fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
@[simps] functorNhds (h : IsOpenMap f) (x : X) : OpenNhds x ⥤ OpenNhds (f x) where obj U := ⟨h.functor.obj U.1, ⟨x, U.2, rfl⟩⟩ map i := h.functor.map i
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
functorNhds
An open map `f : X ⟶ Y` induces a functor `OpenNhds x ⥤ OpenNhds (f x)`.
adjunctionNhds (h : IsOpenMap f) (x : X) : IsOpenMap.functorNhds h x ⊣ OpenNhds.map f x where unit := { app := fun _ => homOfLE fun x hxU => ⟨x, hxU, rfl⟩ } counit := { app := fun _ => homOfLE fun _ ⟨_, hfxV, hxy⟩ => hxy ▸ hfxV }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
adjunctionNhds
An open map `f : X ⟶ Y` induces an adjunction between `OpenNhds x` and `OpenNhds (f x)`.
@[simps] functorNhds (h : IsInducing f) (x : X) : OpenNhds x ⥤ OpenNhds (f x) where obj U := ⟨h.functor.obj U.1, (h.mem_functorObj_iff U.1).mpr U.2⟩ map := h.functor.map
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
functorNhds
An inducing map `f : X ⟶ Y` induces a functor `open_nhds x ⥤ open_nhds (f x)`.
adjunctionNhds (h : IsInducing f) (x : X) : OpenNhds.map f x ⊣ h.functorNhds x where unit := { app := fun U => homOfLE (h.adjunction.unit.app U.1).le } counit := { app := fun U => homOfLE (h.adjunction.counit.app U.1).le }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
adjunctionNhds
An inducing map `f : X ⟶ Y` induces an adjunction between `open_nhds x` and `open_nhds (f x)`.
opensHom.instFunLike : FunLike (U ⟶ V) U V where coe f := Set.inclusion f.le coe_injective' := by rintro ⟨⟨_⟩⟩ _ _; congr!
instance
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
opensHom.instFunLike
null
apply_def (f : U ⟶ V) (x : U) : f x = ⟨x, f.le x.2⟩ := rfl @[simp] lemma apply_mk (f : U ⟶ V) (x : X) (hx) : f ⟨x, hx⟩ = ⟨x, f.le hx⟩ := rfl @[simp] lemma val_apply (f : U ⟶ V) (x : U) : (f x : X) = x := rfl @[simp, norm_cast] lemma coe_id (f : U ⟶ U) : ⇑f = id := rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
apply_def
null
id_apply (f : U ⟶ U) (x : U) : f x = x := rfl @[simp] lemma comp_apply (f : U ⟶ V) (g : V ⟶ W) (x : U) : (f ≫ g) x = g (f x) := rfl /-! We now construct as morphisms various inclusions of open sets. -/
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
id_apply
null
noncomputable infLELeft (U V : Opens X) : U ⊓ V ⟶ U := inf_le_left.hom
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
infLELeft
The inclusion `U ⊓ V ⟶ U` as a morphism in the category of open sets.
noncomputable infLERight (U V : Opens X) : U ⊓ V ⟶ V := inf_le_right.hom
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
infLERight
The inclusion `U ⊓ V ⟶ V` as a morphism in the category of open sets.
noncomputable leSupr {ι : Type*} (U : ι → Opens X) (i : ι) : U i ⟶ iSup U := (le_iSup U i).hom
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
leSupr
The inclusion `U i ⟶ iSup U` as a morphism in the category of open sets.
noncomputable botLE (U : Opens X) : ⊥ ⟶ U := bot_le.hom
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
botLE
The inclusion `⊥ ⟶ U` as a morphism in the category of open sets.
noncomputable leTop (U : Opens X) : U ⟶ ⊤ := le_top.hom
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
leTop
The inclusion `U ⟶ ⊤` as a morphism in the category of open sets.
infLELeft_apply (U V : Opens X) (x) : (infLELeft U V) x = ⟨x.1, (@inf_le_left _ _ U V : _ ≤ _) x.2⟩ := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
infLELeft_apply
null
infLELeft_apply_mk (U V : Opens X) (x) (m) : (infLELeft U V) ⟨x, m⟩ = ⟨x, (@inf_le_left _ _ U V : _ ≤ _) m⟩ := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
infLELeft_apply_mk
null
leSupr_apply_mk {ι : Type*} (U : ι → Opens X) (i : ι) (x) (m) : (leSupr U i) ⟨x, m⟩ = ⟨x, (le_iSup U i :) m⟩ := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
leSupr_apply_mk
null
toTopCat (X : TopCat.{u}) : Opens X ⥤ TopCat where obj U := TopCat.of U map i := TopCat.ofHom ⟨fun x ↦ ⟨x.1, i.le x.2⟩, IsEmbedding.subtypeVal.continuous_iff.2 continuous_induced_dom⟩ @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
toTopCat
The functor from open sets in `X` to `TopCat`, realising each open set as a topological space itself.
toTopCat_map (X : TopCat.{u}) {U V : Opens X} {f : U ⟶ V} {x} {h} : ((toTopCat X).map f) ⟨x, h⟩ = ⟨x, f.le h⟩ := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
toTopCat_map
null
@[simps! -fullyApplied] inclusion' {X : TopCat.{u}} (U : Opens X) : (toTopCat X).obj U ⟶ X := TopCat.ofHom { toFun := _ continuous_toFun := continuous_subtype_val } @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
inclusion'
The inclusion map from an open subset to the whole space, as a morphism in `TopCat`.
coe_inclusion' {X : TopCat} {U : Opens X} : (inclusion' U : U → X) = Subtype.val := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
coe_inclusion'
null
isOpenEmbedding {X : TopCat.{u}} (U : Opens X) : IsOpenEmbedding (inclusion' U) := U.2.isOpenEmbedding_subtypeVal
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
isOpenEmbedding
null
inclusionTopIso (X : TopCat.{u}) : (toTopCat X).obj ⊤ ≅ X where hom := inclusion' ⊤ inv := TopCat.ofHom ⟨fun x => ⟨x, trivial⟩, continuous_def.2 fun _ ⟨_, hS, hSU⟩ => hSU ▸ hS⟩
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
inclusionTopIso
The inclusion of the top open subset (i.e. the whole space) is an isomorphism.
map (f : X ⟶ Y) : Opens Y ⥤ Opens X where obj U := ⟨f ⁻¹' (U : Set Y), U.isOpen.preimage f.hom.continuous⟩ map i := ⟨⟨fun _ h => i.le h⟩⟩ @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map
`Opens.map f` gives the functor from open sets in Y to open set in X, given by taking preimages under f.
map_coe (f : X ⟶ Y) (U : Opens Y) : ((map f).obj U : Set X) = f ⁻¹' (U : Set Y) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_coe
null
map_obj (f : X ⟶ Y) (U) (p) : (map f).obj ⟨U, p⟩ = ⟨f ⁻¹' U, p.preimage f.hom.continuous⟩ := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_obj
null
map_homOfLE (f : X ⟶ Y) {U V : Opens Y} (e : U ≤ V) : (TopologicalSpace.Opens.map f).map (homOfLE e) = homOfLE (show (Opens.map f).obj U ≤ (Opens.map f).obj V from fun _ hx ↦ e hx) := rfl @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_homOfLE
null
map_id_obj (U : Opens X) : (map (𝟙 X)).obj U = U := let ⟨_, _⟩ := U rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_id_obj
null
map_id_obj' (U) (p) : (map (𝟙 X)).obj ⟨U, p⟩ = ⟨U, p⟩ := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_id_obj'
null
map_id_obj_unop (U : (Opens X)ᵒᵖ) : (map (𝟙 X)).obj (unop U) = unop U := by simp
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_id_obj_unop
null
op_map_id_obj (U : (Opens X)ᵒᵖ) : (map (𝟙 X)).op.obj U = U := by simp @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
op_map_id_obj
null
map_top (f : X ⟶ Y) : (Opens.map f).obj ⊤ = ⊤ := rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_top
null
noncomputable leMapTop (f : X ⟶ Y) (U : Opens X) : U ⟶ (map f).obj ⊤ := leTop U @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
leMapTop
The inclusion `U ⟶ (map f).obj ⊤` as a morphism in the category of open sets.
map_comp_obj (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).obj U = (map f).obj ((map g).obj U) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_comp_obj
null
map_comp_obj' (f : X ⟶ Y) (g : Y ⟶ Z) (U) (p) : (map (f ≫ g)).obj ⟨U, p⟩ = (map f).obj ((map g).obj ⟨U, p⟩) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_comp_obj'
null
map_comp_map (f : X ⟶ Y) (g : Y ⟶ Z) {U V} (i : U ⟶ V) : (map (f ≫ g)).map i = (map f).map ((map g).map i) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_comp_map
null
map_comp_obj_unop (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).obj (unop U) = (map f).obj ((map g).obj (unop U)) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_comp_obj_unop
null
op_map_comp_obj (f : X ⟶ Y) (g : Y ⟶ Z) (U) : (map (f ≫ g)).op.obj U = (map f).op.obj ((map g).op.obj U) := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
op_map_comp_obj
null
map_iSup (f : X ⟶ Y) {ι : Type*} (U : ι → Opens Y) : (map f).obj (iSup U) = iSup ((map f).obj ∘ U) := by ext1; rw [iSup_def, iSup_def, map_obj] dsimp; rw [Set.preimage_iUnion]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_iSup
null
@[simps] mapId : map (𝟙 X) ≅ 𝟭 (Opens X) where hom := { app := fun U => eqToHom (map_id_obj U) } inv := { app := fun U => eqToHom (map_id_obj U).symm }
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapId
The functor `Opens X ⥤ Opens X` given by taking preimages under the identity function is naturally isomorphic to the identity functor.
map_id_eq : map (𝟙 X) = 𝟭 (Opens X) := by rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_id_eq
null
@[simps] mapComp (f : X ⟶ Y) (g : Y ⟶ Z) : map (f ≫ g) ≅ map g ⋙ map f where hom := { app := fun U => eqToHom (map_comp_obj f g U) } inv := { app := fun U => eqToHom (map_comp_obj f g U).symm }
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapComp
The natural isomorphism between taking preimages under `f ≫ g`, and the composite of taking preimages under `g`, then preimages under `f`.
map_comp_eq (f : X ⟶ Y) (g : Y ⟶ Z) : map (f ≫ g) = map g ⋙ map f := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_comp_eq
null
mapIso (f g : X ⟶ Y) (h : f = g) : map f ≅ map g := NatIso.ofComponents fun U => eqToIso (by rw [congr_arg map h])
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapIso
If two continuous maps `f g : X ⟶ Y` are equal, then the functors `Opens Y ⥤ Opens X` they induce are isomorphic.
map_eq (f g : X ⟶ Y) (h : f = g) : map f = map g := by subst h rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_eq
null
mapIso_refl (f : X ⟶ Y) (h) : mapIso f f h = Iso.refl (map _) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapIso_refl
null
mapIso_hom_app (f g : X ⟶ Y) (h : f = g) (U : Opens Y) : (mapIso f g h).hom.app U = eqToHom (by rw [h]) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapIso_hom_app
null
mapIso_inv_app (f g : X ⟶ Y) (h : f = g) (U : Opens Y) : (mapIso f g h).inv.app U = eqToHom (by rw [h]) := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapIso_inv_app
null
@[simps] mapMapIso {X Y : TopCat.{u}} (H : X ≅ Y) : Opens Y ≌ Opens X where functor := map H.hom inverse := map H.inv unitIso := NatIso.ofComponents fun U => eqToIso (by simp [map, Set.preimage_preimage]) counitIso := NatIso.ofComponents fun U => eqToIso (by simp [map, Set.preimage_preimage])
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mapMapIso
A homeomorphism of spaces gives an equivalence of categories of open sets. TODO: define `OrderIso.equivalence`, use it.
@[simps obj_coe] IsOpenMap.functor {X Y : TopCat} {f : X ⟶ Y} (hf : IsOpenMap f) : Opens X ⥤ Opens Y where obj U := ⟨f '' (U : Set X), hf (U : Set X) U.2⟩ map h := ⟨⟨Set.image_mono h.down.down⟩⟩
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
IsOpenMap.functor
An open map `f : X ⟶ Y` induces a functor `Opens X ⥤ Opens Y`.
IsOpenMap.adjunction {X Y : TopCat} {f : X ⟶ Y} (hf : IsOpenMap f) : hf.functor ⊣ Opens.map f where unit := { app := fun _ => homOfLE fun x hxU => ⟨x, hxU, rfl⟩ } counit := { app := fun _ => homOfLE fun _ ⟨_, hfxV, hxy⟩ => hxy ▸ hfxV }
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
IsOpenMap.adjunction
An open map `f : X ⟶ Y` induces an adjunction between `Opens X` and `Opens Y`.
IsOpenMap.functorFullOfMono {X Y : TopCat} {f : X ⟶ Y} (hf : IsOpenMap f) [H : Mono f] : hf.functor.Full where map_surjective i := ⟨homOfLE fun x hx => by obtain ⟨y, hy, eq⟩ := i.le ⟨x, hx, rfl⟩ exact (TopCat.mono_iff_injective f).mp H eq ▸ hy, rfl⟩
instance
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
IsOpenMap.functorFullOfMono
null
IsOpenMap.functor_faithful {X Y : TopCat} {f : X ⟶ Y} (hf : IsOpenMap f) : hf.functor.Faithful where
instance
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
IsOpenMap.functor_faithful
null
Topology.IsOpenEmbedding.functor_obj_injective {X Y : TopCat} {f : X ⟶ Y} (hf : IsOpenEmbedding f) : Function.Injective hf.isOpenMap.functor.obj := fun _ _ e ↦ Opens.ext (Set.image_injective.mpr hf.injective (congr_arg (↑· : Opens Y → Set Y) e))
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
Topology.IsOpenEmbedding.functor_obj_injective
null
@[nolint unusedArguments] functorObj {X Y : TopCat} {f : X ⟶ Y} (_ : IsInducing f) (U : Opens X) : Opens Y := sSup { s : Opens Y | (Opens.map f).obj s = U }
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
functorObj
Given an inducing map `X ⟶ Y` and some `U : Opens X`, this is the union of all open sets whose preimage is `U`. This is right adjoint to `Opens.map`.
map_functorObj {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) (U : Opens X) : (Opens.map f).obj (hf.functorObj U) = U := by apply le_antisymm · rintro x ⟨_, ⟨s, rfl⟩, _, ⟨rfl : _ = U, rfl⟩, hx : f x ∈ s⟩; exact hx · intro x hx obtain ⟨U, hU⟩ := U obtain ⟨t, ht, rfl⟩ := hf.isOpen_iff.mp hU exact Opens.mem_sSup.mpr ⟨⟨_, ht⟩, rfl, hx⟩
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_functorObj
null
mem_functorObj_iff {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) (U : Opens X) {x : X} : f x ∈ hf.functorObj U ↔ x ∈ U := by conv_rhs => rw [← hf.map_functorObj U] rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
mem_functorObj_iff
null
le_functorObj_iff {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) {U : Opens X} {V : Opens Y} : V ≤ hf.functorObj U ↔ (Opens.map f).obj V ≤ U := by obtain ⟨U, hU⟩ := U obtain ⟨t, ht, rfl⟩ := hf.isOpen_iff.mp hU constructor · exact fun i x hx ↦ (hf.mem_functorObj_iff ((Opens.map f).obj ⟨t, ht⟩)).mp (i hx) · intro h x hx refine Opens.mem_sSup.mpr ⟨⟨_, V.2.union ht⟩, Opens.ext ?_, Set.mem_union_left t hx⟩ dsimp rwa [Set.union_eq_right]
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
le_functorObj_iff
null
opensGI {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) : GaloisInsertion (Opens.map f).obj hf.functorObj := ⟨_, fun _ _ ↦ hf.le_functorObj_iff.symm, fun U ↦ (hf.map_functorObj U).ge, fun _ _ ↦ rfl⟩
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
opensGI
An inducing map `f : X ⟶ Y` induces a Galois insertion between `Opens Y` and `Opens X`.
@[simps] functor {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) : Opens X ⥤ Opens Y where obj := hf.functorObj map {U V} h := homOfLE (hf.le_functorObj_iff.mpr ((hf.map_functorObj U).trans_le h.le))
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
functor
An inducing map `f : X ⟶ Y` induces a functor `Opens X ⥤ Opens Y`.
adjunction {X Y : TopCat} {f : X ⟶ Y} (hf : IsInducing f) : Opens.map f ⊣ hf.functor := hf.opensGI.gc.adjunction
def
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
adjunction
An inducing map `f : X ⟶ Y` induces an adjunction between `Opens Y` and `Opens X`.
@[simp] isOpenEmbedding_obj_top {X : TopCat} (U : Opens X) : U.isOpenEmbedding.isOpenMap.functor.obj ⊤ = U := by ext1 exact Set.image_univ.trans Subtype.range_coe @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
isOpenEmbedding_obj_top
null
inclusion'_map_eq_top {X : TopCat} (U : Opens X) : (Opens.map U.inclusion').obj U = ⊤ := by ext1 exact Subtype.coe_preimage_self _ @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
inclusion'_map_eq_top
null
adjunction_counit_app_self {X : TopCat} (U : Opens X) : U.isOpenEmbedding.isOpenMap.adjunction.counit.app U = eqToHom (by simp) := Subsingleton.elim _ _
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
adjunction_counit_app_self
null
inclusion'_top_functor (X : TopCat) : (@Opens.isOpenEmbedding X ⊤).isOpenMap.functor = map (inclusionTopIso X).inv := by refine CategoryTheory.Functor.ext ?_ ?_ · intro U ext x exact ⟨fun ⟨⟨_, _⟩, h, rfl⟩ => h, fun h => ⟨⟨x, trivial⟩, h, rfl⟩⟩ · subsingleton
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
inclusion'_top_functor
null
functor_obj_map_obj {X Y : TopCat} {f : X ⟶ Y} (hf : IsOpenMap f) (U : Opens Y) : hf.functor.obj ((Opens.map f).obj U) = hf.functor.obj ⊤ ⊓ U := by ext constructor · rintro ⟨x, hx, rfl⟩ exact ⟨⟨x, trivial, rfl⟩, hx⟩ · rintro ⟨⟨x, -, rfl⟩, hx⟩ exact ⟨x, hx, rfl⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
functor_obj_map_obj
null
set_range_inclusion' {X : TopCat} (U : Opens X) : Set.range (inclusion' U) = (U : Set X) := by ext x constructor · rintro ⟨x, rfl⟩ exact x.2 · intro h exact ⟨⟨x, h⟩, rfl⟩ @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
set_range_inclusion'
null
functor_map_eq_inf {X : TopCat} (U V : Opens X) : U.isOpenEmbedding.isOpenMap.functor.obj ((Opens.map U.inclusion').obj V) = V ⊓ U := by ext1 simp only [IsOpenMap.coe_functor_obj, map_coe, coe_inf, Set.image_preimage_eq_inter_range, set_range_inclusion' U]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
functor_map_eq_inf
null
map_functor_eq' {X U : TopCat} (f : U ⟶ X) (hf : IsOpenEmbedding f) (V) : ((Opens.map f).obj <| hf.isOpenMap.functor.obj V) = V := Opens.ext <| Set.preimage_image_eq _ hf.injective @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_functor_eq'
null
map_functor_eq {X : TopCat} {U : Opens X} (V : Opens U) : ((Opens.map U.inclusion').obj <| U.isOpenEmbedding.isOpenMap.functor.obj V) = V := TopologicalSpace.Opens.map_functor_eq' _ U.isOpenEmbedding V @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
map_functor_eq
null
adjunction_counit_map_functor {X : TopCat} {U : Opens X} (V : Opens U) : U.isOpenEmbedding.isOpenMap.adjunction.counit.app (U.isOpenEmbedding.isOpenMap.functor.obj V) = eqToHom (by dsimp; rw [map_functor_eq V]) := by subsingleton
theorem
Topology
[ "Mathlib.CategoryTheory.Category.GaloisConnection", "Mathlib.CategoryTheory.EqToHom", "Mathlib.Topology.Category.TopCat.EpiMono", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/TopCat/Opens.lean
adjunction_counit_map_functor
null
noncomputable disk (n : ℕ) : TopCat.{u} := TopCat.of <| ULift <| Metric.closedBall (0 : EuclideanSpace ℝ (Fin n)) 1
def
Topology
[ "Mathlib.Analysis.InnerProductSpace.PiL2", "Mathlib.Topology.Category.TopCat.Basic" ]
Mathlib/Topology/Category/TopCat/Sphere.lean
disk
The `n`-disk is the set of points in ℝⁿ whose norm is at most `1`, endowed with the subspace topology.
noncomputable diskBoundary (n : ℕ) : TopCat.{u} := TopCat.of <| ULift <| Metric.sphere (0 : EuclideanSpace ℝ (Fin n)) 1
def
Topology
[ "Mathlib.Analysis.InnerProductSpace.PiL2", "Mathlib.Topology.Category.TopCat.Basic" ]
Mathlib/Topology/Category/TopCat/Sphere.lean
diskBoundary
The boundary of the `n`-disk.
noncomputable sphere (n : ℕ) : TopCat.{u} := diskBoundary (n + 1)
def
Topology
[ "Mathlib.Analysis.InnerProductSpace.PiL2", "Mathlib.Topology.Category.TopCat.Basic" ]
Mathlib/Topology/Category/TopCat/Sphere.lean
sphere
The `n`-sphere is the set of points in ℝⁿ⁺¹ whose norm equals `1`, endowed with the subspace topology.
diskBoundaryInclusion (n : ℕ) : ∂𝔻 n ⟶ 𝔻 n := ofHom { toFun := fun ⟨p, hp⟩ ↦ ⟨p, le_of_eq hp⟩ continuous_toFun := ⟨fun t ⟨s, ⟨r, hro, hrs⟩, hst⟩ ↦ by rw [isOpen_induced_iff, ← hst, ← hrs] tauto⟩ }
def
Topology
[ "Mathlib.Analysis.InnerProductSpace.PiL2", "Mathlib.Topology.Category.TopCat.Basic" ]
Mathlib/Topology/Category/TopCat/Sphere.lean
diskBoundaryInclusion
`𝔻 n` denotes the `n`-disk. -/ scoped prefix:arg "𝔻 " => disk /-- `∂𝔻 n` denotes the boundary of the `n`-disk. -/ scoped prefix:arg "∂𝔻 " => diskBoundary /-- `𝕊 n` denotes the `n`-sphere. -/ scoped prefix:arg "𝕊 " => sphere /-- The inclusion `∂𝔻 n ⟶ 𝔻 n` of the boundary of the `n`-disk.
uliftFunctor : TopCat.{u} ⥤ TopCat.{max u v} where obj X := TopCat.of (ULift.{v} X) map {X Y} f := ofHom ⟨ULift.map f, by continuity⟩
def
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/ULift.lean
uliftFunctor
The functor which sends a topological space in `Type u` to a homeomorphic space in `Type (max u v)`.
uliftFunctorObjHomeo (X : TopCat.{u}) : X ≃ₜ uliftFunctor.{v}.obj X := Homeomorph.ulift.symm @[simp]
def
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/ULift.lean
uliftFunctorObjHomeo
Given `X : TopCat.{u}`, this is the homeomorphism `X ≃ₜ uliftFunctor.{v}.obj X`.
uliftFunctorObjHomeo_naturality_apply {X Y : TopCat.{u}} (f : X ⟶ Y) (x : X) : uliftFunctor.{v}.map f (X.uliftFunctorObjHomeo x) = Y.uliftFunctorObjHomeo (f x) := rfl @[simp]
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/ULift.lean
uliftFunctorObjHomeo_naturality_apply
null
uliftFunctorObjHomeo_symm_naturality_apply {X Y : TopCat.{u}} (f : X ⟶ Y) (x : uliftFunctor.{v}.obj X) : Y.uliftFunctorObjHomeo.symm (uliftFunctor.{v}.map f x) = f (X.uliftFunctorObjHomeo.symm x) := rfl
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/ULift.lean
uliftFunctorObjHomeo_symm_naturality_apply
null
@[simps!] uliftFunctorCompForgetIso : uliftFunctor.{v, u} ⋙ forget TopCat.{max u v} ≅ forget TopCat.{u} ⋙ CategoryTheory.uliftFunctor.{v, u} := Iso.refl _
def
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/ULift.lean
uliftFunctorCompForgetIso
The `ULift` functor on categories of topological spaces is compatible with the one defined on categories of types.
uliftFunctorFullyFaithful : uliftFunctor.{v, u}.FullyFaithful where preimage f := ofHom ⟨ULift.down ∘ f ∘ ULift.up, by continuity⟩
def
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.Topology.Homeomorph.Lemmas" ]
Mathlib/Topology/Category/TopCat/ULift.lean
uliftFunctorFullyFaithful
The `ULift` functor on categories of topological spaces is fully faithful.
@[simps] yonedaPresheaf : Cᵒᵖ ⥤ Type (max w w') where obj X := C(F.obj (unop X), Y) map f g := ContinuousMap.comp g (F.map f.unop).hom
def
Topology
[ "Mathlib.CategoryTheory.Limits.Preserves.Finite", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.CategoryTheory.Limits.Preserves.Shapes.Products", "Mathlib.CategoryTheory.Limits.Types.Shapes", "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Yoneda.lean
yonedaPresheaf
A universe polymorphic "Yoneda presheaf" on `C` given by continuous maps into a topological space `Y`.
@[simps] yonedaPresheaf' : TopCat.{w}ᵒᵖ ⥤ Type (max w w') where obj X := C((unop X).1, Y) map f g := ContinuousMap.comp g f.unop.hom
def
Topology
[ "Mathlib.CategoryTheory.Limits.Preserves.Finite", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.CategoryTheory.Limits.Preserves.Shapes.Products", "Mathlib.CategoryTheory.Limits.Types.Shapes", "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Yoneda.lean
yonedaPresheaf'
A universe polymorphic Yoneda presheaf on `TopCat` given by continuous maps into a topological space `Y`.
comp_yonedaPresheaf' : yonedaPresheaf F Y = F.op ⋙ yonedaPresheaf' Y := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Preserves.Finite", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.CategoryTheory.Limits.Preserves.Shapes.Products", "Mathlib.CategoryTheory.Limits.Types.Shapes", "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Yoneda.lean
comp_yonedaPresheaf'
null
piComparison_fac {α : Type} (X : α → TopCat) : piComparison (yonedaPresheaf'.{w, w'} Y) (fun x ↦ op (X x)) = (yonedaPresheaf' Y).map ((opCoproductIsoProduct X).inv ≫ (TopCat.sigmaIsoSigma X).inv.op) ≫ (equivEquivIso (sigmaEquiv Y (fun x ↦ (X x).1))).inv ≫ (Types.productIso _).inv := by rw [← Category.assoc, Iso.eq_comp_inv] ext simp only [yonedaPresheaf', unop_op, piComparison, types_comp_apply, Types.productIso_hom_comp_eval_apply, Types.pi_lift_π_apply, comp_apply, TopCat.coe_of, unop_comp, Quiver.Hom.unop_op, sigmaEquiv, equivEquivIso_hom, Equiv.toIso_inv, Equiv.coe_fn_symm_mk, comp_assoc, sigmaMk_apply, ← opCoproductIsoProduct_inv_comp_ι] rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Preserves.Finite", "Mathlib.CategoryTheory.Limits.Opposites", "Mathlib.CategoryTheory.Limits.Preserves.Shapes.Products", "Mathlib.CategoryTheory.Limits.Types.Shapes", "Mathlib.Topology.Category.TopCat.Limits.Products" ]
Mathlib/Topology/Category/TopCat/Yoneda.lean
piComparison_fac
null
hypothesis. In this section we define the relevant projection maps and prove some compatibility results.
inductive
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
hypothesis.
null
Proj : (I → Bool) → (I → Bool) := fun c i ↦ if J i then c i else false @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
Proj
The projection mapping everything that satisfies `J i` to itself, and everything else to `false`
continuous_proj : Continuous (Proj J : (I → Bool) → (I → Bool)) := by dsimp +unfoldPartialApp [Proj] apply continuous_pi intro i split · apply continuous_apply · apply continuous_const
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
continuous_proj
null
π : Set (I → Bool) := (Proj J) '' C
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
π
The image of `Proj π J`
@[simps!] ProjRestrict : C → π C J := Set.MapsTo.restrict (Proj J) _ _ (Set.mapsTo_image _ _) @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
ProjRestrict
The restriction of `Proj π J` to a subset, mapping to its image.
continuous_projRestrict : Continuous (ProjRestrict C J) := Continuous.restrict _ (continuous_proj _)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
continuous_projRestrict
null
proj_eq_self {x : I → Bool} (h : ∀ i, x i ≠ false → J i) : Proj J x = x := by ext i simp only [Proj, ite_eq_left_iff] contrapose! simpa only [ne_comm] using h i
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
proj_eq_self
null
proj_prop_eq_self (hh : ∀ i x, x ∈ C → x i ≠ false → J i) : π C J = C := by ext x refine ⟨fun ⟨y, hy, h⟩ ↦ ?_, fun h ↦ ⟨x, h, ?_⟩⟩ · rwa [← h, proj_eq_self]; exact (hh · y hy) · rw [proj_eq_self]; exact (hh · x h)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
proj_prop_eq_self
null
proj_comp_of_subset (h : ∀ i, J i → K i) : (Proj J ∘ Proj K) = (Proj J : (I → Bool) → (I → Bool)) := by ext x i; dsimp [Proj]; simp_all
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
proj_comp_of_subset
null
proj_eq_of_subset (h : ∀ i, J i → K i) : π (π C K) J = π C J := by ext x refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · obtain ⟨y, ⟨z, hz, rfl⟩, rfl⟩ := h refine ⟨z, hz, (?_ : _ = (Proj J ∘ Proj K) z)⟩ rw [proj_comp_of_subset J K h] · obtain ⟨y, hy, rfl⟩ := h dsimp [π] rw [← Set.image_comp] refine ⟨y, hy, ?_⟩ rw [proj_comp_of_subset J K h] variable {J K L}
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
proj_eq_of_subset
null
@[simps!] ProjRestricts (h : ∀ i, J i → K i) : π C K → π C J := Homeomorph.setCongr (proj_eq_of_subset C J K h) ∘ ProjRestrict (π C K) J @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
ProjRestricts
A variant of `ProjRestrict` with domain of the form `π C K`
continuous_projRestricts (h : ∀ i, J i → K i) : Continuous (ProjRestricts C h) := Continuous.comp (Homeomorph.continuous _) (continuous_projRestrict _ _)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
continuous_projRestricts
null
surjective_projRestricts (h : ∀ i, J i → K i) : Function.Surjective (ProjRestricts C h) := (Homeomorph.surjective _).comp (Set.surjective_mapsTo_image_restrict _ _) variable (J) in
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
surjective_projRestricts
null
projRestricts_eq_id : ProjRestricts C (fun i (h : J i) ↦ h) = id := by ext ⟨x, y, hy, rfl⟩ i simp +contextual only [π, Proj, ProjRestricts_coe, id_eq, if_true]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
projRestricts_eq_id
null
projRestricts_eq_comp (hJK : ∀ i, J i → K i) (hKL : ∀ i, K i → L i) : ProjRestricts C hJK ∘ ProjRestricts C hKL = ProjRestricts C (fun i ↦ hKL i ∘ hJK i) := by ext x i simp only [π, Proj, Function.comp_apply, ProjRestricts_coe] simp_all
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
projRestricts_eq_comp
null
projRestricts_comp_projRestrict (h : ∀ i, J i → K i) : ProjRestricts C h ∘ ProjRestrict C K = ProjRestrict C J := by ext x i simp only [π, Proj, Function.comp_apply, ProjRestricts_coe, ProjRestrict_coe] simp_all variable (J)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
projRestricts_comp_projRestrict
null
iso_map : C(π C J, (IndexFunctor.obj C J)) := ⟨fun x ↦ ⟨fun i ↦ x.val i.val, by rcases x with ⟨x, y, hy, rfl⟩ refine ⟨y, hy, ?_⟩ ext ⟨i, hi⟩ simp [precomp, Proj, hi]⟩, by refine Continuous.subtype_mk (continuous_pi fun i ↦ ?_) _ exact (continuous_apply i.val).comp continuous_subtype_val⟩
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
iso_map
The objectwise map in the isomorphism `spanFunctor ≅ Profinite.indexFunctor`.