fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
nhds_infty_eq : 𝓝 (∞ : OnePoint X) = map (↑) (coclosedCompact X) ⊔ pure ∞ := by rw [← nhdsNE_infty_eq, nhdsNE_sup_pure]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
nhds_infty_eq
null
tendsto_coe_infty : Tendsto (↑) (coclosedCompact X) (𝓝 (∞ : OnePoint X)) := by rw [nhds_infty_eq] exact Filter.Tendsto.mono_right tendsto_map le_sup_left
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
tendsto_coe_infty
null
hasBasis_nhds_infty : (𝓝 (∞ : OnePoint X)).HasBasis (fun s : Set X => IsClosed s ∧ IsCompact s) fun s => (↑) '' sᶜ ∪ {∞} := by rw [nhds_infty_eq] exact (hasBasis_coclosedCompact.map _).sup_pure _ @[simp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
hasBasis_nhds_infty
null
comap_coe_nhds_infty : comap ((↑) : X → OnePoint X) (𝓝 ∞) = coclosedCompact X := by simp [nhds_infty_eq, comap_sup, comap_map coe_injective]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
comap_coe_nhds_infty
null
le_nhds_infty {f : Filter (OnePoint X)} : f ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → (↑) '' sᶜ ∪ {∞} ∈ f := by simp only [hasBasis_nhds_infty.ge_iff, and_imp]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
le_nhds_infty
null
ultrafilter_le_nhds_infty {f : Ultrafilter (OnePoint X)} : (f : Filter (OnePoint X)) ≤ 𝓝 ∞ ↔ ∀ s : Set X, IsClosed s → IsCompact s → (↑) '' s ∉ f := by simp only [le_nhds_infty, ← compl_image_coe, Ultrafilter.mem_coe, Ultrafilter.compl_mem_iff_notMem]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
ultrafilter_le_nhds_infty
null
tendsto_nhds_infty' {α : Type*} {f : OnePoint X → α} {l : Filter α} : Tendsto f (𝓝 ∞) l ↔ Tendsto f (pure ∞) l ∧ Tendsto (f ∘ (↑)) (coclosedCompact X) l := by simp [nhds_infty_eq, and_comm]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
tendsto_nhds_infty'
null
tendsto_nhds_infty {α : Type*} {f : OnePoint X → α} {l : Filter α} : Tendsto f (𝓝 ∞) l ↔ ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) tᶜ s := tendsto_nhds_infty'.trans <| by simp only [tendsto_pure_left, hasBasis_coclosedCompact.tendsto_left_iff, forall_and, and_assoc]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
tendsto_nhds_infty
null
continuousAt_infty' {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} : ContinuousAt f ∞ ↔ Tendsto (f ∘ (↑)) (coclosedCompact X) (𝓝 (f ∞)) := tendsto_nhds_infty'.trans <| and_iff_right (tendsto_pure_nhds _ _)
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousAt_infty'
null
continuousAt_infty {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} : ContinuousAt f ∞ ↔ ∀ s ∈ 𝓝 (f ∞), ∃ t : Set X, IsClosed t ∧ IsCompact t ∧ MapsTo (f ∘ (↑)) tᶜ s := continuousAt_infty'.trans <| by simp only [hasBasis_coclosedCompact.tendsto_left_iff, and_assoc]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousAt_infty
null
continuousAt_coe {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} : ContinuousAt f x ↔ ContinuousAt (f ∘ (↑)) x := by rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]; rfl
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousAt_coe
null
continuous_iff {Y : Type*} [TopologicalSpace Y] (f : OnePoint X → Y) : Continuous f ↔ Tendsto (fun x : X ↦ f x) (coclosedCompact X) (𝓝 (f ∞)) ∧ Continuous (fun x : X ↦ f x) := by simp only [continuous_iff_continuousAt, OnePoint.forall, continuousAt_coe, continuousAt_infty', Function.comp_def]
lemma
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuous_iff
null
continuousMapMk {Y : Type*} [TopologicalSpace Y] (f : C(X, Y)) (y : Y) (h : Tendsto f (coclosedCompact X) (𝓝 y)) : C(OnePoint X, Y) where toFun x := x.elim y f continuous_toFun := by rw [continuous_iff] refine ⟨h, f.continuous⟩
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousMapMk
A constructor for continuous maps out of a one point compactification, given a continuous map from the underlying space and a limit value at infinity.
continuous_iff_from_discrete {Y : Type*} [TopologicalSpace Y] [DiscreteTopology X] (f : OnePoint X → Y) : Continuous f ↔ Tendsto (fun x : X ↦ f x) cofinite (𝓝 (f ∞)) := by simp [continuous_iff, cocompact_eq_cofinite, continuous_of_discreteTopology]
lemma
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuous_iff_from_discrete
null
continuousMapMkDiscrete {Y : Type*} [TopologicalSpace Y] [DiscreteTopology X] (f : X → Y) (y : Y) (h : Tendsto f cofinite (𝓝 y)) : C(OnePoint X, Y) := continuousMapMk ⟨f, continuous_of_discreteTopology⟩ y (by simpa [cocompact_eq_cofinite]) variable (X) in
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousMapMkDiscrete
A constructor for continuous maps out of a one point compactification of a discrete space, given a map from the underlying space and a limit value at infinity.
noncomputable continuousMapDiscreteEquiv (Y : Type*) [DiscreteTopology X] [TopologicalSpace Y] [T2Space Y] [Infinite X] : C(OnePoint X, Y) ≃ { f : X → Y // ∃ L, Tendsto (fun x : X ↦ f x) cofinite (𝓝 L) } where toFun f := ⟨(f ·), ⟨f ∞, continuous_iff_from_discrete _ |>.mp (map_continuous f)⟩⟩ invFun f := { toFun := fun x => match x with | ∞ => Classical.choose f.2 | some x => f.1 x continuous_toFun := continuous_iff_from_discrete _ |>.mpr <| Classical.choose_spec f.2 } left_inv f := by ext x refine OnePoint.rec ?_ ?_ x · refine tendsto_nhds_unique ?_ (continuous_iff_from_discrete _ |>.mp <| map_continuous f) let f' : { f : X → Y // ∃ L, Tendsto (fun x : X ↦ f x) cofinite (𝓝 L) } := ⟨fun x ↦ f x, ⟨f ∞, continuous_iff_from_discrete f |>.mp <| map_continuous f⟩⟩ exact Classical.choose_spec f'.property · simp
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousMapDiscreteEquiv
Continuous maps out of the one point compactification of an infinite discrete space to a Hausdorff space correspond bijectively to "convergent" maps out of the discrete space.
continuous_iff_from_nat {Y : Type*} [TopologicalSpace Y] (f : OnePoint ℕ → Y) : Continuous f ↔ Tendsto (fun x : ℕ ↦ f x) atTop (𝓝 (f ∞)) := by rw [continuous_iff_from_discrete, Nat.cofinite_eq_atTop]
lemma
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuous_iff_from_nat
null
continuousMapMkNat {Y : Type*} [TopologicalSpace Y] (f : ℕ → Y) (y : Y) (h : Tendsto f atTop (𝓝 y)) : C(OnePoint ℕ, Y) := continuousMapMkDiscrete f y (by rwa [Nat.cofinite_eq_atTop])
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousMapMkNat
A constructor for continuous maps out of the one point compactification of `ℕ`, given a sequence and a limit value at infinity.
noncomputable continuousMapNatEquiv (Y : Type*) [TopologicalSpace Y] [T2Space Y] : C(OnePoint ℕ, Y) ≃ { f : ℕ → Y // ∃ L, Tendsto (f ·) atTop (𝓝 L) } := by refine (continuousMapDiscreteEquiv ℕ Y).trans { toFun := fun ⟨f, hf⟩ ↦ ⟨f, by rwa [← Nat.cofinite_eq_atTop]⟩ invFun := fun ⟨f, hf⟩ ↦ ⟨f, by rwa [Nat.cofinite_eq_atTop]⟩ }
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuousMapNatEquiv
Continuous maps out of the one point compactification of `ℕ` to a Hausdorff space `Y` correspond bijectively to convergent sequences in `Y`.
denseRange_coe [NoncompactSpace X] : DenseRange ((↑) : X → OnePoint X) := by rw [DenseRange, ← compl_infty] exact dense_compl_singleton _
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
denseRange_coe
If `X` is not a compact space, then the natural embedding `X → OnePoint X` has dense range.
isDenseEmbedding_coe [NoncompactSpace X] : IsDenseEmbedding ((↑) : X → OnePoint X) := { isOpenEmbedding_coe with dense := denseRange_coe } @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
isDenseEmbedding_coe
null
specializes_coe {x y : X} : (x : OnePoint X) ⤳ y ↔ x ⤳ y := isOpenEmbedding_coe.isInducing.specializes_iff @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
specializes_coe
null
inseparable_coe {x y : X} : Inseparable (x : OnePoint X) y ↔ Inseparable x y := isOpenEmbedding_coe.isInducing.inseparable_iff
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
inseparable_coe
null
not_specializes_infty_coe {x : X} : ¬Specializes ∞ (x : OnePoint X) := isClosed_infty.not_specializes rfl (coe_ne_infty x)
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
not_specializes_infty_coe
null
not_inseparable_infty_coe {x : X} : ¬Inseparable ∞ (x : OnePoint X) := fun h => not_specializes_infty_coe h.specializes
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
not_inseparable_infty_coe
null
not_inseparable_coe_infty {x : X} : ¬Inseparable (x : OnePoint X) ∞ := fun h => not_specializes_infty_coe h.specializes'
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
not_inseparable_coe_infty
null
inseparable_iff {x y : OnePoint X} : Inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x' : X, x = x' ∧ ∃ y' : X, y = y' ∧ Inseparable x' y' := by induction x using OnePoint.rec <;> induction y using OnePoint.rec <;> simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe, Inseparable.refl]
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
inseparable_iff
null
continuous_map_iff [TopologicalSpace Y] {f : X → Y} : Continuous (OnePoint.map f) ↔ Continuous f ∧ Tendsto f (coclosedCompact X) (coclosedCompact Y) := by simp_rw [continuous_iff, map_some, ← comap_coe_nhds_infty, tendsto_comap_iff, map_infty, isOpenEmbedding_coe.isInducing.continuous_iff (Y := Y)] exact and_comm
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuous_map_iff
null
continuous_map [TopologicalSpace Y] {f : X → Y} (hc : Continuous f) (h : Tendsto f (coclosedCompact X) (coclosedCompact Y)) : Continuous (OnePoint.map f) := continuous_map_iff.mpr ⟨hc, h⟩ /-!
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
continuous_map
null
not_continuous_cofiniteTopology_of_symm [Infinite X] [DiscreteTopology X] : ¬Continuous (@CofiniteTopology.of (OnePoint X)).symm := by inhabit X simp only [continuous_iff_continuousAt, ContinuousAt, not_forall] use CofiniteTopology.of ↑(default : X) simpa [nhds_coe_eq, nhds_discrete, CofiniteTopology.nhds_eq] using (finite_singleton ((default : X) : OnePoint X)).infinite_compl
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
not_continuous_cofiniteTopology_of_symm
For any topological space `X`, its one point compactification is a compact space. -/ instance : CompactSpace (OnePoint X) where isCompact_univ := by have : Tendsto ((↑) : X → OnePoint X) (cocompact X) (𝓝 ∞) := by rw [nhds_infty_eq] exact (tendsto_map.mono_left cocompact_le_coclosedCompact).mono_right le_sup_left rw [← insert_none_range_some X] exact this.isCompact_insert_range_of_cocompact continuous_coe /-- The one point compactification of a `T0Space` space is a `T0Space`. -/ instance [T0Space X] : T0Space (OnePoint X) := by refine ⟨fun x y hxy => ?_⟩ rcases inseparable_iff.1 hxy with (⟨rfl, rfl⟩ | ⟨x, rfl, y, rfl, h⟩) exacts [rfl, congr_arg some h.eq] /-- The one point compactification of a `T1Space` space is a `T1Space`. -/ instance [T1Space X] : T1Space (OnePoint X) where t1 z := by induction z using OnePoint.rec · exact isClosed_infty · rw [← image_singleton, isClosed_image_coe] exact ⟨isClosed_singleton, isCompact_singleton⟩ /-- The one point compactification of a weakly locally compact R₁ space is a normal topological space. -/ instance [WeaklyLocallyCompactSpace X] [R1Space X] : NormalSpace (OnePoint X) := by suffices R1Space (OnePoint X) by infer_instance have key : ∀ z : X, Disjoint (𝓝 (some z)) (𝓝 ∞) := fun z ↦ by rw [nhds_infty_eq, disjoint_sup_right, nhds_coe_eq, coclosedCompact_eq_cocompact, disjoint_map coe_injective, ← principal_singleton, disjoint_principal_right, compl_infty] exact ⟨disjoint_nhds_cocompact z, range_mem_map⟩ refine ⟨fun x y ↦ ?_⟩ induction x using OnePoint.rec <;> induction y using OnePoint.rec · exact .inl le_rfl · exact .inr (key _).symm · exact .inr (key _) · rw [nhds_coe_eq, nhds_coe_eq, disjoint_map coe_injective, specializes_coe] apply specializes_or_disjoint_nhds /-- The one point compactification of a weakly locally compact Hausdorff space is a T₄ (hence, Hausdorff and regular) topological space. -/ example [WeaklyLocallyCompactSpace X] [T2Space X] : T4Space (OnePoint X) := inferInstance /-- If `X` is not a compact space, then `OnePoint X` is a connected space. -/ instance [PreconnectedSpace X] [NoncompactSpace X] : ConnectedSpace (OnePoint X) where toPreconnectedSpace := isDenseEmbedding_coe.isDenseInducing.preconnectedSpace toNonempty := inferInstance /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from `CofiniteTopology (OnePoint X)` to `OnePoint X` is not continuous.
noncomputable equivOfIsEmbeddingOfRangeEq : OnePoint X ≃ₜ Y := have _i := hf.t2Space have : Tendsto f (coclosedCompact X) (𝓝 y) := by rw [coclosedCompact_eq_cocompact, hasBasis_cocompact.tendsto_left_iff] intro N hN obtain ⟨U, hU₁, hU₂, hU₃⟩ := mem_nhds_iff.mp hN refine ⟨f⁻¹' Uᶜ, ?_, by simpa using (mapsTo_preimage f U).mono_right hU₁⟩ rw [hf.isCompact_iff, image_preimage_eq_iff.mpr (by simpa [hy])] exact (isClosed_compl_iff.mpr hU₂).isCompact let e : OnePoint X ≃ Y := { toFun := fun p ↦ p.elim y f invFun := fun q ↦ if hq : q = y then ∞ else ↑(show q ∈ range f from by simpa [hy]).choose left_inv := fun p ↦ by induction p using OnePoint.rec with | infty => simp | coe p => have hp : f p ≠ y := by simpa [hy] using mem_range_self (f := f) p simpa [hp] using hf.injective (mem_range_self p).choose_spec right_inv := fun q ↦ by rcases eq_or_ne q y with rfl | hq · simp · have hq' : q ∈ range f := by simpa [hy] simpa [hq] using hq'.choose_spec } Continuous.homeoOfEquivCompactToT2 <| (continuous_iff e).mpr ⟨this, hf.continuous⟩ @[simp]
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
equivOfIsEmbeddingOfRangeEq
If `f` embeds `X` into a compact Hausdorff space `Y`, and has exactly one point outside its range, then `(Y, f)` is the one-point compactification of `X`.
equivOfIsEmbeddingOfRangeEq_apply_coe (x : X) : equivOfIsEmbeddingOfRangeEq y f hf hy x = f x := rfl @[simp]
lemma
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
equivOfIsEmbeddingOfRangeEq_apply_coe
null
equivOfIsEmbeddingOfRangeEq_apply_infty : equivOfIsEmbeddingOfRangeEq y f hf hy ∞ = y := rfl
lemma
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
equivOfIsEmbeddingOfRangeEq_apply_infty
null
@[simps] onePointCongr (h : X ≃ₜ Y) : OnePoint X ≃ₜ OnePoint Y where __ := h.toEquiv.withTopCongr toFun := OnePoint.map h invFun := OnePoint.map h.symm continuous_toFun := continuous_map (map_continuous h) h.map_coclosedCompact.le continuous_invFun := continuous_map (map_continuous h.symm) h.symm.map_coclosedCompact.le
def
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
onePointCongr
Extend a homeomorphism of topological spaces to the homeomorphism of their one point compactifications.
Continuous.homeoOfEquivCompactToT2.t1_counterexample : ∃ (α β : Type) (_ : TopologicalSpace α) (_ : TopologicalSpace β), CompactSpace α ∧ T1Space β ∧ ∃ f : α ≃ β, Continuous f ∧ ¬Continuous f.symm := ⟨OnePoint ℕ, CofiniteTopology (OnePoint ℕ), inferInstance, inferInstance, inferInstance, inferInstance, CofiniteTopology.of, CofiniteTopology.continuous_of, OnePoint.not_continuous_cofiniteTopology_of_symm⟩
theorem
Topology
[ "Mathlib.Data.Fintype.Option", "Mathlib.Topology.Homeomorph.Lemmas", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Compactification/OnePoint/Basic.lean
Continuous.homeoOfEquivCompactToT2.t1_counterexample
A concrete counterexample shows that `Continuous.homeoOfEquivCompactToT2` cannot be generalized from `T2Space` to `T1Space`. Let `α = OnePoint ℕ` be the one-point compactification of `ℕ`, and let `β` be the same space `OnePoint ℕ` with the cofinite topology. Then `α` is compact, `β` is T1, and the identity map `id : α → β` is a continuous equivalence that is not a homeomorphism.
@[simp] Matrix.fin_two_smul_prod (g : Matrix (Fin 2) (Fin 2) R) (v : R × R) : g • v = (g 0 0 * v.1 + g 0 1 * v.2, g 1 0 * v.1 + g 1 1 * v.2) := by simp [Equiv.smul_def, smul_eq_mulVec, Matrix.mulVec_eq_sum] @[simp] lemma Matrix.GeneralLinearGroup.fin_two_smul_prod {R : Type*} [CommRing R] (g : GL (Fin 2) R) (v : R × R) : g • v = (g 0 0 * v.1 + g 0 1 * v.2, g 1 0 * v.1 + g 1 1 * v.2) := by simp [Units.smul_def]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
Matrix.fin_two_smul_prod
null
equivProjectivization : OnePoint K ≃ ℙ K (K × K) where toFun p := p.elim (mk K (1, 0) (by simp)) (fun t ↦ mk K (t, 1) (by simp)) invFun p := by refine Projectivization.lift (fun u : {v : K × K // v ≠ 0} ↦ if u.1.2 = 0 then ∞ else ((u.1.2)⁻¹ * u.1.1)) ?_ p rintro ⟨-, hv⟩ ⟨⟨x, y⟩, hw⟩ t rfl have ht : t ≠ 0 := by rintro rfl; simp at hv by_cases h₀ : y = 0 <;> simp [h₀, ht, mul_assoc] left_inv p := by cases p <;> simp right_inv p := by induction p using ind with | h p hp => obtain ⟨x, y⟩ := p by_cases h₀ : y = 0 <;> simp only [mk_eq_mk_iff', h₀, Projectivization.lift_mk, if_true, if_false, OnePoint.elim_infty, OnePoint.elim_some, Prod.smul_mk, Prod.mk.injEq, smul_eq_mul, mul_zero, and_true] · use x⁻¹ simp_all · exact ⟨y⁻¹, rfl, inv_mul_cancel₀ h₀⟩ @[simp]
def
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
equivProjectivization
The one-point compactification of a division ring `K` is equivalent to the projectivization `ℙ K (K × K)`.
equivProjectivization_apply_infinity : equivProjectivization K ∞ = mk K ⟨1, 0⟩ (by simp) := rfl @[simp]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
equivProjectivization_apply_infinity
null
equivProjectivization_apply_coe (t : K) : equivProjectivization K t = mk K ⟨t, 1⟩ (by simp) := rfl @[simp]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
equivProjectivization_apply_coe
null
equivProjectivization_symm_apply_mk (x y : K) (h : (x, y) ≠ 0) : (equivProjectivization K).symm (mk K ⟨x, y⟩ h) = if y = 0 then ∞ else y⁻¹ * x := by simp [equivProjectivization]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
equivProjectivization_symm_apply_mk
null
instGLAction : MulAction (GL (Fin 2) K) (OnePoint K) := (equivProjectivization K).mulAction (GL (Fin 2) K)
instance
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
instGLAction
For a field `K`, the group `GL(2, K)` acts on `OnePoint K`, via the canonical identification with the `ℙ¹(K)` (which is given explicitly by Möbius transformations).
smul_infty_def {g : GL (Fin 2) K} : g • ∞ = (equivProjectivization K).symm (.mk K (g 0 0, g 1 0) (fun h ↦ by simpa [det_fin_two, Prod.mk_eq_zero.mp h] using g.det_ne_zero)) := by simp [Equiv.smul_def, mulVec_eq_sum, Units.smul_def]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
smul_infty_def
null
smul_infty_eq_ite (g : GL (Fin 2) K) : g • (∞ : OnePoint K) = if g 1 0 = 0 then ∞ else g 0 0 / g 1 0 := by by_cases h : g 1 0 = 0 <;> simp [h, div_eq_inv_mul, smul_infty_def]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
smul_infty_eq_ite
null
smul_infty_eq_self_iff {g : GL (Fin 2) K} : g • (∞ : OnePoint K) = ∞ ↔ g 1 0 = 0 := by simp [smul_infty_eq_ite]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
smul_infty_eq_self_iff
null
smul_some_eq_ite {g : GL (Fin 2) K} {k : K} : g • (k : OnePoint K) = if g 1 0 * k + g 1 1 = 0 then ∞ else (g 0 0 * k + g 0 1) / (g 1 0 * k + g 1 1) := by simp [Equiv.smul_def, mulVec_eq_sum, div_eq_inv_mul, mul_comm, Units.smul_def]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
smul_some_eq_ite
null
map_smul {L : Type*} [Field L] [DecidableEq L] (f : K →+* L) (g : GL (Fin 2) K) (c : OnePoint K) : OnePoint.map f (g • c) = (g.map f) • (c.map f) := by cases c with | infty => simp [smul_infty_eq_ite, apply_ite] | coe c => simp [smul_some_eq_ite, ← map_mul, ← map_add, apply_ite]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
map_smul
null
fixpointPolynomial_aeval_eq_zero_iff {c : K} {g : GL (Fin 2) K} : g.fixpointPolynomial.aeval c = 0 ↔ g • (c : OnePoint K) = c := by simp only [fixpointPolynomial, map_sub, map_mul, map_add, aeval_X_pow, aeval_C, aeval_X, Algebra.algebraMap_self_apply, OnePoint.smul_some_eq_ite] split_ifs with h · refine ⟨fun hg ↦ (g.det_ne_zero ?_).elim, fun hg ↦ (infty_ne_coe _ hg).elim⟩ rw [det_fin_two] grind · rw [coe_eq_coe, div_eq_iff h] grind
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
fixpointPolynomial_aeval_eq_zero_iff
The roots of `g.fixpointPolynomial` are the fixed points of `g ∈ GL(2, K)` acting on the finite part of `OnePoint K`.
parabolicFixedPoint (g : GL (Fin 2) K) : OnePoint K := if g 1 0 = 0 then ∞ else ↑((g 0 0 - g 1 1) / (2 * g 1 0))
def
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
parabolicFixedPoint
If `g` is parabolic, this is the unique fixed point of `g` in `OnePoint K`.
IsParabolic.smul_eq_self_iff {g : GL (Fin 2) K} (hg : g.IsParabolic) [NeZero (2 : K)] {c : OnePoint K} : g • c = c ↔ c = parabolicFixedPoint g := by rcases hg with ⟨hg, hdisc⟩ rw [disc_fin_two, trace_fin_two, det_fin_two] at hdisc cases c with | infty => by_cases h : g 1 0 = 0 <;> simp [parabolicFixedPoint, smul_infty_eq_ite, h] | coe c => suffices g 1 0 * c ^ 2 + (g 1 1 - g 0 0) * c - g 0 1 = 0 ↔ c = g.parabolicFixedPoint by simpa [← fixpointPolynomial_aeval_eq_zero_iff, fixpointPolynomial] by_cases hc : g 1 0 = 0 · have hd : g 1 1 = g 0 0 := by grind suffices g 0 1 ≠ 0 by simpa [parabolicFixedPoint, hc, hd] refine fun hb ↦ fixpointPolynomial_eq_zero_iff.not.mpr hg ?_ simp [fixpointPolynomial, hb, hc, hd] · have : discrim (g 1 0) (g 1 1 - g 0 0) (-g 0 1) = 0 := by rw [discrim]; grind simpa [parabolicFixedPoint, if_neg hc, sq, sub_eq_add_neg] using quadratic_eq_zero_iff_of_discrim_eq_zero hc this c
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
IsParabolic.smul_eq_self_iff
null
IsParabolic.parabolicFixedPoint_pow {g : GL (Fin 2) K} (hg : IsParabolic g) [CharZero K] {n : ℕ} (hn : n ≠ 0) : (g ^ n).parabolicFixedPoint = g.parabolicFixedPoint := by rw [eq_comm, ← IsParabolic.smul_eq_self_iff (hg.pow hn)] clear hn induction n with | zero => simp | succ n IH => rw [pow_succ, MulAction.mul_smul, hg.smul_eq_self_iff.mpr rfl, IH]
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
IsParabolic.parabolicFixedPoint_pow
null
IsElliptic.smul_ne_self [LinearOrder K] [IsStrictOrderedRing K] {g : GL (Fin 2) K} (hg : g.IsElliptic) (c : OnePoint K) : g • c ≠ c := by cases c with | infty => rw [Ne, smul_infty_eq_self_iff] refine fun h ↦ not_le_of_gt hg ?_ have : g.val.disc = (g 0 0 - g 1 1) ^ 2 := by simp only [disc_fin_two, trace_fin_two, det_fin_two] grind rw [this] apply sq_nonneg | coe c => refine fun h ↦ not_le_of_gt hg ?_ have : g.val.disc = (2 * g 1 0 * c + (g 1 1 + -g 0 0)) ^ 2 := by replace h : g 1 0 * (c * c) + (g 1 1 + -g 0 0) * c + -g 0 1 = 0 := by simpa [← fixpointPolynomial_aeval_eq_zero_iff, fixpointPolynomial, sq, sub_eq_add_neg] using h simp only [← discrim_eq_sq_of_quadratic_eq_zero h, disc_fin_two, discrim, trace_fin_two, det_fin_two] grind rw [this] apply sq_nonneg
lemma
Topology
[ "Mathlib.Algebra.QuadraticDiscriminant", "Mathlib.Data.Matrix.Action", "Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.FinTwo", "Mathlib.LinearAlgebra.Projectivization.Action", "Mathlib.Topology.Compactification.OnePoint.Basic" ]
Mathlib/Topology/Compactification/OnePoint/ProjectiveLine.lean
IsElliptic.smul_ne_self
Elliptic elements have no fixed points in `OnePoint K`.
onePointHyperplaneHomeoUnitSphere {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] {v : E} (hv : ‖v‖ = 1) : OnePoint (ℝ ∙ v)ᗮ ≃ₜ sphere (0 : E) 1 := OnePoint.equivOfIsEmbeddingOfRangeEq _ _ (isOpenEmbedding_stereographic_symm hv).toIsEmbedding (range_stereographic_symm hv)
def
Topology
[ "Mathlib.Topology.Compactification.OnePoint.Basic", "Mathlib.Geometry.Manifold.Instances.Sphere" ]
Mathlib/Topology/Compactification/OnePoint/Sphere.lean
onePointHyperplaneHomeoUnitSphere
A homeomorphism from the one-point compactification of a hyperplane in Euclidean space to the sphere.
onePointEquivSphereOfFinrankEq {ι V : Type*} [Fintype ι] [AddCommGroup V] [Module ℝ V] [FiniteDimensional ℝ V] [TopologicalSpace V] [IsTopologicalAddGroup V] [ContinuousSMul ℝ V] [T2Space V] (h : finrank ℝ V + 1 = Fintype.card ι) : OnePoint V ≃ₜ sphere (0 : EuclideanSpace ℝ ι) 1 := by classical have : Nonempty ι := Fintype.card_pos_iff.mp <| by cutsat let v : EuclideanSpace ℝ ι := .single (Classical.arbitrary ι) 1 have hv : ‖v‖ = 1 := by simp [v] have hv₀ : v ≠ 0 := fun contra ↦ by simp [contra] at hv have : Fact (finrank ℝ (EuclideanSpace ℝ ι) = finrank ℝ V + 1) := ⟨by simp [h]⟩ have hV : finrank ℝ V = finrank ℝ (ℝ ∙ v)ᗮ := (finrank_orthogonal_span_singleton hv₀).symm letI e : V ≃ₜ (ℝ ∙ v)ᗮ := (FiniteDimensional.nonempty_continuousLinearEquiv_of_finrank_eq hV).some exact e.onePointCongr.trans <| onePointHyperplaneHomeoUnitSphere hv
def
Topology
[ "Mathlib.Topology.Compactification.OnePoint.Basic", "Mathlib.Geometry.Manifold.Instances.Sphere" ]
Mathlib/Topology/Compactification/OnePoint/Sphere.lean
onePointEquivSphereOfFinrankEq
A homeomorphism from the one-point compactification of a finite-dimensional real vector space to the sphere.
arzela_ascoli₁ [CompactSpace β] (A : Set (α →ᵇ β)) (closed : IsClosed A) (H : Equicontinuous ((↑) : A → α → β)) : IsCompact A := by simp_rw [Equicontinuous, Metric.equicontinuousAt_iff_pair] at H refine TotallyBounded.isCompact_of_isClosed ?_ closed refine totallyBounded_of_finite_discretization fun ε ε0 => ?_ rcases exists_between ε0 with ⟨ε₁, ε₁0, εε₁⟩ let ε₂ := ε₁ / 2 / 2 /- We have to find a finite discretization of `u`, i.e., finite information that is sufficient to reconstruct `u` up to `ε`. This information will be provided by the values of `u` on a sufficiently dense set `tα`, slightly translated to fit in a finite `ε₂`-dense set `tβ` in the image. Such sets exist by compactness of the source and range. Then, to check that these data determine the function up to `ε`, one uses the control on the modulus of continuity to extend the closeness on tα to closeness everywhere. -/ have ε₂0 : ε₂ > 0 := half_pos (half_pos ε₁0) have : ∀ x : α, ∃ U, x ∈ U ∧ IsOpen U ∧ ∀ y ∈ U, ∀ z ∈ U, ∀ {f : α →ᵇ β}, f ∈ A → dist (f y) (f z) < ε₂ := fun x => let ⟨U, nhdsU, hU⟩ := H x _ ε₂0 let ⟨V, VU, openV, xV⟩ := _root_.mem_nhds_iff.1 nhdsU ⟨V, xV, openV, fun y hy z hz f hf => hU y (VU hy) z (VU hz) ⟨f, hf⟩⟩ choose U hU using this /- For all `x`, the set `hU x` is an open set containing `x` on which the elements of `A` fluctuate by at most `ε₂`. We extract finitely many of these sets that cover the whole space, by compactness. -/ obtain ⟨tα : Set α, _, hfin, htα : univ ⊆ ⋃ x ∈ tα, U x⟩ := isCompact_univ.elim_finite_subcover_image (fun x _ => (hU x).2.1) fun x _ => mem_biUnion (mem_univ _) (hU x).1 rcases hfin.nonempty_fintype with ⟨_⟩ obtain ⟨tβ : Set β, _, hfin, htβ : univ ⊆ ⋃y ∈ tβ, ball y ε₂⟩ := @finite_cover_balls_of_compact β _ _ isCompact_univ _ ε₂0 rcases hfin.nonempty_fintype with ⟨_⟩ choose F hF using fun y => show ∃ z ∈ tβ, dist y z < ε₂ by simpa using htβ (mem_univ y) /- Associate to every function a discrete approximation, mapping each point in `tα` to a point in `tβ` close to its true image by the function. -/ classical refine ⟨tα → tβ, by infer_instance, fun f a => ⟨F (f.1 a), (hF (f.1 a)).1⟩, ?_⟩ rintro ⟨f, hf⟩ ⟨g, hg⟩ f_eq_g refine lt_of_le_of_lt ((dist_le <| le_of_lt ε₁0).2 fun x => ?_) εε₁ obtain ⟨x', x'tα, hx'⟩ := mem_iUnion₂.1 (htα (mem_univ x)) calc dist (f x) (g x) ≤ dist (f x) (f x') + dist (g x) (g x') + dist (f x') (g x') := dist_triangle4_right _ _ _ _ _ ≤ ε₂ + ε₂ + ε₁ / 2 := by refine le_of_lt (add_lt_add (add_lt_add ?_ ?_) ?_) · exact (hU x').2.2 _ hx' _ (hU x').1 hf · exact (hU x').2.2 _ hx' _ (hU x').1 hg · have F_f_g : F (f x') = F (g x') := (congr_arg (fun f : tα → tβ => (f ⟨x', x'tα⟩ : β)) f_eq_g :) calc dist (f x') (g x') ≤ dist (f x') (F (f x')) + dist (g x') (F (f x')) := dist_triangle_right _ _ _ ...
theorem
Topology
[ "Mathlib.Topology.ContinuousMap.Bounded.Basic", "Mathlib.Topology.MetricSpace.Equicontinuity" ]
Mathlib/Topology/ContinuousMap/Bounded/ArzelaAscoli.lean
arzela_ascoli₁
First version, with pointwise equicontinuity and range in a compact space.
arzela_ascoli₂ (s : Set β) (hs : IsCompact s) (A : Set (α →ᵇ β)) (closed : IsClosed A) (in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s) (H : Equicontinuous ((↑) : A → α → β)) : IsCompact A := by /- This version is deduced from the previous one by restricting to the compact type in the target, using compactness there and then lifting everything to the original space. -/ have M : LipschitzWith 1 Subtype.val := LipschitzWith.subtype_val s let F : (α →ᵇ s) → α →ᵇ β := comp (↑) M refine IsCompact.of_isClosed_subset ((?_ : IsCompact (F ⁻¹' A)).image (continuous_comp M)) closed fun f hf => ?_ · haveI : CompactSpace s := isCompact_iff_compactSpace.1 hs refine arzela_ascoli₁ _ (continuous_iff_isClosed.1 (continuous_comp M) _ closed) ?_ rw [isUniformEmbedding_subtype_val.isUniformInducing.equicontinuous_iff] exact H.comp (A.restrictPreimage F) · let g := codRestrict s f fun x => in_s f x hf rw [show f = F g by ext; rfl] at hf ⊢ exact ⟨g, hf, rfl⟩
theorem
Topology
[ "Mathlib.Topology.ContinuousMap.Bounded.Basic", "Mathlib.Topology.MetricSpace.Equicontinuity" ]
Mathlib/Topology/ContinuousMap/Bounded/ArzelaAscoli.lean
arzela_ascoli₂
Second version, with pointwise equicontinuity and range in a compact subset.
arzela_ascoli [T2Space β] (s : Set β) (hs : IsCompact s) (A : Set (α →ᵇ β)) (in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s) (H : Equicontinuous ((↑) : A → α → β)) : IsCompact (closure A) := /- This version is deduced from the previous one by checking that the closure of `A`, in addition to being closed, still satisfies the properties of compact range and equicontinuity. -/ arzela_ascoli₂ s hs (closure A) isClosed_closure (fun _ x hf => (mem_of_closed' hs.isClosed).2 fun ε ε0 => let ⟨g, gA, dist_fg⟩ := Metric.mem_closure_iff.1 hf ε ε0 ⟨g x, in_s g x gA, lt_of_le_of_lt (dist_coe_le_dist _) dist_fg⟩) (H.closure' continuous_coe)
theorem
Topology
[ "Mathlib.Topology.ContinuousMap.Bounded.Basic", "Mathlib.Topology.MetricSpace.Equicontinuity" ]
Mathlib/Topology/ContinuousMap/Bounded/ArzelaAscoli.lean
arzela_ascoli
Third (main) version, with pointwise equicontinuity and range in a compact subset, but without closedness. The closure is then compact.
BoundedContinuousFunction (α : Type u) (β : Type v) [TopologicalSpace α] [PseudoMetricSpace β] : Type max u v extends ContinuousMap α β where map_bounded' : ∃ C, ∀ x y, dist (toFun x) (toFun y) ≤ C @[inherit_doc] scoped[BoundedContinuousFunction] infixr:25 " →ᵇ " => BoundedContinuousFunction
structure
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
BoundedContinuousFunction
`α →ᵇ β` is the type of bounded continuous functions `α → β` from a topological space to a metric space. When possible, instead of parametrizing results over `(f : α →ᵇ β)`, you should parametrize over `(F : Type*) [BoundedContinuousMapClass F α β] (f : F)`. When you extend this structure, make sure to extend `BoundedContinuousMapClass`.
BoundedContinuousMapClass (F : Type*) (α β : outParam Type*) [TopologicalSpace α] [PseudoMetricSpace β] [FunLike F α β] : Prop extends ContinuousMapClass F α β where map_bounded (f : F) : ∃ C, ∀ x y, dist (f x) (f y) ≤ C
class
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
BoundedContinuousMapClass
`BoundedContinuousMapClass F α β` states that `F` is a type of bounded continuous maps. You should also extend this typeclass when you extend `BoundedContinuousFunction`.
instFunLike : FunLike (α →ᵇ β) α β where coe f := f.toFun coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f obtain ⟨⟨_, _⟩, _⟩ := g congr
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instFunLike
null
instBoundedContinuousMapClass : BoundedContinuousMapClass (α →ᵇ β) α β where map_continuous f := f.continuous_toFun map_bounded f := f.map_bounded'
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instBoundedContinuousMapClass
null
instCoeTC [FunLike F α β] [BoundedContinuousMapClass F α β] : CoeTC F (α →ᵇ β) := ⟨fun f => { toFun := f continuous_toFun := map_continuous f map_bounded' := map_bounded f }⟩ @[simp]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instCoeTC
null
coe_toContinuousMap (f : α →ᵇ β) : (f.toContinuousMap : α → β) = f := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_toContinuousMap
null
Simps.apply (h : α →ᵇ β) : α → β := h initialize_simps_projections BoundedContinuousFunction (toFun → apply)
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
Simps.apply
See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections.
protected bounded (f : α →ᵇ β) : ∃ C, ∀ x y : α, dist (f x) (f y) ≤ C := f.map_bounded'
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
bounded
null
protected continuous (f : α →ᵇ β) : Continuous f := f.toContinuousMap.continuous @[ext]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
continuous
null
ext (h : ∀ x, f x = g x) : f = g := DFunLike.ext _ _ h
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
ext
null
isBounded_range (f : α →ᵇ β) : IsBounded (range f) := isBounded_range_iff.2 f.bounded
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
isBounded_range
null
isBounded_image (f : α →ᵇ β) (s : Set α) : IsBounded (f '' s) := f.isBounded_range.subset <| image_subset_range _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
isBounded_image
null
eq_of_empty [h : IsEmpty α] (f g : α →ᵇ β) : f = g := ext <| h.elim
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
eq_of_empty
null
mkOfBound (f : C(α, β)) (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β := ⟨f, ⟨C, h⟩⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfBound
A continuous function with an explicit bound is a bounded continuous function.
mkOfBound_coe {f} {C} {h} : (mkOfBound f C h : α → β) = (f : α → β) := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfBound_coe
null
mkOfCompact [CompactSpace α] (f : C(α, β)) : α →ᵇ β := ⟨f, isBounded_range_iff.1 (isCompact_range f.continuous).isBounded⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfCompact
A continuous function on a compact space is automatically a bounded continuous function.
mkOfCompact_apply [CompactSpace α] (f : C(α, β)) (a : α) : mkOfCompact f a = f a := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfCompact_apply
null
@[simps] mkOfDiscrete [DiscreteTopology α] (f : α → β) (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β := ⟨⟨f, continuous_of_discreteTopology⟩, ⟨C, h⟩⟩
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfDiscrete
If a function is bounded on a discrete space, it is automatically continuous, and therefore gives rise to an element of the type of bounded continuous functions.
instDist : Dist (α →ᵇ β) := ⟨fun f g => sInf { C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C }⟩
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instDist
The uniform distance between two bounded continuous functions.
dist_eq : dist f g = sInf { C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C } := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_eq
null
dist_set_exists : ∃ C, 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C := by rcases isBounded_iff.1 (f.isBounded_range.union g.isBounded_range) with ⟨C, hC⟩ refine ⟨max 0 C, le_max_left _ _, fun x => (hC ?_ ?_).trans (le_max_right _ _)⟩ <;> [left; right] <;> apply mem_range_self
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_set_exists
null
dist_coe_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := le_csInf dist_set_exists fun _ hb => hb.2 x /- This lemma will be needed in the proof of the metric space instance, but it will become useless afterwards as it will be superseded by the general result that the distance is nonnegative in metric spaces. -/
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_coe_le_dist
The pointwise distance is controlled by the distance between functions, by definition.
private dist_nonneg' : 0 ≤ dist f g := le_csInf dist_set_exists fun _ => And.left
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_nonneg'
null
dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := ⟨fun h x => le_trans (dist_coe_le_dist x) h, fun H => csInf_le ⟨0, fun _ => And.left⟩ ⟨C0, H⟩⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_le
The distance between two functions is controlled by the supremum of the pointwise distances.
dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := ⟨fun h x => le_trans (dist_coe_le_dist x) h, fun w => (dist_le (le_trans dist_nonneg (w (Nonempty.some ‹_›)))).mpr w⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_le_iff_of_nonempty
null
dist_lt_of_nonempty_compact [Nonempty α] [CompactSpace α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := by have c : Continuous fun x => dist (f x) (g x) := by fun_prop obtain ⟨x, -, le⟩ := IsCompact.exists_isMaxOn isCompact_univ Set.univ_nonempty (Continuous.continuousOn c) exact lt_of_le_of_lt (dist_le_iff_of_nonempty.mpr fun y => le trivial) (w x)
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_lt_of_nonempty_compact
null
dist_lt_iff_of_compact [CompactSpace α] (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by fconstructor · intro w x exact lt_of_le_of_lt (dist_coe_le_dist x) w · by_cases h : Nonempty α · exact dist_lt_of_nonempty_compact · rintro - convert C0 apply le_antisymm _ dist_nonneg' rw [dist_eq] exact csInf_le ⟨0, fun C => And.left⟩ ⟨le_rfl, fun x => False.elim (h (Nonempty.intro x))⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_lt_iff_of_compact
null
dist_lt_iff_of_nonempty_compact [Nonempty α] [CompactSpace α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := ⟨fun w x => lt_of_le_of_lt (dist_coe_le_dist x) w, dist_lt_of_nonempty_compact⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_lt_iff_of_nonempty_compact
null
instPseudoMetricSpace : PseudoMetricSpace (α →ᵇ β) where dist_self f := le_antisymm ((dist_le le_rfl).2 fun x => by simp) dist_nonneg' dist_comm f g := by simp [dist_eq, dist_comm] dist_triangle _ _ _ := (dist_le (add_nonneg dist_nonneg' dist_nonneg')).2 fun _ => le_trans (dist_triangle _ _ _) (add_le_add (dist_coe_le_dist _) (dist_coe_le_dist _))
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instPseudoMetricSpace
The type of bounded continuous functions, with the uniform distance, is a pseudometric space.
instMetricSpace {β} [MetricSpace β] : MetricSpace (α →ᵇ β) where eq_of_dist_eq_zero hfg := by ext x exact eq_of_dist_eq_zero (le_antisymm (hfg ▸ dist_coe_le_dist _) dist_nonneg)
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instMetricSpace
The type of bounded continuous functions, with the uniform distance, is a metric space.
nndist_eq : nndist f g = sInf { C | ∀ x : α, nndist (f x) (g x) ≤ C } := Subtype.ext <| dist_eq.trans <| by rw [val_eq_coe, coe_sInf, coe_image] simp_rw [mem_setOf_eq, ← NNReal.coe_le_coe, coe_mk, exists_prop, coe_nndist]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
nndist_eq
null
nndist_set_exists : ∃ C, ∀ x : α, nndist (f x) (g x) ≤ C := Subtype.exists.mpr <| dist_set_exists.imp fun _ ⟨ha, h⟩ => ⟨ha, h⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
nndist_set_exists
null
nndist_coe_le_nndist (x : α) : nndist (f x) (g x) ≤ nndist f g := dist_coe_le_dist x
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
nndist_coe_le_nndist
null
dist_zero_of_empty [IsEmpty α] : dist f g = 0 := by rw [(ext isEmptyElim : f = g), dist_self]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_zero_of_empty
On an empty space, bounded continuous functions are at distance 0.
dist_eq_iSup : dist f g = ⨆ x : α, dist (f x) (g x) := by cases isEmpty_or_nonempty α · rw [iSup_of_empty', Real.sSup_empty, dist_zero_of_empty] refine (dist_le_iff_of_nonempty.mpr <| le_ciSup ?_).antisymm (ciSup_le dist_coe_le_dist) exact dist_set_exists.imp fun C hC => forall_mem_range.2 hC.2
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
dist_eq_iSup
null
nndist_eq_iSup : nndist f g = ⨆ x : α, nndist (f x) (g x) := Subtype.ext <| dist_eq_iSup.trans <| by simp_rw [val_eq_coe, coe_iSup, coe_nndist]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
nndist_eq_iSup
null
edist_eq_iSup : edist f g = ⨆ x, edist (f x) (g x) := by simp_rw [edist_nndist, nndist_eq_iSup] refine ENNReal.coe_iSup ⟨nndist f g, ?_⟩ rintro - ⟨x, hx, rfl⟩ exact nndist_coe_le_nndist x
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
edist_eq_iSup
null
tendsto_iff_tendstoUniformly {ι : Type*} {F : ι → α →ᵇ β} {f : α →ᵇ β} {l : Filter ι} : Tendsto F l (𝓝 f) ↔ TendstoUniformly (fun i => F i) f l := Iff.intro (fun h => tendstoUniformly_iff.2 fun ε ε0 => (Metric.tendsto_nhds.mp h ε ε0).mp (Eventually.of_forall fun n hn x => lt_of_le_of_lt (dist_coe_le_dist x) (dist_comm (F n) f ▸ hn))) fun h => Metric.tendsto_nhds.mpr fun _ ε_pos => (h _ (dist_mem_uniformity <| half_pos ε_pos)).mp (Eventually.of_forall fun n hn => lt_of_le_of_lt ((dist_le (half_pos ε_pos).le).mpr fun x => dist_comm (f x) (F n x) ▸ le_of_lt (hn x)) (half_lt_self ε_pos))
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
tendsto_iff_tendstoUniformly
null
isInducing_coeFn : IsInducing (UniformFun.ofFun ∘ (⇑) : (α →ᵇ β) → α →ᵤ β) := by rw [isInducing_iff_nhds] refine fun f => eq_of_forall_le_iff fun l => ?_ rw [← tendsto_iff_comap, ← tendsto_id', tendsto_iff_tendstoUniformly, UniformFun.tendsto_iff_tendstoUniformly] simp [comp_def]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
isInducing_coeFn
The topology on `α →ᵇ β` is exactly the topology induced by the natural map to `α →ᵤ β`.
isEmbedding_coeFn : IsEmbedding (UniformFun.ofFun ∘ (⇑) : (α →ᵇ β) → α →ᵤ β) := ⟨isInducing_coeFn, fun _ _ h => ext fun x => congr_fun h x⟩ variable (α) in
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
isEmbedding_coeFn
null
@[simps! -fullyApplied] const (b : β) : α →ᵇ β := ⟨ContinuousMap.const α b, 0, by simp⟩
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
const
Constant as a continuous bounded function.
const_apply' (a : α) (b : β) : (const α b : α → β) a = b := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
const_apply'
null
@[continuity] continuous_eval_const {x : α} : Continuous fun f : α →ᵇ β => f x := (continuous_apply x).comp continuous_coe
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
continuous_eval_const
If the target space is inhabited, so is the space of bounded continuous functions. -/ instance [Inhabited β] : Inhabited (α →ᵇ β) := ⟨const α default⟩ theorem lipschitz_evalx (x : α) : LipschitzWith 1 fun f : α →ᵇ β => f x := LipschitzWith.mk_one fun _ _ => dist_coe_le_dist x theorem uniformContinuous_coe : @UniformContinuous (α →ᵇ β) (α → β) _ _ (⇑) := uniformContinuous_pi.2 fun x => (lipschitz_evalx x).uniformContinuous theorem continuous_coe : Continuous fun (f : α →ᵇ β) x => f x := UniformContinuous.continuous uniformContinuous_coe /-- When `x` is fixed, `(f : α →ᵇ β) ↦ f x` is continuous.
@[continuity] continuous_eval : Continuous fun p : (α →ᵇ β) × α => p.1 p.2 := (continuous_prod_of_continuous_lipschitzWith _ 1 fun f => f.continuous) <| lipschitz_evalx
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
continuous_eval
The evaluation map is continuous, as a joint function of `u` and `x`.