hn' := h₁ (Submodule.mem_top : n ∈ ⊤) rw [Finsupp.mem_span_range_iff_exists_finsupp] at hn' obtain ⟨w,hc⟩ := hn' rw [← hc, map_finsuppSum] at hn apply l.prop.1 rw [← hn] apply Submodule.add_mem · apply Submodule.finsuppSum_mem intro q _ rw [LinearMap.map_smul] apply Submodule.smul_mem apply Submodule.subset_span dsimp only [eval] rw [Products.eval_πs C (Products.prop_of_isGood _ _ q.prop)] refine ⟨q.val, ⟨?_, rfl⟩⟩ simp only [Products.lt_iff_lex_lt, Set.mem_setOf_eq] exact good_lt_maxProducts C hsC ho q l · apply Submodule.finsuppSum_mem intro q hq apply Submodule.smul_mem ...
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
maxTail_isGood
Removing the leading `o` from a term of `MaxProducts C` yields a list which `isGood` with respect to `C'`.
noncomputable MaxToGood (h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (ord I · < o))))) : MaxProducts C ho → GoodProducts (C' C ho) := fun l ↦ ⟨l.val.Tail, maxTail_isGood C hC hsC ho l h₁⟩
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
MaxToGood
Given `l : MaxProducts C ho`, its `Tail` is a `GoodProducts (C' C ho)`.
maxToGood_injective (h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (ord I · < o))))) : (MaxToGood C hC hsC ho h₁).Injective := by intro m n h apply Subtype.ext ∘ Subtype.ext rw [Subtype.ext_iff] at h dsimp [MaxToGood] at h rw [max_eq_o_cons_tail C hsC ho m, max_eq_o_cons_tail C hsC ho n, h] include hC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
maxToGood_injective
null
linearIndependent_comp_of_eval (h₁ : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (ord I · < o))))) : LinearIndependent ℤ (eval (C' C ho)) → LinearIndependent ℤ (ModuleCat.ofHom (Linear_CC' C hsC ho) ∘ SumEval C ho ∘ Sum.inr) := by dsimp [SumEval, ModuleCat.ofHom] rw [max_eq_eval_unapply C hsC ho] intro h let f := MaxToGood C hC hsC ho h₁ have hf : f.Injective := maxToGood_injective C hC hsC ho h₁ have hh : (fun l ↦ Products.eval (C' C ho) l.val.Tail) = eval (C' C ho) ∘ f := rfl rw [hh] exact h.comp f hf
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
linearIndependent_comp_of_eval
null
GoodProducts.linearIndependentEmpty {I} [LinearOrder I] : LinearIndependent ℤ (eval (∅ : Set (I → Bool))) := linearIndependent_empty_type
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
GoodProducts.linearIndependentEmpty
null
Products.nil : Products I := ⟨[], by simp only [List.isChain_nil]⟩
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
Products.nil
The empty list as a `Products`
Products.lt_nil_empty {I} [LinearOrder I] : { m : Products I | m < Products.nil } = ∅ := by ext ⟨m, hm⟩ refine ⟨fun h ↦ ?_, by tauto⟩ simp only [Set.mem_setOf_eq, lt_iff_lex_lt, nil, List.not_lex_nil] at h
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
Products.lt_nil_empty
null
Products.isGood_nil {I} [LinearOrder I] : Products.isGood ({fun _ ↦ false} : Set (I → Bool)) Products.nil := by intro h simp [Products.eval, Products.nil] at h
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
Products.isGood_nil
null
Products.span_nil_eq_top {I} [LinearOrder I] : Submodule.span ℤ (eval ({fun _ ↦ false} : Set (I → Bool)) '' {nil}) = ⊤ := by rw [Set.image_singleton, eq_top_iff] intro f _ rw [Submodule.mem_span_singleton] refine ⟨f default, ?_⟩ simp only [eval, List.map, List.prod_nil, zsmul_eq_mul, mul_one, Products.nil] ext x obtain rfl : x = default := by simp only [Set.default_coe_singleton, eq_iff_true_of_subsingleton] rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
Products.span_nil_eq_top
null
smaller (o : Ordinal) : Set (LocallyConstant C ℤ) := (πs C o) '' (range (π C (ord I · < o)))
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
smaller
There is a unique `GoodProducts` for the singleton `{fun _ ↦ false}`. -/ noncomputable instance : Unique { l // Products.isGood ({fun _ ↦ false} : Set (I → Bool)) l } where default := ⟨Products.nil, Products.isGood_nil⟩ uniq := by intro ⟨⟨l, hl⟩, hll⟩ ext apply Subtype.ext apply (List.lex_nil_or_eq_nil l (r := (· < ·))).resolve_left intro _ apply hll have he : {Products.nil} ⊆ {m | m < ⟨l,hl⟩} := by simpa only [Products.nil, Products.lt_iff_lex_lt, Set.singleton_subset_iff, Set.mem_setOf_eq] grw [← he] rw [Products.span_nil_eq_top] exact Submodule.mem_top instance (α : Type*) [TopologicalSpace α] : NoZeroSMulDivisors ℤ (LocallyConstant α ℤ) := by constructor intro c f h rw [or_iff_not_imp_left] intro hc ext x apply mul_right_injective₀ hc simp [LocallyConstant.ext_iff] at h simpa [LocallyConstant.ext_iff] using h x theorem GoodProducts.linearIndependentSingleton {I} [LinearOrder I] : LinearIndependent ℤ (eval ({fun _ ↦ false} : Set (I → Bool))) := by refine linearIndependent_unique (eval ({fun _ ↦ false} : Set (I → Bool))) ?_ simp [eval, Products.eval, Products.nil, default] end Zero variable [WellFoundedLT I] section Limit /-! ## The limit case of the induction We relate linear independence in `LocallyConstant (π C (ord I · < o')) ℤ` with linear independence in `LocallyConstant C ℤ`, where `contained C o` and `o' < o`. When `o` is a limit ordinal, we prove that the good products in `LocallyConstant C ℤ` are linearly independent if and only if a certain directed union is linearly independent. Each term in this directed union is in bijection with the good products w.r.t. `π C (ord I · < o')` for an ordinal `o' < o`, and these are linearly independent by the inductive hypothesis. ### Main definitions * `GoodProducts.smaller` is the image of good products coming from a smaller ordinal. * `GoodProducts.range_equiv`: The image of the `GoodProducts` in `C` is equivalent to the union of `smaller C o'` over all ordinals `o' < o`. ### Main results * `Products.limitOrdinal`: for `o` a limit ordinal such that `contained C o`, a product `l` is good w.r.t. `C` iff it there exists an ordinal `o' < o` such that `l` is good w.r.t. `π C (ord I · < o')`. * `GoodProducts.linearIndependent_iff_union_smaller` is the result mentioned above, that the good products are linearly independent iff a directed union is. -/ namespace GoodProducts /-- The image of the `GoodProducts` for `π C (ord I · < o)` in `LocallyConstant C ℤ`. The name `smaller` refers to the setting in which we will use this, when we are mapping in `GoodProducts` from a smaller set, i.e. when `o` is a smaller ordinal than the one `C` is "contained" in.
noncomputable range_equiv_smaller_toFun (o : Ordinal) (x : range (π C (ord I · < o))) : smaller C o := ⟨πs C o ↑x, x.val, x.property, rfl⟩
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
range_equiv_smaller_toFun
The map from the image of the `GoodProducts` in `LocallyConstant (π C (ord I · < o)) ℤ` to `smaller C o`
range_equiv_smaller_toFun_bijective (o : Ordinal) : Function.Bijective (range_equiv_smaller_toFun C o) := by dsimp +unfoldPartialApp [range_equiv_smaller_toFun] refine ⟨fun a b hab ↦ ?_, fun ⟨a, b, hb⟩ ↦ ?_⟩ · ext1 simp only [Subtype.mk.injEq] at hab exact injective_πs C o hab · use ⟨b, hb.1⟩ simpa only [Subtype.mk.injEq] using hb.2
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
range_equiv_smaller_toFun_bijective
null
noncomputable range_equiv_smaller (o : Ordinal) : range (π C (ord I · < o)) ≃ smaller C o := Equiv.ofBijective (range_equiv_smaller_toFun C o) (range_equiv_smaller_toFun_bijective C o)
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
range_equiv_smaller
The equivalence from the image of the `GoodProducts` in `LocallyConstant (π C (ord I · < o)) ℤ` to `smaller C o`
smaller_factorization (o : Ordinal) : (fun (p : smaller C o) ↦ p.1) ∘ (range_equiv_smaller C o).toFun = (πs C o) ∘ (fun (p : range (π C (ord I · < o))) ↦ p.1) := by rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
smaller_factorization
null
linearIndependent_iff_smaller (o : Ordinal) : LinearIndependent ℤ (GoodProducts.eval (π C (ord I · < o))) ↔ LinearIndependent ℤ (fun (p : smaller C o) ↦ p.1) := by rw [GoodProducts.linearIndependent_iff_range, ← LinearMap.linearIndependent_iff (πs C o) (LinearMap.ker_eq_bot_of_injective (injective_πs _ _)), ← smaller_factorization C o] exact linearIndependent_equiv _
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
linearIndependent_iff_smaller
null
smaller_mono {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) : smaller C o₁ ⊆ smaller C o₂ := by rintro f ⟨g, hg, rfl⟩ simp only [smaller, Set.mem_image] use πs' C h g obtain ⟨⟨l, gl⟩, rfl⟩ := hg refine ⟨?_, ?_⟩ · use ⟨l, Products.isGood_mono C h gl⟩ ext x rw [eval, ← Products.eval_πs' _ h (Products.prop_of_isGood C _ gl), eval] · rw [← LocallyConstant.coe_inj, coe_πs C o₂, ← LocallyConstant.toFun_eq_coe, coe_πs', Function.comp_assoc, projRestricts_comp_projRestrict C _, coe_πs] rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
smaller_mono
null
Products.limitOrdinal (l : Products I) : l.isGood (π C (ord I · < o)) ↔ ∃ (o' : Ordinal), o' < o ∧ l.isGood (π C (ord I · < o')) := by refine ⟨fun h ↦ ?_, fun ⟨o', ⟨ho', hl⟩⟩ ↦ isGood_mono C (le_of_lt ho') hl⟩ use Finset.sup l.val.toFinset (fun a ↦ Order.succ (ord I a)) have hslt : Finset.sup l.val.toFinset (fun a ↦ Order.succ (ord I a)) < o := by simp only [Finset.sup_lt_iff ho.bot_lt, List.mem_toFinset] exact fun b hb ↦ ho.succ_lt (prop_of_isGood C (ord I · < o) h b hb) refine ⟨hslt, fun he ↦ h ?_⟩ have hlt : ∀ i ∈ l.val, ord I i < Finset.sup l.val.toFinset (fun a ↦ Order.succ (ord I a)) := by intro i hi simp only [Finset.lt_sup_iff, List.mem_toFinset, Order.lt_succ_iff] exact ⟨i, hi, le_rfl⟩ rwa [eval_πs_image' C (le_of_lt hslt) hlt, ← eval_πs' C (le_of_lt hslt) hlt, Submodule.apply_mem_span_image_iff_mem_span (injective_πs' C _)] variable (hsC : contained C o) include hsC
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
Products.limitOrdinal
null
GoodProducts.union : range C = ⋃ (e : {o' // o' < o}), (smaller C e.val) := by ext p simp only [smaller, range, Set.mem_iUnion, Set.mem_image, Set.mem_range, Subtype.exists] refine ⟨fun hp ↦ ?_, fun hp ↦ ?_⟩ · obtain ⟨l, hl, rfl⟩ := hp rw [contained_eq_proj C o hsC, Products.limitOrdinal C ho] at hl obtain ⟨o', ho'⟩ := hl refine ⟨o', ho'.1, eval (π C (ord I · < o')) ⟨l, ho'.2⟩, ⟨l, ho'.2, rfl⟩, ?_⟩ exact Products.eval_πs C (Products.prop_of_isGood C _ ho'.2) · obtain ⟨o', h, _, ⟨l, hl, rfl⟩, rfl⟩ := hp refine ⟨l, ?_, (Products.eval_πs C (Products.prop_of_isGood C _ hl)).symm⟩ rw [contained_eq_proj C o hsC] exact Products.isGood_mono C (le_of_lt h) hl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
GoodProducts.union
null
GoodProducts.range_equiv : range C ≃ ⋃ (e : {o' // o' < o}), (smaller C e.val) := Equiv.setCongr (union C ho hsC)
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
GoodProducts.range_equiv
The image of the `GoodProducts` in `C` is equivalent to the union of `smaller C o'` over all ordinals `o' < o`.
GoodProducts.range_equiv_factorization : (fun (p : ⋃ (e : {o' // o' < o}), (smaller C e.val)) ↦ p.1) ∘ (range_equiv C ho hsC).toFun = (fun (p : range C) ↦ (p.1 : LocallyConstant C ℤ)) := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
GoodProducts.range_equiv_factorization
null
GoodProducts.linearIndependent_iff_union_smaller : LinearIndependent ℤ (GoodProducts.eval C) ↔ LinearIndependent ℤ (fun (p : ⋃ (e : {o' // o' < o}), (smaller C e.val)) ↦ p.1) := by rw [GoodProducts.linearIndependent_iff_range, ← range_equiv_factorization C ho hsC] exact linearIndependent_equiv (range_equiv C ho hsC)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Basic", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/ZeroLimit.lean
GoodProducts.linearIndependent_iff_union_smaller
null
limitCone (F : J ⥤ TopCat.{max v u}) : Cone F where pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j } π := { app := fun j => ofHom { toFun := fun u => u.val j continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) } naturality := fun X Y f => by ext a exact (a.2 f).symm }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
limitCone
A choice of limit cone for a functor `F : J ⥤ TopCat`. Generally you should just use `limit.cone F`, unless you need the actual definition (which is in terms of `Types.limitCone`).
limitConeIsLimit (F : J ⥤ TopCat.{max v u}) : IsLimit (limitCone.{v,u} F) where lift S := ofHom { toFun := fun x => ⟨fun _ => S.π.app _ x, fun f => by dsimp rw [← S.w f] rfl⟩ continuous_toFun := Continuous.subtype_mk (continuous_pi fun j => (S.π.app j).hom.2) fun x i j f => by dsimp rw [← S.w f] rfl } uniq S m h := by ext a simp [← h] rfl
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
limitConeIsLimit
The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone. Generally you should just use `limit.isLimit F`, unless you need the actual definition (which is in terms of `Types.limitConeIsLimit`).
conePtOfConeForget : Type _ := c.pt
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
conePtOfConeForget
Given a functor `F : J ⥤ TopCat` and a cone `c : Cone (F ⋙ forget)` of the underlying functor to types, this is the type `c.pt` with the infimum of the induced topologies by the maps `c.π.app j`.
topologicalSpaceConePtOfConeForget : TopologicalSpace (conePtOfConeForget c) := (⨅ j, (F.obj j).str.induced (c.π.app j))
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topologicalSpaceConePtOfConeForget
null
@[simps pt π_app] coneOfConeForget : Cone F where pt := of (conePtOfConeForget c) π := { app j := ofHom (ContinuousMap.mk (c.π.app j) (by rw [continuous_iff_le_induced] exact iInf_le (fun j ↦ (F.obj j).str.induced (c.π.app j)) j)) naturality j j' φ := by ext apply congr_fun (c.π.naturality φ) }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
coneOfConeForget
Given a functor `F : J ⥤ TopCat` and a cone `c : Cone (F ⋙ forget)` of the underlying functor to types, this is a cone for `F` whose point is `c.pt` with the infimum of the induced topologies by the maps `c.π.app j`.
isLimitConeOfForget (c : Cone (F ⋙ forget)) (hc : IsLimit c) : IsLimit (coneOfConeForget c) := by refine IsLimit.ofFaithful forget (ht := hc) (fun s ↦ ofHom (ContinuousMap.mk (hc.lift ((forget).mapCone s)) ?_)) (fun _ ↦ rfl) rw [continuous_iff_coinduced_le] dsimp [topologicalSpaceConePtOfConeForget] rw [le_iInf_iff] intro j rw [coinduced_le_iff_le_induced, induced_compose] convert continuous_iff_le_induced.1 (s.π.app j).hom.continuous exact hc.fac ((forget).mapCone s) j
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
isLimitConeOfForget
Given a functor `F : J ⥤ TopCat` and a cone `c : Cone (F ⋙ forget)` of the underlying functor to types, the limit of `F` is `c.pt` equipped with the infimum of the induced topologies by the maps `c.π.app j`.
induced_of_isLimit : c.pt.str = ⨅ j, (F.obj j).str.induced (c.π.app j) := by let c' := coneOfConeForget ((forget).mapCone c) let hc' : IsLimit c' := isLimitConeOfForget _ (isLimitOfPreserves forget hc) let e := IsLimit.conePointUniqueUpToIso hc' hc have he (j : J) : e.inv ≫ c'.π.app j = c.π.app j := IsLimit.conePointUniqueUpToIso_inv_comp hc' hc j apply (homeoOfIso e.symm).induced_eq.symm.trans dsimp [coneOfConeForget_pt, c', topologicalSpaceConePtOfConeForget] conv_rhs => simp only [← he] simp [← induced_compose, homeoOfIso, c']
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
induced_of_isLimit
null
limit_topology [HasLimit F] : (limit F).str = ⨅ j, (F.obj j).str.induced (limit.π F j) := induced_of_isLimit _ (limit.isLimit _)
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
limit_topology
null
hasLimit_iff_small_sections : HasLimit F ↔ Small.{u} ((F ⋙ forget).sections) := by rw [← Types.hasLimit_iff_small_sections] constructor <;> intro · infer_instance · exact ⟨⟨_, isLimitConeOfForget _ (limit.isLimit _)⟩⟩
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
hasLimit_iff_small_sections
null
topCat_hasLimitsOfShape (J : Type v) [Category J] [Small.{u} J] : HasLimitsOfShape J TopCat.{u} where has_limit := fun F => by rw [hasLimit_iff_small_sections] infer_instance
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topCat_hasLimitsOfShape
null
topCat_hasLimitsOfSize [UnivLE.{v, u}] : HasLimitsOfSize.{w, v} TopCat.{u} where
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topCat_hasLimitsOfSize
null
topCat_hasLimits : HasLimits TopCat.{u} := TopCat.topCat_hasLimitsOfSize.{u, u}
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topCat_hasLimits
null
forget_preservesLimitsOfSize : PreservesLimitsOfSize.{w, v} (forget : TopCat.{u} ⥤ _) where
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
forget_preservesLimitsOfSize
null
forget_preservesLimits : PreservesLimits (forget : TopCat.{u} ⥤ _) where
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
forget_preservesLimits
null
coconePtOfCoconeForget : Type _ := c.pt
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
coconePtOfCoconeForget
Given a functor `F : J ⥤ TopCat` and a cocone `c : Cocone (F ⋙ forget)` of the underlying cocone of types, this is the type `c.pt` with the supremum of the topologies that are coinduced by the maps `c.ι.app j`.
topologicalSpaceCoconePtOfCoconeForget : TopologicalSpace (coconePtOfCoconeForget c) := (⨆ j, (F.obj j).str.coinduced (c.ι.app j))
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topologicalSpaceCoconePtOfCoconeForget
null
@[simps pt ι_app] coconeOfCoconeForget : Cocone F where pt := of (coconePtOfCoconeForget c) ι := { app j := ofHom (ContinuousMap.mk (c.ι.app j) (by rw [continuous_iff_coinduced_le] exact le_iSup (fun j ↦ (F.obj j).str.coinduced (c.ι.app j)) j)) naturality j j' φ := by ext apply congr_fun (c.ι.naturality φ) }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
coconeOfCoconeForget
Given a functor `F : J ⥤ TopCat` and a cocone `c : Cocone (F ⋙ forget)` of the underlying cocone of types, this is a cocone for `F` whose point is `c.pt` with the supremum of the coinduced topologies by the maps `c.ι.app j`.
isColimitCoconeOfForget (c : Cocone (F ⋙ forget)) (hc : IsColimit c) : IsColimit (coconeOfCoconeForget c) := by refine IsColimit.ofFaithful forget (ht := hc) (fun s ↦ ofHom (ContinuousMap.mk (hc.desc ((forget).mapCocone s)) ?_)) (fun _ ↦ rfl) rw [continuous_iff_le_induced] dsimp [topologicalSpaceCoconePtOfCoconeForget] rw [iSup_le_iff] intro j rw [coinduced_le_iff_le_induced, induced_compose] convert continuous_iff_le_induced.1 (s.ι.app j).hom.continuous exact hc.fac ((forget).mapCocone s) j
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
isColimitCoconeOfForget
Given a functor `F : J ⥤ TopCat` and a cocone `c : Cocone (F ⋙ forget)` of the underlying cocone of types, the colimit of `F` is `c.pt` equipped with the supremum of the coinduced topologies by the maps `c.ι.app j`.
coinduced_of_isColimit : c.pt.str = ⨆ j, (F.obj j).str.coinduced (c.ι.app j) := by let c' := coconeOfCoconeForget ((forget).mapCocone c) let hc' : IsColimit c' := isColimitCoconeOfForget _ (isColimitOfPreserves forget hc) let e := IsColimit.coconePointUniqueUpToIso hc' hc have he (j : J) : c'.ι.app j ≫ e.hom = c.ι.app j := IsColimit.comp_coconePointUniqueUpToIso_hom hc' hc j apply (homeoOfIso e).coinduced_eq.symm.trans dsimp [coconeOfCoconeForget_pt, c', topologicalSpaceCoconePtOfCoconeForget] simp only [coinduced_iSup] conv_rhs => simp only [← he] rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
coinduced_of_isColimit
null
isOpen_iff_of_isColimit (X : Set c.pt) : IsOpen X ↔ ∀ (j : J), IsOpen (c.ι.app j ⁻¹' X) := by trans (⨆ (j : J), (F.obj j).str.coinduced (c.ι.app j)).IsOpen X · rw [← coinduced_of_isColimit c hc, isOpen_fold] · simp only [← isOpen_coinduced] apply isOpen_iSup_iff
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
isOpen_iff_of_isColimit
null
isClosed_iff_of_isColimit (X : Set c.pt) : IsClosed X ↔ ∀ (j : J), IsClosed (c.ι.app j ⁻¹' X) := by simp only [← isOpen_compl_iff, isOpen_iff_of_isColimit _ hc, Functor.const_obj_obj, Set.preimage_compl]
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
isClosed_iff_of_isColimit
null
continuous_iff_of_isColimit {X : Type u'} [TopologicalSpace X] (f : c.pt → X) : Continuous f ↔ ∀ (j : J), Continuous (f ∘ c.ι.app j) := by simp only [continuous_def, isOpen_iff_of_isColimit _ hc] tauto
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
continuous_iff_of_isColimit
null
colimit_topology (F : J ⥤ TopCat.{u}) [HasColimit F] : (colimit F).str = ⨆ j, (F.obj j).str.coinduced (colimit.ι F j) := coinduced_of_isColimit _ (colimit.isColimit _)
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
colimit_topology
null
colimit_isOpen_iff (F : J ⥤ TopCat.{u}) [HasColimit F] (U : Set ((colimit F : _) : Type u)) : IsOpen U ↔ ∀ j, IsOpen (colimit.ι F j ⁻¹' U) := by apply isOpen_iff_of_isColimit _ (colimit.isColimit _)
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
colimit_isOpen_iff
null
hasColimit_iff_small_colimitType : HasColimit F ↔ Small.{u} (F ⋙ forget).ColimitType := by rw [← Types.hasColimit_iff_small_colimitType] constructor <;> intro · infer_instance · exact ⟨⟨_, isColimitCoconeOfForget _ (colimit.isColimit _)⟩⟩ @[deprecated (since := "2025-04-01")] alias hasColimit_iff_small_quot := hasColimit_iff_small_colimitType
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
hasColimit_iff_small_colimitType
null
topCat_hasColimitsOfShape (J : Type v) [Category J] [Small.{u} J] : HasColimitsOfShape J TopCat.{u} where has_colimit := fun F => by rw [hasColimit_iff_small_colimitType] infer_instance
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topCat_hasColimitsOfShape
null
topCat_hasColimitsOfSize [UnivLE.{v, u}] : HasColimitsOfSize.{w, v} TopCat.{u} where
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topCat_hasColimitsOfSize
null
topCat_hasColimits : HasColimits TopCat.{u} := TopCat.topCat_hasColimitsOfSize.{u, u}
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
topCat_hasColimits
null
forget_preservesColimitsOfSize : PreservesColimitsOfSize.{w, v} (forget : TopCat.{u} ⥤ _) where
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
forget_preservesColimitsOfSize
null
forget_preservesColimits : PreservesColimits (forget : TopCat.{u} ⥤ Type u) where
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
forget_preservesColimits
null
isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) := haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X => ⟨⟨ofHom ⟨fun _ => PUnit.unit, continuous_const⟩⟩, fun f => by ext⟩ Limits.IsTerminal.ofUnique _
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
isTerminalPUnit
The terminal object of `Top` is `PUnit`.
terminalIsoPUnit : ⊤_ TopCat.{u} ≅ TopCat.of PUnit := terminalIsTerminal.uniqueUpToIso isTerminalPUnit
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
terminalIsoPUnit
The terminal object of `Top` is `PUnit`.
isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1}) := haveI : ∀ X, Unique (TopCat.of PEmpty.{u + 1} ⟶ X) := fun X => ⟨⟨ofHom ⟨fun x => x.elim, by continuity⟩⟩, fun f => by ext ⟨⟩⟩ Limits.IsInitial.ofUnique _
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
isInitialPEmpty
The initial object of `Top` is `PEmpty`.
initialIsoPEmpty : ⊥_ TopCat.{u} ≅ TopCat.of PEmpty := initialIsInitial.uniqueUpToIso isInitialPEmpty
def
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Limits.Types.Limits", "Mathlib.CategoryTheory.Limits.Types.Colimits", "Mathlib.CategoryTheory.Limits.Shapes.Terminal", "Mathlib.CategoryTheory.Adjunction.Limits" ]
Mathlib/Topology/Category/TopCat/Limits/Basic.lean
initialIsoPEmpty
The initial object of `Top` is `PEmpty`.
isTopologicalBasis_cofiltered_limit (hC : IsLimit C) (T : ∀ j, Set (Set (F.obj j))) (hT : ∀ j, IsTopologicalBasis (T j)) (univ : ∀ i : J, Set.univ ∈ T i) (inter : ∀ (i) (U1 U2 : Set (F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i) (compat : ∀ (i j : J) (f : i ⟶ j) (V : Set (F.obj j)) (_hV : V ∈ T j), F.map f ⁻¹' V ∈ T i) : IsTopologicalBasis {U : Set C.pt | ∃ (j : _) (V : Set (F.obj j)), V ∈ T j ∧ U = C.π.app j ⁻¹' V} := by classical convert IsTopologicalBasis.iInf_induced hT fun j (x : C.pt) => C.π.app j x using 1 · exact induced_of_isLimit C hC ext U0 constructor · rintro ⟨j, V, hV, rfl⟩ let U : ∀ i, Set (F.obj i) := fun i => if h : i = j then by rw [h]; exact V else Set.univ refine ⟨U, {j}, ?_, ?_⟩ · simp only [Finset.mem_singleton] rintro i rfl simpa [U] · simp [U] · rintro ⟨U, G, h1, h2⟩ obtain ⟨j, hj⟩ := IsCofiltered.inf_objs_exists G let g : ∀ e ∈ G, j ⟶ e := fun _ he => (hj he).some let Vs : J → Set (F.obj j) := fun e => if h : e ∈ G then F.map (g e h) ⁻¹' U e else Set.univ let V : Set (F.obj j) := ⋂ (e : J) (_he : e ∈ G), Vs e refine ⟨j, V, ?_, ?_⟩ · -- An intermediate claim used to apply induction along `G : Finset J` later on. have : ∀ (S : Set (Set (F.obj j))) (E : Finset J) (P : J → Set (F.obj j)) (_univ : Set.univ ∈ S) (_inter : ∀ A B : Set (F.obj j), A ∈ S → B ∈ S → A ∩ B ∈ S) (_cond : ∀ (e : J) (_he : e ∈ E), P e ∈ S), (⋂ (e) (_he : e ∈ E), P e) ∈ S := by intro S E induction E using Finset.induction_on with | empty => intro P he _hh simpa | insert a E _ha hh1 => intro hh2 hh3 hh4 hh5 rw [Finset.set_biInter_insert] refine hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 ?_) intro e he exact hh5 e (Finset.mem_insert_of_mem he) refine this _ _ _ (univ _) (inter _) ?_ intro e he dsimp [Vs] rw [dif_pos he] exact compat j e (g e he) (U e) (h1 e he) · -- conclude... rw [h2] change _ = (C.π.app j)⁻¹' ⋂ (e : J) (_ : e ∈ G), Vs e rw [Set.preimage_iInter] apply congrArg ext1 e ...
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Filtered.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Cofiltered.lean
isTopologicalBasis_cofiltered_limit
Given a *compatible* collection of topological bases for the factors in a cofiltered limit which contain `Set.univ` and are closed under intersections, the induced *naive* collection of sets in the limit is, in fact, a topological basis.
private FiniteDiagramArrow {J : Type u} [SmallCategory J] (G : Finset J) := Σ' (X Y : J) (_ : X ∈ G) (_ : Y ∈ G), X ⟶ Y
abbrev
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
FiniteDiagramArrow
null
private FiniteDiagram (J : Type u) [SmallCategory J] := Σ G : Finset J, Finset (FiniteDiagramArrow G)
abbrev
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
FiniteDiagram
null
partialSections {J : Type u} [SmallCategory J] (F : J ⥤ TopCat.{v}) {G : Finset J} (H : Finset (FiniteDiagramArrow G)) : Set (∀ j, F.obj j) := {u | ∀ {f : FiniteDiagramArrow G} (_ : f ∈ H), F.map f.2.2.2.2 (u f.1) = u f.2.1}
def
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
partialSections
Partial sections of a cofiltered limit are sections when restricted to a finite subset of objects and morphisms of `J`.
partialSections.nonempty [IsCofilteredOrEmpty J] [h : ∀ j : J, Nonempty (F.obj j)] {G : Finset J} (H : Finset (FiniteDiagramArrow G)) : (partialSections F H).Nonempty := by classical cases isEmpty_or_nonempty J · exact ⟨isEmptyElim, fun {j} => IsEmpty.elim' inferInstance j.1⟩ haveI : IsCofiltered J := ⟨⟩ use fun j : J => if hj : j ∈ G then F.map (IsCofiltered.infTo G H hj) (h (IsCofiltered.inf G H)).some else (h _).some rintro ⟨X, Y, hX, hY, f⟩ hf dsimp only rwa [dif_pos hX, dif_pos hY, ← comp_app, ← F.map_comp, @IsCofiltered.infTo_commutes _ _ _ G H]
theorem
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
partialSections.nonempty
null
partialSections.directed : Directed Superset fun G : FiniteDiagram J => partialSections F G.2 := by classical intro A B let ιA : FiniteDiagramArrow A.1 → FiniteDiagramArrow (A.1 ⊔ B.1) := fun f => ⟨f.1, f.2.1, Finset.mem_union_left _ f.2.2.1, Finset.mem_union_left _ f.2.2.2.1, f.2.2.2.2⟩ let ιB : FiniteDiagramArrow B.1 → FiniteDiagramArrow (A.1 ⊔ B.1) := fun f => ⟨f.1, f.2.1, Finset.mem_union_right _ f.2.2.1, Finset.mem_union_right _ f.2.2.2.1, f.2.2.2.2⟩ refine ⟨⟨A.1 ⊔ B.1, A.2.image ιA ⊔ B.2.image ιB⟩, ?_, ?_⟩ · rintro u hu f hf have : ιA f ∈ A.2.image ιA ⊔ B.2.image ιB := by apply Finset.mem_union_left rw [Finset.mem_image] exact ⟨f, hf, rfl⟩ exact hu this · rintro u hu f hf have : ιB f ∈ A.2.image ιA ⊔ B.2.image ιB := by apply Finset.mem_union_right rw [Finset.mem_image] exact ⟨f, hf, rfl⟩ exact hu this
theorem
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
partialSections.directed
null
partialSections.closed [∀ j : J, T2Space (F.obj j)] {G : Finset J} (H : Finset (FiniteDiagramArrow G)) : IsClosed (partialSections F H) := by have : partialSections F H = ⋂ (f : FiniteDiagramArrow G) (_ : f ∈ H), {u | F.map f.2.2.2.2 (u f.1) = u f.2.1} := by ext1 simp only [Set.mem_iInter, Set.mem_setOf_eq] rfl rw [this] apply isClosed_biInter intro f _ apply isClosed_eq <;> fun_prop
theorem
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
partialSections.closed
null
nonempty_limitCone_of_compact_t2_cofiltered_system (F : J ⥤ TopCat.{max v u}) [IsCofilteredOrEmpty J] [∀ j : J, Nonempty (F.obj j)] [∀ j : J, CompactSpace (F.obj j)] [∀ j : J, T2Space (F.obj j)] : Nonempty (TopCat.limitCone F).pt := by classical obtain ⟨u, hu⟩ := IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed (fun G => partialSections F _) (partialSections.directed F) (fun G => partialSections.nonempty F _) (fun G => IsClosed.isCompact (partialSections.closed F _)) fun G => partialSections.closed F _ use u intro X Y f let G : FiniteDiagram J := ⟨{X, Y}, {⟨X, Y, by grind, by grind, f⟩}⟩ exact hu _ ⟨G, rfl⟩ (Finset.mem_singleton_self _)
theorem
Topology
[ "Mathlib.CategoryTheory.Filtered.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/TopCat/Limits/Konig.lean
nonempty_limitCone_of_compact_t2_cofiltered_system
Cofiltered limits of nonempty compact Hausdorff spaces are nonempty topological spaces.
piπ {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) : TopCat.of (∀ i, α i) ⟶ α i := ofHom ⟨fun f => f i, continuous_apply i⟩
abbrev
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piπ
The projection from the product as a bundled continuous map.
@[simps! pt π_app] piFan {ι : Type v} (α : ι → TopCat.{max v u}) : Fan α := Fan.mk (TopCat.of (∀ i, α i)) (piπ.{v,u} α)
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piFan
The explicit fan of a family of topological spaces given by the pi type.
piFanIsLimit {ι : Type v} (α : ι → TopCat.{max v u}) : IsLimit (piFan α) where lift S := ofHom { toFun := fun s i => S.π.app ⟨i⟩ s continuous_toFun := continuous_pi (fun i => (S.π.app ⟨i⟩).hom.2) } uniq := by intro S m h ext x funext i simp [ContinuousMap.coe_mk, ← h ⟨i⟩] fac _ _ := rfl
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piFanIsLimit
The constructed fan is indeed a limit
piIsoPi {ι : Type v} (α : ι → TopCat.{max v u}) : ∏ᶜ α ≅ TopCat.of (∀ i, α i) := (limit.isLimit _).conePointUniqueUpToIso (piFanIsLimit.{v, u} α) @[reassoc (attr := simp)]
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piIsoPi
The product is homeomorphic to the product of the underlying spaces, equipped with the product topology.
piIsoPi_inv_π {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) : (piIsoPi α).inv ≫ Pi.π α i = piπ α i := by simp [piIsoPi]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piIsoPi_inv_π
null
piIsoPi_inv_π_apply {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) (x : ∀ i, α i) : (Pi.π α i :) ((piIsoPi α).inv x) = x i := ConcreteCategory.congr_hom (piIsoPi_inv_π α i) x
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piIsoPi_inv_π_apply
null
piIsoPi_hom_apply {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) (x : (∏ᶜ α : TopCat.{max v u})) : (piIsoPi α).hom x i = (Pi.π α i :) x := by have := piIsoPi_inv_π α i rw [Iso.inv_comp_eq] at this exact ConcreteCategory.congr_hom this x
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
piIsoPi_hom_apply
null
sigmaι {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) : α i ⟶ TopCat.of (Σ i, α i) := by refine ofHom (ContinuousMap.mk ?_ ?_) · dsimp apply Sigma.mk i · dsimp; continuity
abbrev
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaι
The inclusion to the coproduct as a bundled continuous map.
@[simps! pt ι_app] sigmaCofan {ι : Type v} (α : ι → TopCat.{max v u}) : Cofan α := Cofan.mk (TopCat.of (Σ i, α i)) (sigmaι α)
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaCofan
The explicit cofan of a family of topological spaces given by the sigma type.
sigmaCofanIsColimit {ι : Type v} (β : ι → TopCat.{max v u}) : IsColimit (sigmaCofan β) where desc S := ofHom { toFun := fun (s : of (Σ i, β i)) => S.ι.app ⟨s.1⟩ s.2 continuous_toFun := by continuity } uniq := by intro S m h ext ⟨i, x⟩ simp only [← h] congr fac s j := by cases j cat_disch
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaCofanIsColimit
The constructed cofan is indeed a colimit
sigmaIsoSigma {ι : Type v} (α : ι → TopCat.{max v u}) : ∐ α ≅ TopCat.of (Σ i, α i) := (colimit.isColimit _).coconePointUniqueUpToIso (sigmaCofanIsColimit.{v, u} α) @[reassoc (attr := simp)]
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaIsoSigma
The coproduct is homeomorphic to the disjoint union of the topological spaces.
sigmaIsoSigma_hom_ι {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) : Sigma.ι α i ≫ (sigmaIsoSigma α).hom = sigmaι α i := by simp [sigmaIsoSigma]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaIsoSigma_hom_ι
null
sigmaIsoSigma_hom_ι_apply {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) (x : α i) : (sigmaIsoSigma α).hom ((Sigma.ι α i :) x) = Sigma.mk i x := ConcreteCategory.congr_hom (sigmaIsoSigma_hom_ι α i) x
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaIsoSigma_hom_ι_apply
null
sigmaIsoSigma_inv_apply {ι : Type v} (α : ι → TopCat.{max v u}) (i : ι) (x : α i) : (sigmaIsoSigma α).inv ⟨i, x⟩ = (Sigma.ι α i :) x := by rw [← sigmaIsoSigma_hom_ι_apply, ← comp_app, ← comp_app, Iso.hom_inv_id, Category.comp_id]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
sigmaIsoSigma_inv_apply
null
prodFst {X Y : TopCat.{u}} : TopCat.of (X × Y) ⟶ X := ofHom { toFun := Prod.fst }
abbrev
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodFst
The first projection from the product.
prodSnd {X Y : TopCat.{u}} : TopCat.of (X × Y) ⟶ Y := ofHom { toFun := Prod.snd }
abbrev
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodSnd
The second projection from the product.
prodBinaryFan (X Y : TopCat.{u}) : BinaryFan X Y := BinaryFan.mk prodFst prodSnd
def
Topology
[ "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Category.TopCat.Limits.Basic", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic", "Mathlib.Data.Set.Subsingleton", "Mathlib.Tactic.CategoryTheory.Elementwise", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/Limits/Products.lean
prodBinaryFan
The explicit binary cofan of `X, Y` given by `X × Y`.