fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
instCompleteSpace [CompleteSpace β] : CompleteSpace (α →ᵇ β) := complete_of_cauchySeq_tendsto fun (f : ℕ → α →ᵇ β) (hf : CauchySeq f) => by /- We have to show that `f n` converges to a bounded continuous function. For this, we prove pointwise convergence to define the limit, then check it is a continuous bounded function, and then check the norm convergence. -/ rcases cauchySeq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩ have f_bdd := fun x n m N hn hm => le_trans (dist_coe_le_dist x) (b_bound n m N hn hm) have fx_cau : ∀ x, CauchySeq fun n => f n x := fun x => cauchySeq_iff_le_tendsto_0.2 ⟨b, b0, f_bdd x, b_lim⟩ choose F hF using fun x => cauchySeq_tendsto_of_complete (fx_cau x) /- `F : α → β`, `hF : ∀ (x : α), Tendsto (fun n ↦ ↑(f n) x) atTop (𝓝 (F x))` `F` is the desired limit function. Check that it is uniformly approximated by `f N`. -/ have fF_bdd : ∀ x N, dist (f N x) (F x) ≤ b N := fun x N => le_of_tendsto (tendsto_const_nhds.dist (hF x)) (Filter.eventually_atTop.2 ⟨N, fun n hn => f_bdd x N n N (le_refl N) hn⟩) refine ⟨⟨⟨F, ?_⟩, ?_⟩, ?_⟩ · -- Check that `F` is continuous, as a uniform limit of continuous functions have : TendstoUniformly (fun n x => f n x) F atTop := by refine Metric.tendstoUniformly_iff.2 fun ε ε0 => ?_ refine ((tendsto_order.1 b_lim).2 ε ε0).mono fun n hn x => ?_ rw [dist_comm] exact lt_of_le_of_lt (fF_bdd x n) hn exact this.continuous (Eventually.of_forall fun N => (f N).continuous) · -- Check that `F` is bounded rcases (f 0).bounded with ⟨C, hC⟩ refine ⟨C + (b 0 + b 0), fun x y => ?_⟩ calc dist (F x) (F y) ≤ dist (f 0 x) (f 0 y) + (dist (f 0 x) (F x) + dist (f 0 y) (F y)) := dist_triangle4_left _ _ _ _ _ ≤ C + (b 0 + b 0) := add_le_add (hC x y) (add_le_add (fF_bdd x 0) (fF_bdd y 0)) · -- Check that `F` is close to `f N` in distance terms refine tendsto_iff_dist_tendsto_zero.2 (squeeze_zero (fun _ => dist_nonneg) ?_ b_lim) exact fun N => (dist_le (b0 _)).2 fun x => fF_bdd x N
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instCompleteSpace
Bounded continuous functions taking values in a complete space form a complete space.
compContinuous {δ : Type*} [TopologicalSpace δ] (f : α →ᵇ β) (g : C(δ, α)) : δ →ᵇ β where toContinuousMap := f.1.comp g map_bounded' := f.map_bounded'.imp fun _ hC _ _ => hC _ _ @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
compContinuous
Composition of a bounded continuous function and a continuous function.
coe_compContinuous {δ : Type*} [TopologicalSpace δ] (f : α →ᵇ β) (g : C(δ, α)) : ⇑(f.compContinuous g) = f ∘ g := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_compContinuous
null
compContinuous_apply {δ : Type*} [TopologicalSpace δ] (f : α →ᵇ β) (g : C(δ, α)) (x : δ) : f.compContinuous g x = f (g x) := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
compContinuous_apply
null
lipschitz_compContinuous {δ : Type*} [TopologicalSpace δ] (g : C(δ, α)) : LipschitzWith 1 fun f : α →ᵇ β => f.compContinuous g := LipschitzWith.mk_one fun _ _ => (dist_le dist_nonneg).2 fun x => dist_coe_le_dist (g x)
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
lipschitz_compContinuous
null
continuous_compContinuous {δ : Type*} [TopologicalSpace δ] (g : C(δ, α)) : Continuous fun f : α →ᵇ β => f.compContinuous g := (lipschitz_compContinuous g).continuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
continuous_compContinuous
null
restrict (f : α →ᵇ β) (s : Set α) : s →ᵇ β := f.compContinuous <| (ContinuousMap.id _).restrict s @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
restrict
Restrict a bounded continuous function to a set.
coe_restrict (f : α →ᵇ β) (s : Set α) : ⇑(f.restrict s) = f ∘ (↑) := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_restrict
null
restrict_apply (f : α →ᵇ β) (s : Set α) (x : s) : f.restrict s x = f x := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
restrict_apply
null
comp (G : β → γ) {C : ℝ≥0} (H : LipschitzWith C G) (f : α →ᵇ β) : α →ᵇ γ := ⟨⟨fun x => G (f x), H.continuous.comp f.continuous⟩, let ⟨D, hD⟩ := f.bounded ⟨max C 0 * D, fun x y => calc dist (G (f x)) (G (f y)) ≤ C * dist (f x) (f y) := H.dist_le_mul _ _ _ ≤ max C 0 * dist (f x) (f y) := by gcongr; apply le_max_left _ ≤ max C 0 * D := by gcongr; apply hD ⟩⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
comp
Composition (in the target) of a bounded continuous function with a Lipschitz map again gives a bounded continuous function.
comp_apply (G : β → γ) {C : ℝ≥0} (H : LipschitzWith C G) (f : α →ᵇ β) (a : α) : (f.comp G H) a = G (f a) := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
comp_apply
null
lipschitz_comp {G : β → γ} {C : ℝ≥0} (H : LipschitzWith C G) : LipschitzWith C (comp G H : (α →ᵇ β) → α →ᵇ γ) := LipschitzWith.of_dist_le_mul fun f g => (dist_le (mul_nonneg C.2 dist_nonneg)).2 fun x => calc dist (G (f x)) (G (g x)) ≤ C * dist (f x) (g x) := H.dist_le_mul _ _ _ ≤ C * dist f g := by gcongr; apply dist_coe_le_dist
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
lipschitz_comp
The composition operator (in the target) with a Lipschitz map is Lipschitz.
uniformContinuous_comp {G : β → γ} {C : ℝ≥0} (H : LipschitzWith C G) : UniformContinuous (comp G H : (α →ᵇ β) → α →ᵇ γ) := (lipschitz_comp H).uniformContinuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
uniformContinuous_comp
The composition operator (in the target) with a Lipschitz map is uniformly continuous.
continuous_comp {G : β → γ} {C : ℝ≥0} (H : LipschitzWith C G) : Continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) := (lipschitz_comp H).continuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
continuous_comp
The composition operator (in the target) with a Lipschitz map is continuous.
codRestrict (s : Set β) (f : α →ᵇ β) (H : ∀ x, f x ∈ s) : α →ᵇ s := ⟨⟨s.codRestrict f H, f.continuous.subtype_mk _⟩, f.bounded⟩
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
codRestrict
Restriction (in the target) of a bounded continuous function taking values in a subset.
@[simps] noncomputable indicator (s : Set α) (hs : IsClopen s) : BoundedContinuousFunction α ℝ where toFun := s.indicator 1 continuous_toFun := continuous_indicator (by simp [hs]) <| continuous_const.continuousOn map_bounded' := ⟨1, fun x y ↦ by by_cases hx : x ∈ s <;> by_cases hy : y ∈ s <;> simp [hx, hy]⟩
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
indicator
A version of `Function.extend` for bounded continuous maps. We assume that the domain has discrete topology, so we only need to verify boundedness. -/ nonrec def extend (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : δ →ᵇ β where toFun := extend f g h continuous_toFun := continuous_of_discreteTopology map_bounded' := by rw [← isBounded_range_iff, range_extend f.injective] exact g.isBounded_range.union (h.isBounded_image _) @[simp] theorem extend_apply (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) (x : α) : extend f g h (f x) = g x := f.injective.extend_apply _ _ _ @[simp] nonrec theorem extend_comp (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h ∘ f = g := extend_comp f.injective _ _ nonrec theorem extend_apply' {f : α ↪ δ} {x : δ} (hx : x ∉ range f) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h x = h x := extend_apply' _ _ _ hx theorem extend_of_empty [IsEmpty α] (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h = h := DFunLike.coe_injective <| Function.extend_of_isEmpty f g h @[simp] theorem dist_extend_extend (f : α ↪ δ) (g₁ g₂ : α →ᵇ β) (h₁ h₂ : δ →ᵇ β) : dist (g₁.extend f h₁) (g₂.extend f h₂) = max (dist g₁ g₂) (dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ)) := by refine le_antisymm ((dist_le <| le_max_iff.2 <| Or.inl dist_nonneg).2 fun x => ?_) (max_le ?_ ?_) · rcases em (∃ y, f y = x) with (⟨x, rfl⟩ | hx) · simp only [extend_apply] exact (dist_coe_le_dist x).trans (le_max_left _ _) · simp only [extend_apply' hx] lift x to ((range f)ᶜ : Set δ) using hx calc dist (h₁ x) (h₂ x) = dist (h₁.restrict (range f)ᶜ x) (h₂.restrict (range f)ᶜ x) := rfl _ ≤ dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ) := dist_coe_le_dist x _ ≤ _ := le_max_right _ _ · refine (dist_le dist_nonneg).2 fun x => ?_ rw [← extend_apply f g₁ h₁, ← extend_apply f g₂ h₂] exact dist_coe_le_dist _ · refine (dist_le dist_nonneg).2 fun x => ?_ calc dist (h₁ x) (h₂ x) = dist (extend f g₁ h₁ x) (extend f g₂ h₂ x) := by rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop] _ ≤ _ := dist_coe_le_dist _ theorem isometry_extend (f : α ↪ δ) (h : δ →ᵇ β) : Isometry fun g : α →ᵇ β => extend f g h := Isometry.of_dist_eq fun g₁ g₂ => by simp end Extend /-- The indicator function of a clopen set, as a bounded continuous function.
@[to_additive] instOne : One (α →ᵇ β) := ⟨const α 1⟩ @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instOne
null
coe_one : ((1 : α →ᵇ β) : α → β) = 1 := rfl @[to_additive (attr := simp)]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_one
null
mkOfCompact_one [CompactSpace α] : mkOfCompact (1 : C(α, β)) = 1 := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfCompact_one
null
forall_coe_one_iff_one (f : α →ᵇ β) : (∀ x, f x = 1) ↔ f = 1 := (@DFunLike.ext_iff _ _ _ _ f 1).symm @[to_additive (attr := simp)]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
forall_coe_one_iff_one
null
one_compContinuous [TopologicalSpace γ] (f : C(γ, α)) : (1 : α →ᵇ β).compContinuous f = 1 := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
one_compContinuous
null
@[to_additive] instMul [Mul R] [BoundedMul R] [ContinuousMul R] : Mul (α →ᵇ R) where mul f g := { toFun := fun x ↦ f x * g x continuous_toFun := f.continuous.mul g.continuous map_bounded' := mul_bounded_of_bounded_of_bounded (map_bounded f) (map_bounded g) } @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instMul
null
coe_mul [Mul R] [BoundedMul R] [ContinuousMul R] (f g : α →ᵇ R) : ⇑(f * g) = f * g := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_mul
null
mul_apply [Mul R] [BoundedMul R] [ContinuousMul R] (f g : α →ᵇ R) (x : α) : (f * g) x = f x * g x := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mul_apply
null
coe_nsmulRec [PseudoMetricSpace β] [AddMonoid β] [BoundedAdd β] [ContinuousAdd β] (f : α →ᵇ β) : ∀ n, ⇑(nsmulRec n f) = n • ⇑f | 0 => by rw [nsmulRec, zero_smul, coe_zero] | n + 1 => by rw [nsmulRec, succ_nsmul, coe_add, coe_nsmulRec _ n]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_nsmulRec
null
instSMulNat [PseudoMetricSpace β] [AddMonoid β] [BoundedAdd β] [ContinuousAdd β] : SMul ℕ (α →ᵇ β) where smul n f := { toContinuousMap := n • f.toContinuousMap map_bounded' := by simpa [coe_nsmulRec] using (nsmulRec n f).map_bounded' } @[to_additive existing instSMulNat]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instSMulNat
null
instPow [Monoid R] [BoundedMul R] [ContinuousMul R] : Pow (α →ᵇ R) ℕ where pow f n := { toFun := fun x ↦ (f x) ^ n continuous_toFun := f.continuous.pow n map_bounded' := by obtain ⟨C, hC⟩ := Metric.isBounded_iff.mp <| isBounded_pow (isBounded_range f) n exact ⟨C, fun x y ↦ hC (by simp) (by simp)⟩ } @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instPow
null
coe_pow [Monoid R] [BoundedMul R] [ContinuousMul R] (n : ℕ) (f : α →ᵇ R) : ⇑(f ^ n) = (⇑f) ^ n := rfl @[to_additive (attr := simp)]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_pow
null
pow_apply [Monoid R] [BoundedMul R] [ContinuousMul R] (n : ℕ) (f : α →ᵇ R) (x : α) : (f ^ n) x = f x ^ n := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
pow_apply
null
instMonoid [Monoid R] [BoundedMul R] [ContinuousMul R] : Monoid (α →ᵇ R) := Injective.monoid _ DFunLike.coe_injective' rfl (fun _ _ ↦ rfl) (fun _ _ ↦ rfl) @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instMonoid
null
instCommMonoid [CommMonoid R] [BoundedMul R] [ContinuousMul R] : CommMonoid (α →ᵇ R) where __ := instMonoid mul_comm f g := by ext x; simp [mul_apply, mul_comm] @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instCommMonoid
null
instMulOneClass [MulOneClass R] [BoundedMul R] [ContinuousMul R] : MulOneClass (α →ᵇ R) := DFunLike.coe_injective.mulOneClass _ coe_one coe_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instMulOneClass
null
@[to_additive (attr := simps) /-- Composition on the left by a (lipschitz-continuous) homomorphism of topological `AddMonoid`s, as a `AddMonoidHom`. Similar to `AddMonoidHom.compLeftContinuous`. -/] protected _root_.MonoidHom.compLeftContinuousBounded (α : Type*) [TopologicalSpace α] [PseudoMetricSpace β] [Monoid β] [BoundedMul β] [ContinuousMul β] [PseudoMetricSpace γ] [Monoid γ] [BoundedMul γ] [ContinuousMul γ] (g : β →* γ) {C : NNReal} (hg : LipschitzWith C g) : (α →ᵇ β) →* (α →ᵇ γ) where toFun f := f.comp g hg map_one' := ext fun _ => g.map_one map_mul' _ _ := ext fun _ => g.map_mul _ _
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
_root_.MonoidHom.compLeftContinuousBounded
Composition on the left by a (lipschitz-continuous) homomorphism of topological monoids, as a `MonoidHom`. Similar to `MonoidHom.compLeftContinuous`.
@[simp] mkOfCompact_add [CompactSpace α] [Add β] [BoundedAdd β] [ContinuousAdd β] (f g : C(α, β)) : mkOfCompact (f + g) = mkOfCompact f + mkOfCompact g := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
mkOfCompact_add
null
add_compContinuous [Add β] [BoundedAdd β] [ContinuousAdd β] [TopologicalSpace γ] (f g : α →ᵇ β) (h : C(γ, α)) : (g + f).compContinuous h = g.compContinuous h + f.compContinuous h := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
add_compContinuous
null
@[simps] coeFnAddHom [AddMonoid β] [BoundedAdd β] [ContinuousAdd β] : (α →ᵇ β) →+ α → β where toFun := (⇑) map_zero' := coe_zero map_add' := coe_add variable (α β)
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coeFnAddHom
Coercion of a `NormedAddGroupHom` is an `AddMonoidHom`. Similar to `AddMonoidHom.coeFn`.
@[simps] toContinuousMapAddHom [AddMonoid β] [BoundedAdd β] [ContinuousAdd β] : (α →ᵇ β) →+ C(α, β) where toFun := toContinuousMap map_zero' := rfl map_add' := by intros ext simp
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
toContinuousMapAddHom
The additive map forgetting that a bounded continuous function is bounded.
@[simp] coe_sum {ι : Type*} (s : Finset ι) (f : ι → α →ᵇ β) : ⇑(∑ i ∈ s, f i) = ∑ i ∈ s, (f i : α → β) := map_sum coeFnAddHom f s
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_sum
null
sum_apply {ι : Type*} (s : Finset ι) (f : ι → α →ᵇ β) (a : α) : (∑ i ∈ s, f i) a = ∑ i ∈ s, f i a := by simp
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
sum_apply
null
instLipschitzAdd : LipschitzAdd (α →ᵇ β) where lipschitz_add := ⟨LipschitzAdd.C β, by have C_nonneg := (LipschitzAdd.C β).coe_nonneg rw [lipschitzWith_iff_dist_le_mul] rintro ⟨f₁, g₁⟩ ⟨f₂, g₂⟩ rw [dist_le (mul_nonneg C_nonneg dist_nonneg)] intro x refine le_trans (lipschitz_with_lipschitz_const_add ⟨f₁ x, g₁ x⟩ ⟨f₂ x, g₂ x⟩) ?_ gcongr apply max_le_max <;> exact dist_coe_le_dist x⟩
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instLipschitzAdd
null
instSub : Sub (α →ᵇ R) where sub f g := { toFun := fun x ↦ (f x - g x), map_bounded' := sub_bounded_of_bounded_of_bounded f.map_bounded' g.map_bounded' }
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instSub
The pointwise difference of two bounded continuous functions is again bounded continuous.
sub_apply {x : α} : (f - g) x = f x - g x := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
sub_apply
null
coe_sub : ⇑(f - g) = f - g := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_sub
null
@[simp] natCast_apply [NatCast β] (n : ℕ) (x : α) : (n : α →ᵇ β) x = n := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
natCast_apply
null
@[simp] intCast_apply [IntCast β] (m : ℤ) (x : α) : (m : α →ᵇ β) x = m := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
intCast_apply
null
instSemiring {R : Type*} [TopologicalSpace α] [PseudoMetricSpace R] [Semiring R] [BoundedMul R] [ContinuousMul R] [BoundedAdd R] [ContinuousAdd R] : Semiring (α →ᵇ R) := Injective.semiring _ DFunLike.coe_injective' rfl rfl (fun _ _ ↦ rfl) (fun _ _ ↦ rfl) (fun _ _ ↦ rfl) (fun _ _ ↦ rfl) (fun _ ↦ rfl)
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instSemiring
null
instSMul : SMul 𝕜 (α →ᵇ β) where smul c f := { toContinuousMap := c • f.toContinuousMap map_bounded' := let ⟨b, hb⟩ := f.bounded ⟨dist c 0 * b, fun x y => by refine (dist_smul_pair c (f x) (f y)).trans ?_ gcongr apply hb⟩ } @[simp]
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instSMul
null
coe_smul (c : 𝕜) (f : α →ᵇ β) : ⇑(c • f) = fun x => c • f x := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
coe_smul
null
smul_apply (c : 𝕜) (f : α →ᵇ β) (x : α) : (c • f) x = c • f x := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
smul_apply
null
instIsScalarTower {𝕜' : Type*} [PseudoMetricSpace 𝕜'] [Zero 𝕜'] [SMul 𝕜' β] [IsBoundedSMul 𝕜' β] [SMul 𝕜' 𝕜] [IsScalarTower 𝕜' 𝕜 β] : IsScalarTower 𝕜' 𝕜 (α →ᵇ β) where smul_assoc _ _ _ := ext fun _ ↦ smul_assoc ..
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instIsScalarTower
null
instSMulCommClass {𝕜' : Type*} [PseudoMetricSpace 𝕜'] [Zero 𝕜'] [SMul 𝕜' β] [IsBoundedSMul 𝕜' β] [SMulCommClass 𝕜' 𝕜 β] : SMulCommClass 𝕜' 𝕜 (α →ᵇ β) where smul_comm _ _ _ := ext fun _ ↦ smul_comm ..
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instSMulCommClass
null
instIsCentralScalar [SMul 𝕜ᵐᵒᵖ β] [IsCentralScalar 𝕜 β] : IsCentralScalar 𝕜 (α →ᵇ β) where op_smul_eq_smul _ _ := ext fun _ => op_smul_eq_smul _ _
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instIsCentralScalar
null
instIsBoundedSMul : IsBoundedSMul 𝕜 (α →ᵇ β) where dist_smul_pair' c f₁ f₂ := by rw [dist_le (mul_nonneg dist_nonneg dist_nonneg)] intro x refine (dist_smul_pair c (f₁ x) (f₂ x)).trans ?_ gcongr apply dist_coe_le_dist dist_pair_smul' c₁ c₂ f := by rw [dist_le (by positivity)] intro x refine (dist_pair_smul c₁ c₂ (f x)).trans ?_ gcongr apply dist_coe_le_dist (g := 0)
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instIsBoundedSMul
null
instMulAction : MulAction 𝕜 (α →ᵇ β) := DFunLike.coe_injective.mulAction _ coe_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instMulAction
null
instDistribMulAction : DistribMulAction 𝕜 (α →ᵇ β) := DFunLike.coe_injective.distribMulAction ⟨⟨_, coe_zero⟩, coe_add⟩ coe_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instDistribMulAction
null
instModule : Module 𝕜 (α →ᵇ β) := DFunLike.coe_injective.module _ ⟨⟨_, coe_zero⟩, coe_add⟩ coe_smul variable (𝕜)
instance
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
instModule
null
@[simps] evalCLM (x : α) : (α →ᵇ β) →L[𝕜] β where toFun f := f x map_add' _ _ := add_apply _ _ _ map_smul' _ _ := smul_apply _ _ _ variable (α β)
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
evalCLM
The evaluation at a point, as a continuous linear map from `α →ᵇ β` to `β`.
@[simps] toContinuousMapLinearMap : (α →ᵇ β) →ₗ[𝕜] C(α, β) where toFun := toContinuousMap map_smul' _ _ := rfl map_add' _ _ := rfl
def
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
toContinuousMapLinearMap
The linear map forgetting that a bounded continuous function is bounded.
NNReal.upper_bound {α : Type*} [TopologicalSpace α] (f : α →ᵇ ℝ≥0) (x : α) : f x ≤ nndist f 0 := by have key : nndist (f x) ((0 : α →ᵇ ℝ≥0) x) ≤ nndist f 0 := @dist_coe_le_dist α ℝ≥0 _ _ f 0 x simp only [coe_zero, Pi.zero_apply] at key rwa [NNReal.nndist_zero_eq_val' (f x)] at key
theorem
Topology
[ "Mathlib.Topology.Algebra.Indicator", "Mathlib.Topology.Bornology.BoundedOperation", "Mathlib.Topology.ContinuousMap.Algebra" ]
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
NNReal.upper_bound
null
instNorm : Norm (α →ᵇ β) := ⟨(dist · 0)⟩
instance
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
instNorm
null
norm_def : ‖f‖ = dist f 0 := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_def
null
norm_eq (f : α →ᵇ β) : ‖f‖ = sInf { C : ℝ | 0 ≤ C ∧ ∀ x : α, ‖f x‖ ≤ C } := by simp [norm_def, BoundedContinuousFunction.dist_eq]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_eq
The norm of a bounded continuous function is the supremum of `‖f x‖`. We use `sInf` to ensure that the definition works if `α` has no elements.
norm_eq_of_nonempty [h : Nonempty α] : ‖f‖ = sInf { C : ℝ | ∀ x : α, ‖f x‖ ≤ C } := by obtain ⟨a⟩ := h rw [norm_eq] congr ext simp only [and_iff_right_iff_imp] exact fun h' => le_trans (norm_nonneg (f a)) (h' a) @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_eq_of_nonempty
When the domain is non-empty, we do not need the `0 ≤ C` condition in the formula for `‖f‖` as a `sInf`.
norm_eq_zero_of_empty [IsEmpty α] : ‖f‖ = 0 := dist_zero_of_empty
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_eq_zero_of_empty
null
norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := calc ‖f x‖ = dist (f x) ((0 : α →ᵇ β) x) := by simp [dist_zero_right] _ ≤ ‖f‖ := dist_coe_le_dist _
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_coe_le_norm
null
neg_norm_le_apply (f : α →ᵇ ℝ) (x : α) : -‖f‖ ≤ f x := (abs_le.mp (norm_coe_le_norm f x)).1
lemma
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
neg_norm_le_apply
null
apply_le_norm (f : α →ᵇ ℝ) (x : α) : f x ≤ ‖f‖ := (abs_le.mp (norm_coe_le_norm f x)).2
lemma
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
apply_le_norm
null
dist_le_two_norm' {f : γ → β} {C : ℝ} (hC : ∀ x, ‖f x‖ ≤ C) (x y : γ) : dist (f x) (f y) ≤ 2 * C := calc dist (f x) (f y) ≤ ‖f x‖ + ‖f y‖ := dist_le_norm_add_norm _ _ _ ≤ C + C := add_le_add (hC x) (hC y) _ = 2 * C := (two_mul _).symm
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
dist_le_two_norm'
null
dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := dist_le_two_norm' f.norm_coe_le_norm x y variable {f}
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
dist_le_two_norm
Distance between the images of any two points is at most twice the norm of the function.
norm_le (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := by simpa using @dist_le _ _ _ _ f 0 _ C0
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_le
The norm of a function is controlled by the supremum of the pointwise norms.
norm_le_of_nonempty [Nonempty α] {f : α →ᵇ β} {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := by simp_rw [norm_def, ← dist_zero_right] exact dist_le_iff_of_nonempty
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_le_of_nonempty
null
norm_lt_iff_of_compact [CompactSpace α] {f : α →ᵇ β} {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := by simp_rw [norm_def, ← dist_zero_right] exact dist_lt_iff_of_compact M0
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_lt_iff_of_compact
null
norm_lt_iff_of_nonempty_compact [Nonempty α] [CompactSpace α] {f : α →ᵇ β} {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := by simp_rw [norm_def, ← dist_zero_right] exact dist_lt_iff_of_nonempty_compact variable (f)
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_lt_iff_of_nonempty_compact
null
norm_const_le (b : β) : ‖const α b‖ ≤ ‖b‖ := (norm_le (norm_nonneg b)).2 fun _ => le_rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_const_le
Norm of `const α b` is less than or equal to `‖b‖`. If `α` is nonempty, then it is equal to `‖b‖`.
norm_const_eq [h : Nonempty α] (b : β) : ‖const α b‖ = ‖b‖ := le_antisymm (norm_const_le b) <| h.elim fun x => (const α b).norm_coe_le_norm x
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_const_eq
null
ofNormedAddCommGroup {α : Type u} {β : Type v} [TopologicalSpace α] [SeminormedAddCommGroup β] (f : α → β) (Hf : Continuous f) (C : ℝ) (H : ∀ x, ‖f x‖ ≤ C) : α →ᵇ β := ⟨⟨fun n => f n, Hf⟩, ⟨_, dist_le_two_norm' H⟩⟩ @[simp]
def
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
ofNormedAddCommGroup
Constructing a bounded continuous function from a uniformly bounded continuous function taking values in a normed group.
coe_ofNormedAddCommGroup {α : Type u} {β : Type v} [TopologicalSpace α] [SeminormedAddCommGroup β] (f : α → β) (Hf : Continuous f) (C : ℝ) (H : ∀ x, ‖f x‖ ≤ C) : (ofNormedAddCommGroup f Hf C H : α → β) = f := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
coe_ofNormedAddCommGroup
null
norm_ofNormedAddCommGroup_le {f : α → β} (hfc : Continuous f) {C : ℝ} (hC : 0 ≤ C) (hfC : ∀ x, ‖f x‖ ≤ C) : ‖ofNormedAddCommGroup f hfc C hfC‖ ≤ C := (norm_le hC).2 hfC
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_ofNormedAddCommGroup_le
null
ofNormedAddCommGroupDiscrete {α : Type u} {β : Type v} [TopologicalSpace α] [DiscreteTopology α] [SeminormedAddCommGroup β] (f : α → β) (C : ℝ) (H : ∀ x, norm (f x) ≤ C) : α →ᵇ β := ofNormedAddCommGroup f continuous_of_discreteTopology C H @[simp]
def
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
ofNormedAddCommGroupDiscrete
Constructing a bounded continuous function from a uniformly bounded function on a discrete space, taking values in a normed group.
coe_ofNormedAddCommGroupDiscrete {α : Type u} {β : Type v} [TopologicalSpace α] [DiscreteTopology α] [SeminormedAddCommGroup β] (f : α → β) (C : ℝ) (H : ∀ x, ‖f x‖ ≤ C) : (ofNormedAddCommGroupDiscrete f C H : α → β) = f := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
coe_ofNormedAddCommGroupDiscrete
null
normComp : α →ᵇ ℝ := f.comp norm lipschitzWith_one_norm @[simp]
def
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
normComp
Taking the pointwise norm of a bounded continuous function with values in a `SeminormedAddCommGroup` yields a bounded continuous function with values in ℝ.
coe_normComp : (f.normComp : α → ℝ) = norm ∘ f := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
coe_normComp
null
norm_normComp : ‖f.normComp‖ = ‖f‖ := by simp only [norm_eq, coe_normComp, norm_norm, Function.comp]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_normComp
null
bddAbove_range_norm_comp : BddAbove <| Set.range <| norm ∘ f := (@isBounded_range _ _ _ _ f.normComp).bddAbove
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
bddAbove_range_norm_comp
null
norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := by simp_rw [norm_def, dist_eq_iSup, coe_zero, Pi.zero_apply, dist_zero_right]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_eq_iSup_norm
null
instNormOneClass [Nonempty α] [One β] [NormOneClass β] : NormOneClass (α →ᵇ β) where norm_one := by simp only [norm_eq_iSup_norm, coe_one, Pi.one_apply, norm_one, ciSup_const]
instance
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
instNormOneClass
If `‖(1 : β)‖ = 1`, then `‖(1 : α →ᵇ β)‖ = 1` if `α` is nonempty.
nnnorm_le (C : ℝ≥0) : ‖f‖₊ ≤ C ↔ ∀ x : α, ‖f x‖₊ ≤ C := norm_le C.prop
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
nnnorm_le
The pointwise opposite of a bounded continuous function is again bounded continuous. -/ instance : Neg (α →ᵇ β) := ⟨fun f => ofNormedAddCommGroup (-f) f.continuous.neg ‖f‖ fun x => norm_neg ((⇑f) x) ▸ f.norm_coe_le_norm x⟩ @[simp] theorem coe_neg : ⇑(-f) = -f := rfl theorem neg_apply : (-f) x = -f x := rfl @[simp] theorem mkOfCompact_neg [CompactSpace α] (f : C(α, β)) : mkOfCompact (-f) = -mkOfCompact f := rfl @[simp] theorem mkOfCompact_sub [CompactSpace α] (f g : C(α, β)) : mkOfCompact (f - g) = mkOfCompact f - mkOfCompact g := rfl @[simp] theorem coe_zsmulRec : ∀ z, ⇑(zsmulRec (· • ·) z f) = z • ⇑f | Int.ofNat n => by rw [zsmulRec, Int.ofNat_eq_coe, coe_nsmul, natCast_zsmul] | Int.negSucc n => by rw [zsmulRec, negSucc_zsmul, coe_neg, coe_nsmul] instance instSMulInt : SMul ℤ (α →ᵇ β) where smul n f := { toContinuousMap := n • f.toContinuousMap map_bounded' := by simpa using (zsmulRec (· • ·) n f).map_bounded' } @[simp] theorem coe_zsmul (r : ℤ) (f : α →ᵇ β) : ⇑(r • f) = r • ⇑f := rfl @[simp] theorem zsmul_apply (r : ℤ) (f : α →ᵇ β) (v : α) : (r • f) v = r • f v := rfl instance instAddCommGroup : AddCommGroup (α →ᵇ β) := fast_instance% DFunLike.coe_injective.addCommGroup _ coe_zero coe_add coe_neg coe_sub (fun _ _ => coe_nsmul _ _) fun _ _ => coe_zsmul _ _ instance instSeminormedAddCommGroup : SeminormedAddCommGroup (α →ᵇ β) where dist_eq f g := by simp only [norm_eq, dist_eq, dist_eq_norm, sub_apply] instance instNormedAddCommGroup {α β} [TopologicalSpace α] [NormedAddCommGroup β] : NormedAddCommGroup (α →ᵇ β) := { instSeminormedAddCommGroup with eq_of_dist_eq_zero } theorem nnnorm_def : ‖f‖₊ = nndist f 0 := rfl theorem nnnorm_coe_le_nnnorm (x : α) : ‖f x‖₊ ≤ ‖f‖₊ := norm_coe_le_norm _ _ theorem nndist_le_two_nnnorm (x y : α) : nndist (f x) (f y) ≤ 2 * ‖f‖₊ := dist_le_two_norm _ _ _ /-- The `nnnorm` of a function is controlled by the supremum of the pointwise `nnnorm`s.
nnnorm_const_le (b : β) : ‖const α b‖₊ ≤ ‖b‖₊ := norm_const_le _ @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
nnnorm_const_le
null
nnnorm_const_eq [Nonempty α] (b : β) : ‖const α b‖₊ = ‖b‖₊ := Subtype.ext <| norm_const_eq _
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
nnnorm_const_eq
null
nnnorm_eq_iSup_nnnorm : ‖f‖₊ = ⨆ x : α, ‖f x‖₊ := Subtype.ext <| (norm_eq_iSup_norm f).trans <| by simp_rw [val_eq_coe, NNReal.coe_iSup, coe_nnnorm]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
nnnorm_eq_iSup_nnnorm
null
enorm_eq_iSup_enorm : ‖f‖ₑ = ⨆ x, ‖f x‖ₑ := by simpa only [← edist_zero_eq_enorm] using edist_eq_iSup
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
enorm_eq_iSup_enorm
null
abs_diff_coe_le_dist : ‖f x - g x‖ ≤ dist f g := by rw [dist_eq_norm] exact (f - g).norm_coe_le_norm x
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
abs_diff_coe_le_dist
null
coe_le_coe_add_dist {f g : α →ᵇ ℝ} : f x ≤ g x + dist f g := sub_le_iff_le_add'.1 <| (abs_le.1 <| @dist_coe_le_dist _ _ _ _ f g x).2
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
coe_le_coe_add_dist
null
norm_compContinuous_le [TopologicalSpace γ] (f : α →ᵇ β) (g : C(γ, α)) : ‖f.compContinuous g‖ ≤ ‖f‖ := ((lipschitz_compContinuous g).dist_le_mul f 0).trans <| by rw [NNReal.coe_one, one_mul, dist_zero_right]
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
norm_compContinuous_le
null
instNormedSpace [NormedField 𝕜] [NormedSpace 𝕜 β] : NormedSpace 𝕜 (α →ᵇ β) := ⟨fun c f => by refine norm_ofNormedAddCommGroup_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) ?_ exact fun x => norm_smul c (f x) ▸ mul_le_mul_of_nonneg_left (f.norm_coe_le_norm _) (norm_nonneg _)⟩ variable [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 β] variable [SeminormedAddCommGroup γ] [NormedSpace 𝕜 γ] variable (α)
instance
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
instNormedSpace
null
protected _root_.ContinuousLinearMap.compLeftContinuousBounded (g : β →L[𝕜] γ) : (α →ᵇ β) →L[𝕜] α →ᵇ γ := LinearMap.mkContinuous { toFun := fun f => ofNormedAddCommGroup (g ∘ f) (g.continuous.comp f.continuous) (‖g‖ * ‖f‖) fun x => g.le_opNorm_of_le (f.norm_coe_le_norm x) map_add' := fun f g => by ext; simp map_smul' := fun c f => by ext; simp } ‖g‖ fun f => norm_ofNormedAddCommGroup_le _ (mul_nonneg (norm_nonneg g) (norm_nonneg f)) (fun x => by exact g.le_opNorm_of_le (f.norm_coe_le_norm x)) @[simp]
def
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
_root_.ContinuousLinearMap.compLeftContinuousBounded
Postcomposition of bounded continuous functions into a normed module by a continuous linear map is a continuous linear map. Upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`.
_root_.ContinuousLinearMap.compLeftContinuousBounded_apply (g : β →L[𝕜] γ) (f : α →ᵇ β) (x : α) : (g.compLeftContinuousBounded α f) x = g (f x) := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
_root_.ContinuousLinearMap.compLeftContinuousBounded_apply
null
instNonUnitalRing : NonUnitalRing (α →ᵇ R) := fast_instance% DFunLike.coe_injective.nonUnitalRing _ coe_zero coe_add coe_mul coe_neg coe_sub (fun _ _ => coe_nsmul _ _) fun _ _ => coe_zsmul _ _
instance
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
instNonUnitalRing
null
instNonUnitalSeminormedRing : NonUnitalSeminormedRing (α →ᵇ R) where __ := instSeminormedAddCommGroup __ := instNonUnitalRing norm_mul_le f g := norm_ofNormedAddCommGroup_le _ (by positivity) (fun x ↦ (norm_mul_le _ _).trans <| mul_le_mul (norm_coe_le_norm f x) (norm_coe_le_norm g x) (norm_nonneg _) (norm_nonneg _))
instance
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
instNonUnitalSeminormedRing
null
instNonUnitalSeminormedCommRing [NonUnitalSeminormedCommRing R] : NonUnitalSeminormedCommRing (α →ᵇ R) where mul_comm _ _ := ext fun _ ↦ mul_comm ..
instance
Topology
[ "Mathlib.Algebra.Module.MinimalAxioms", "Mathlib.Analysis.Normed.Order.Lattice", "Mathlib.Analysis.Normed.Operator.Basic", "Mathlib.Topology.ContinuousMap.Bounded.Basic" ]
Mathlib/Topology/ContinuousMap/Bounded/Normed.lean
instNonUnitalSeminormedCommRing
null