fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
noncomputable isoindexConeLift : @Profinite.of C _ (by rwa [← isCompact_iff_compactSpace]) _ _ ≅ (Profinite.limitCone.{u, u} (indexFunctor hC)).pt := asIso <| (Profinite.limitConeIsLimit.{u, u} _).lift (indexCone hC)
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
isoindexConeLift
The canonical map from `C` to the explicit limit as an isomorphism.
noncomputable asLimitindexConeIso : indexCone hC ≅ Profinite.limitCone.{u, u} _ := Limits.Cones.ext (isoindexConeLift hC) fun _ => rfl
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
asLimitindexConeIso
The isomorphism of cones induced by `isoindexConeLift`.
noncomputable indexCone_isLimit : CategoryTheory.Limits.IsLimit (indexCone hC) := Limits.IsLimit.ofIsoLimit (Profinite.limitConeIsLimit _) (asLimitindexConeIso hC).symm
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
indexCone_isLimit
`indexCone` is a limit cone.
projective_ultrafilter (X : Type u) : Projective (of <| Ultrafilter X) where factors {Y Z} f g hg := by rw [epi_iff_surjective] at hg obtain ⟨g', hg'⟩ := hg.hasRightInverse let t : X → Y := g' ∘ f ∘ (pure : X → Ultrafilter X) let h : Ultrafilter X → Y := Ultrafilter.extend t have hh : Continuous h := continuous_ultrafilter_extend _ use CompHausLike.ofHom _ ⟨h, hh⟩ apply ConcreteCategory.coe_ext simp only [h] convert denseRange_pure.equalizer (g.hom.continuous.comp hh) f.hom.continuous _ have : g.hom ∘ g' = id := hg'.comp_eq_id rw [comp_assoc, ultrafilter_extend_extends, ← comp_assoc, this, id_comp] rfl
instance
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.CategoryTheory.Preadditive.Projective.Basic", "Mathlib.CategoryTheory.ConcreteCategory.EpiMono" ]
Mathlib/Topology/Category/Profinite/Projective.lean
projective_ultrafilter
null
projectivePresentation (X : Profinite.{u}) : ProjectivePresentation X where p := of <| Ultrafilter X f := CompHausLike.ofHom _ ⟨_, continuous_ultrafilter_extend id⟩ projective := Profinite.projective_ultrafilter X epi := ConcreteCategory.epi_of_surjective _ fun x => ⟨(pure x : Ultrafilter X), congr_fun (ultrafilter_extend_extends (𝟙 X)) x⟩
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.CategoryTheory.Preadditive.Projective.Basic", "Mathlib.CategoryTheory.ConcreteCategory.EpiMono" ]
Mathlib/Topology/Category/Profinite/Projective.lean
projectivePresentation
For any profinite `X`, the natural map `Ultrafilter X → X` is a projective presentation.
stoneCechObj (X : Type u) : Stonean := letI : TopologicalSpace X := ⊥ haveI : DiscreteTopology X := ⟨rfl⟩ haveI : ExtremallyDisconnected (StoneCech X) := CompactT2.Projective.extremallyDisconnected StoneCech.projective of (StoneCech X)
def
Topology
[ "Mathlib.Topology.Category.Stonean.Basic", "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Category/Stonean/Adjunctions.lean
stoneCechObj
The object part of the compactification functor from types to Stonean spaces.
noncomputable stoneCechEquivalence (X : Type u) (Y : Stonean.{u}) : (stoneCechObj X ⟶ Y) ≃ (X ⟶ ToType Y) := by letI : TopologicalSpace X := ⊥ haveI : DiscreteTopology X := ⟨rfl⟩ refine fullyFaithfulToCompHaus.homEquiv.trans ?_ exact (_root_.stoneCechEquivalence (TopCat.of X) (toCompHaus.obj Y)).trans (TopCat.adj₁.homEquiv _ _)
def
Topology
[ "Mathlib.Topology.Category.Stonean.Basic", "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Category/Stonean/Adjunctions.lean
stoneCechEquivalence
The equivalence of homsets to establish the adjunction between the Stone-Cech compactification functor and the forgetful functor.
noncomputable typeToStonean : Type u ⥤ Stonean.{u} := leftAdjointOfEquiv (G := forget _) Stonean.stoneCechEquivalence fun _ _ _ _ _ => rfl
def
Topology
[ "Mathlib.Topology.Category.Stonean.Basic", "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Category/Stonean/Adjunctions.lean
typeToStonean
The Stone-Cech compactification functor from types to Stonean spaces.
noncomputable stoneCechAdjunction : typeToStonean ⊣ (forget Stonean) := adjunctionOfEquivLeft (G := forget _) stoneCechEquivalence fun _ _ _ _ _ => rfl
def
Topology
[ "Mathlib.Topology.Category.Stonean.Basic", "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Category/Stonean/Adjunctions.lean
stoneCechAdjunction
The Stone-Cech compactification functor is left adjoint to the forgetful functor.
noncomputable forget.preservesLimits : Limits.PreservesLimits (forget Stonean) := rightAdjoint_preservesLimits stoneCechAdjunction
instance
Topology
[ "Mathlib.Topology.Category.Stonean.Basic", "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.Topology.Compactification.StoneCech" ]
Mathlib/Topology/Category/Stonean/Adjunctions.lean
forget.preservesLimits
The forgetful functor from Stonean spaces, being a right adjoint, preserves limits.
Stonean := CompHausLike (fun X ↦ ExtremallyDisconnected X)
abbrev
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
Stonean
`Stonean` is the category of extremally disconnected compact Hausdorff spaces.
@[simps!] toStonean (X : CompHaus.{u}) [Projective X] : Stonean where toTop := X.toTop prop := inferInstance
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
toStonean
`Projective` implies `ExtremallyDisconnected`. -/ instance (X : CompHaus.{u}) [Projective X] : ExtremallyDisconnected X := by apply CompactT2.Projective.extremallyDisconnected intro A B _ _ _ _ _ _ f g hf hg hsurj let A' : CompHaus := CompHaus.of A let B' : CompHaus := CompHaus.of B let f' : X ⟶ B' := CompHausLike.ofHom _ ⟨f, hf⟩ let g' : A' ⟶ B' := CompHausLike.ofHom _ ⟨g,hg⟩ have : Epi g' := by rw [CompHaus.epi_iff_surjective] assumption obtain ⟨h, hh⟩ := Projective.factors f' g' refine ⟨h, h.hom.2, ?_⟩ ext t apply_fun (fun e => e t) at hh exact hh /-- `Projective` implies `Stonean`.
toCompHaus : Stonean.{u} ⥤ CompHaus.{u} := compHausLikeToCompHaus _
abbrev
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
toCompHaus
The (forgetful) functor from Stonean spaces to compact Hausdorff spaces.
fullyFaithfulToCompHaus : toCompHaus.FullyFaithful := CompHausLike.fullyFaithfulToCompHausLike _ open CompHausLike
abbrev
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
fullyFaithfulToCompHaus
The forgetful functor `Stonean ⥤ CompHaus` is fully faithful.
of (X : Type*) [TopologicalSpace X] [CompactSpace X] [T2Space X] [ExtremallyDisconnected X] : Stonean := CompHausLike.of _ X
abbrev
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
of
Construct a term of `Stonean` from a type endowed with the structure of a compact, Hausdorff and extremally disconnected topological space.
toProfinite : Stonean.{u} ⥤ Profinite.{u} := CompHausLike.toCompHausLike (fun _ ↦ inferInstance)
abbrev
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
toProfinite
The functor from Stonean spaces to profinite spaces.
mkFinite (X : Type*) [Finite X] [TopologicalSpace X] [DiscreteTopology X] : Stonean where toTop := (CompHaus.of X).toTop prop := by dsimp constructor intro U _ apply isOpen_discrete (closure U)
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
mkFinite
A finite discrete space as a Stonean space.
epi_iff_surjective {X Y : Stonean} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f := by refine ⟨?_, fun h => ConcreteCategory.epi_of_surjective f h⟩ dsimp [Function.Surjective] intro h y by_contra! hy let C := Set.range f have hC : IsClosed C := (isCompact_range f.hom.continuous).isClosed let U := Cᶜ have hUy : U ∈ 𝓝 y := by simp only [U, C, Set.mem_range, hy, exists_false, not_false_eq_true, hC.compl_mem_nhds] obtain ⟨V, hV, hyV, hVU⟩ := isTopologicalBasis_isClopen.mem_nhds_iff.mp hUy classical let g : Y ⟶ mkFinite (ULift (Fin 2)) := TopCat.ofHom ⟨(LocallyConstant.ofIsClopen hV).map ULift.up, LocallyConstant.continuous _⟩ let h : Y ⟶ mkFinite (ULift (Fin 2)) := TopCat.ofHom ⟨fun _ => ⟨1⟩, continuous_const⟩ have H : h = g := by rw [← cancel_epi f] ext x apply ULift.ext -- why is `ext` not doing this automatically? change 1 = ite _ _ _ -- why is `dsimp` not getting me here? rw [if_neg] refine mt (hVU ·) ?_ -- what would be an idiomatic tactic for this step? simpa only [U, Set.mem_compl_iff, Set.mem_range, not_exists, not_forall, not_not] using exists_apply_eq_apply f x apply_fun fun e => (e y).down at H change 1 = ite _ _ _ at H -- why is `dsimp at H` not getting me here? rw [if_pos hyV] at H exact one_ne_zero H
lemma
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
epi_iff_surjective
A morphism in `Stonean` is an epi iff it is surjective.
instProjectiveCompHausCompHaus (X : Stonean) : Projective (toCompHaus.obj X) where factors := by intro B C φ f _ haveI : ExtremallyDisconnected (toCompHaus.obj X).toTop := X.prop have hf : Function.Surjective f := by rwa [← CompHaus.epi_iff_surjective] obtain ⟨f', h⟩ := CompactT2.ExtremallyDisconnected.projective φ.hom.continuous f.hom.continuous hf use ofHom _ ⟨f', h.left⟩ ext exact congr_fun h.right _
instance
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
instProjectiveCompHausCompHaus
Every Stonean space is projective in `CompHaus`
noncomputable presentation (X : CompHaus) : Stonean where toTop := (projectivePresentation X).p.1 prop := instExtremallyDisconnectedCarrierToTopTrueOfProjective X.projectivePresentation.p
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
presentation
Every Stonean space is projective in `Profinite` -/ instance (X : Stonean) : Projective (toProfinite.obj X) where factors := by intro B C φ f _ haveI : ExtremallyDisconnected (toProfinite.obj X) := X.prop have hf : Function.Surjective f := by rwa [← Profinite.epi_iff_surjective] obtain ⟨f', h⟩ := CompactT2.ExtremallyDisconnected.projective φ.hom.continuous f.hom.continuous hf use ofHom _ ⟨f', h.left⟩ ext exact congr_fun h.right _ /-- Every Stonean space is projective in `Stonean`. -/ instance (X : Stonean) : Projective X where factors := by intro B C φ f _ haveI : ExtremallyDisconnected X.toTop := X.prop have hf : Function.Surjective f := by rwa [← Stonean.epi_iff_surjective] obtain ⟨f', h⟩ := CompactT2.ExtremallyDisconnected.projective φ.hom.continuous f.hom.continuous hf use ofHom _ ⟨f', h.left⟩ ext exact congr_fun h.right _ end Stonean namespace CompHaus /-- If `X` is compact Hausdorff, `presentation X` is a Stonean space equipped with an epimorphism down to `X` (see `CompHaus.presentation.π` and `CompHaus.presentation.epi_π`). It is a "constructive" witness to the fact that `CompHaus` has enough projectives.
noncomputable presentation.π (X : CompHaus) : Stonean.toCompHaus.obj X.presentation ⟶ X := (projectivePresentation X).f
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
presentation.π
The morphism from `presentation X` to `X`.
noncomputable presentation.epi_π (X : CompHaus) : Epi (π X) := (projectivePresentation X).epi
instance
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
presentation.epi_π
The morphism from `presentation X` to `X` is an epimorphism.
_root_.Stonean.compHaus (X : Stonean) := Stonean.toCompHaus.obj X
abbrev
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
_root_.Stonean.compHaus
The underlying `CompHaus` of a `Stonean`.
noncomputable lift {X Y : CompHaus} {Z : Stonean} (e : Z.compHaus ⟶ Y) (f : X ⟶ Y) [Epi f] : Z.compHaus ⟶ X := Projective.factorThru e f @[simp, reassoc]
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
lift
``` X | (f) | \/ Z ---(e)---> Y ``` If `Z` is a Stonean space, `f : X ⟶ Y` an epi in `CompHaus` and `e : Z ⟶ Y` is arbitrary, then `lift e f` is a fixed (but arbitrary) lift of `e` to a morphism `Z ⟶ X`. It exists because `Z` is a projective object in `CompHaus`.
lift_lifts {X Y : CompHaus} {Z : Stonean} (e : Z.compHaus ⟶ Y) (f : X ⟶ Y) [Epi f] : lift e f ≫ f = e := by simp [lift]
lemma
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
lift_lifts
null
Gleason (X : CompHaus.{u}) : Projective X ↔ ExtremallyDisconnected X := by constructor · intro h change ExtremallyDisconnected X.toStonean infer_instance · intro h let X' : Stonean := ⟨X.toTop, inferInstance⟩ change Projective X'.compHaus apply Stonean.instProjectiveCompHausCompHaus
lemma
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
Gleason
null
noncomputable presentation (X : Profinite) : Stonean where toTop := (profiniteToCompHaus.obj X).projectivePresentation.p.toTop prop := (profiniteToCompHaus.obj X).presentation.prop
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
presentation
If `X` is profinite, `presentation X` is a Stonean space equipped with an epimorphism down to `X` (see `Profinite.presentation.π` and `Profinite.presentation.epi_π`).
noncomputable presentation.π (X : Profinite) : Stonean.toProfinite.obj X.presentation ⟶ X := (profiniteToCompHaus.obj X).projectivePresentation.f
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
presentation.π
The morphism from `presentation X` to `X`.
noncomputable presentation.epi_π (X : Profinite) : Epi (π X) := by have := (profiniteToCompHaus.obj X).projectivePresentation.epi rw [CompHaus.epi_iff_surjective] at this rw [epi_iff_surjective] exact this
instance
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
presentation.epi_π
The morphism from `presentation X` to `X` is an epimorphism.
noncomputable lift {X Y : Profinite} {Z : Stonean} (e : Stonean.toProfinite.obj Z ⟶ Y) (f : X ⟶ Y) [Epi f] : Stonean.toProfinite.obj Z ⟶ X := Projective.factorThru e f @[simp, reassoc]
def
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
lift
``` X | (f) | \/ Z ---(e)---> Y ``` If `Z` is a Stonean space, `f : X ⟶ Y` an epi in `Profinite` and `e : Z ⟶ Y` is arbitrary, then `lift e f` is a fixed (but arbitrary) lift of `e` to a morphism `Z ⟶ X`. It is `CompHaus.lift e f` as a morphism in `Profinite`.
lift_lifts {X Y : Profinite} {Z : Stonean} (e : Stonean.toProfinite.obj Z ⟶ Y) (f : X ⟶ Y) [Epi f] : lift e f ≫ f = e := by simp [lift]
lemma
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
lift_lifts
null
projective_of_extrDisc {X : Profinite.{u}} (hX : ExtremallyDisconnected X) : Projective X := by change Projective (Stonean.toProfinite.obj ⟨X.toTop, inferInstance⟩) exact inferInstance
lemma
Topology
[ "Mathlib.Topology.ExtremallyDisconnected", "Mathlib.Topology.Category.CompHaus.Projective", "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Stonean/Basic.lean
projective_of_extrDisc
null
effectiveEpi_tfae {B X : Stonean.{u}} (π : X ⟶ B) : TFAE [ EffectiveEpi π , Epi π , Function.Surjective π ] := by tfae_have 1 → 2 := fun _ ↦ inferInstance tfae_have 2 ↔ 3 := epi_iff_surjective π tfae_have 3 → 1 := fun hπ ↦ ⟨⟨effectiveEpiStruct π hπ⟩⟩ tfae_finish
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Stonean.Limits" ]
Mathlib/Topology/Category/Stonean/EffectiveEpi.lean
effectiveEpi_tfae
null
noncomputable stoneanToCompHausEffectivePresentation (X : CompHaus) : Stonean.toCompHaus.EffectivePresentation X where p := X.presentation f := CompHaus.presentation.π X effectiveEpi := ((CompHaus.effectiveEpi_tfae _).out 0 1).mpr (inferInstance : Epi _)
def
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Stonean.Limits" ]
Mathlib/Topology/Category/Stonean/EffectiveEpi.lean
stoneanToCompHausEffectivePresentation
An effective presentation of an `X : CompHaus` with respect to the inclusion functor from `Stonean`
effectiveEpiFamily_tfae {α : Type} [Finite α] {B : Stonean.{u}} (X : α → Stonean.{u}) (π : (a : α) → (X a ⟶ B)) : TFAE [ EffectiveEpiFamily X π , Epi (Sigma.desc π) , ∀ b : B, ∃ (a : α) (x : X a), π a x = b ] := by tfae_have 2 → 1 | _ => by simpa [← effectiveEpi_desc_iff_effectiveEpiFamily, (effectiveEpi_tfae (Sigma.desc π)).out 0 1] tfae_have 1 → 2 := fun _ ↦ inferInstance tfae_have 3 ↔ 1 := by erw [((CompHaus.effectiveEpiFamily_tfae (fun a ↦ Stonean.toCompHaus.obj (X a)) (fun a ↦ Stonean.toCompHaus.map (π a))).out 2 0 : )] exact ⟨fun h ↦ Stonean.toCompHaus.finite_effectiveEpiFamily_of_map _ _ h, fun _ ↦ inferInstance⟩ tfae_finish
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Stonean.Limits" ]
Mathlib/Topology/Category/Stonean/EffectiveEpi.lean
effectiveEpiFamily_tfae
null
effectiveEpiFamily_of_jointly_surjective {α : Type} [Finite α] {B : Stonean.{u}} (X : α → Stonean.{u}) (π : (a : α) → (X a ⟶ B)) (surj : ∀ b : B, ∃ (a : α) (x : X a), π a x = b) : EffectiveEpiFamily X π := ((effectiveEpiFamily_tfae X π).out 2 0).mp surj
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Stonean.Limits" ]
Mathlib/Topology/Category/Stonean/EffectiveEpi.lean
effectiveEpiFamily_of_jointly_surjective
null
extremallyDisconnected_preimage : ExtremallyDisconnected (i ⁻¹' (Set.range f)) where open_closure U hU := by have h : IsClopen (i ⁻¹' (Set.range f)) := ⟨IsClosed.preimage i.hom.continuous (isCompact_range f.hom.continuous).isClosed, IsOpen.preimage i.hom.continuous hi.isOpen_range⟩ rw [← (closure U).preimage_image_eq Subtype.coe_injective, ← h.1.isClosedEmbedding_subtypeVal.closure_image_eq U] exact isOpen_induced (ExtremallyDisconnected.open_closure _ (h.2.isOpenEmbedding_subtypeVal.isOpenMap U hU))
lemma
Topology
[ "Mathlib.Topology.Category.CompHausLike.Limits", "Mathlib.Topology.Category.Stonean.Basic" ]
Mathlib/Topology/Category/Stonean/Limits.lean
extremallyDisconnected_preimage
null
extremallyDisconnected_pullback : ExtremallyDisconnected {xy : X × Y | f xy.1 = i xy.2} := have := extremallyDisconnected_preimage i hi let e := (TopCat.pullbackHomeoPreimage i i.hom.2 f hi.isEmbedding).symm let e' : {xy : X × Y | f xy.1 = i xy.2} ≃ₜ {xy : Y × X | i xy.1 = f xy.2} := by exact TopCat.homeoOfIso ((TopCat.pullbackIsoProdSubtype f i).symm ≪≫ pullbackSymmetry _ _ ≪≫ (TopCat.pullbackIsoProdSubtype i f)) extremallyDisconnected_of_homeo (e.trans e'.symm)
lemma
Topology
[ "Mathlib.Topology.Category.CompHausLike.Limits", "Mathlib.Topology.Category.Stonean.Basic" ]
Mathlib/Topology/Category/Stonean/Limits.lean
extremallyDisconnected_pullback
null
@[simps! unit counit] adj₁ : discrete ⊣ forget TopCat.{u} where unit := { app := fun _ => id } counit := { app := fun X => TopCat.ofHom (X := discrete.obj X) ⟨id, continuous_bot⟩ }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.CategoryTheory.Adjunction.Basic" ]
Mathlib/Topology/Category/TopCat/Adjunctions.lean
adj₁
Equipping a type with the discrete topology is left adjoint to the forgetful functor `Top ⥤ Type`.
@[simps! unit counit] adj₂ : forget TopCat.{u} ⊣ trivial where unit := { app := fun X => TopCat.ofHom (Y := trivial.obj X) ⟨id, continuous_top⟩ } counit := { app := fun _ => id }
def
Topology
[ "Mathlib.Topology.Category.TopCat.Basic", "Mathlib.CategoryTheory.Adjunction.Basic" ]
Mathlib/Topology/Category/TopCat/Adjunctions.lean
adj₂
Equipping a type with the trivial topology is right adjoint to the forgetful functor `Top ⥤ Type`.
TopCat where private mk :: /-- The underlying type. -/ carrier : Type u [str : TopologicalSpace carrier] attribute [instance] TopCat.str initialize_simps_projections TopCat (-str)
structure
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
TopCat
The category of topological spaces.
of (X : Type u) [TopologicalSpace X] : TopCat := ⟨X⟩
abbrev
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
of
The object in `TopCat` associated to a type equipped with the appropriate typeclasses. This is the preferred way to construct a term of `TopCat`.
coe_of (X : Type u) [TopologicalSpace X] : (of X : Type u) = X := rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
coe_of
null
of_carrier (X : TopCat.{u}) : of X = X := rfl variable {X} in
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
of_carrier
null
@[ext] Hom (X Y : TopCat.{u}) where private mk :: /-- The underlying `ContinuousMap`. -/ hom' : C(X, Y)
structure
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
Hom
The type of morphisms in `TopCat`.
Hom.hom {X Y : TopCat.{u}} (f : Hom X Y) := ConcreteCategory.hom (C := TopCat) f
abbrev
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
Hom.hom
Turn a morphism in `TopCat` back into a `ContinuousMap`.
ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) : of X ⟶ of Y := ConcreteCategory.ofHom (C := TopCat) f
abbrev
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
ofHom
Typecheck a `ContinuousMap` as a morphism in `TopCat`.
Hom.Simps.hom (X Y : TopCat) (f : Hom X Y) := f.hom initialize_simps_projections Hom (hom' → hom) /-! The results below duplicate the `ConcreteCategory` simp lemmas, but we can keep them for `dsimp`. -/ @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
Hom.Simps.hom
Use the `ConcreteCategory.hom` projection for `@[simps]` lemmas.
hom_id {X : TopCat.{u}} : (𝟙 X : X ⟶ X).hom = ContinuousMap.id X := rfl @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
hom_id
null
id_app (X : TopCat.{u}) (x : ↑X) : (𝟙 X : X ⟶ X) x = x := rfl @[simp] theorem coe_id (X : TopCat.{u}) : (𝟙 X : X → X) = id := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
id_app
null
hom_comp {X Y Z : TopCat.{u}} (f : X ⟶ Y) (g : Y ⟶ Z) : (f ≫ g).hom = g.hom.comp f.hom := rfl @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
hom_comp
null
comp_app {X Y Z : TopCat.{u}} (f : X ⟶ Y) (g : Y ⟶ Z) (x : X) : (f ≫ g : X → Z) x = g (f x) := rfl @[simp] theorem coe_comp {X Y Z : TopCat.{u}} (f : X ⟶ Y) (g : Y ⟶ Z) : (f ≫ g : X → Z) = g ∘ f := rfl @[ext]
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
comp_app
null
hom_ext {X Y : TopCat} {f g : X ⟶ Y} (hf : f.hom = g.hom) : f = g := Hom.ext hf @[ext]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
hom_ext
null
ext {X Y : TopCat} {f g : X ⟶ Y} (w : ∀ x : X, f x = g x) : f = g := ConcreteCategory.hom_ext _ _ w @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
ext
null
hom_ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) : (ofHom f).hom = f := rfl @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
hom_ofHom
null
ofHom_hom {X Y : TopCat} (f : X ⟶ Y) : ofHom (Hom.hom f) = f := rfl @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
ofHom_hom
null
ofHom_id {X : Type u} [TopologicalSpace X] : ofHom (ContinuousMap.id X) = 𝟙 (of X) := rfl @[simp]
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
ofHom_id
null
ofHom_comp {X Y Z : Type u} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (f : C(X, Y)) (g : C(Y, Z)) : ofHom (g.comp f) = ofHom f ≫ ofHom g := rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
ofHom_comp
null
ofHom_apply {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (x : X) : (ofHom f) x = f x := rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
ofHom_apply
null
hom_inv_id_apply {X Y : TopCat} (f : X ≅ Y) (x : X) : f.inv (f.hom x) = x := by simp
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
hom_inv_id_apply
null
inv_hom_id_apply {X Y : TopCat} (f : X ≅ Y) (y : Y) : f.hom (f.inv y) = y := by simp
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
inv_hom_id_apply
null
@[simp] coe_of_of {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] {f : C(X, Y)} {x} : @DFunLike.coe (TopCat.of X ⟶ TopCat.of Y) ((CategoryTheory.forget TopCat).obj (TopCat.of X)) (fun _ ↦ (CategoryTheory.forget TopCat).obj (TopCat.of Y)) HasForget.instFunLike (ofHom f) x = @DFunLike.coe C(X, Y) X (fun _ ↦ Y) _ f x := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
coe_of_of
Replace a function coercion for a morphism `TopCat.of X ⟶ TopCat.of Y` with the definitionally equal function coercion for a continuous map `C(X, Y)`.
inhabited : Inhabited TopCat := ⟨TopCat.of Empty⟩ @[deprecated "Simply remove this from the `simp`/`rw` set: the LHS and RHS are now identical." (since := "2025-01-30")]
instance
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
inhabited
null
hom_apply {X Y : TopCat} (f : X ⟶ Y) (x : X) : f x = ContinuousMap.toFun f.hom x := rfl
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
hom_apply
null
discrete : Type u ⥤ TopCat.{u} where obj X := @of X ⊥ map f := @ofHom _ _ ⊥ ⊥ <| @ContinuousMap.mk _ _ ⊥ ⊥ f continuous_bot
def
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
discrete
The discrete topology on any type.
trivial : Type u ⥤ TopCat.{u} where obj X := @of X ⊤ map f := @ofHom _ _ ⊤ ⊤ <| @ContinuousMap.mk _ _ ⊤ ⊤ f continuous_top
def
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
trivial
The trivial topology on any type.
@[simps] isoOfHomeo {X Y : TopCat.{u}} (f : X ≃ₜ Y) : X ≅ Y where hom := ofHom f inv := ofHom f.symm
def
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isoOfHomeo
Any homeomorphisms induces an isomorphism in `Top`.
@[simps] homeoOfIso {X Y : TopCat.{u}} (f : X ≅ Y) : X ≃ₜ Y where toFun := f.hom invFun := f.inv left_inv x := by simp right_inv x := by simp continuous_toFun := f.hom.hom.continuous continuous_invFun := f.inv.hom.continuous @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
homeoOfIso
Any isomorphism in `Top` induces a homeomorphism.
of_isoOfHomeo {X Y : TopCat.{u}} (f : X ≃ₜ Y) : homeoOfIso (isoOfHomeo f) = f := by ext rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
of_isoOfHomeo
null
of_homeoOfIso {X Y : TopCat.{u}} (f : X ≅ Y) : isoOfHomeo (homeoOfIso f) = f := by ext rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
of_homeoOfIso
null
isIso_of_bijective_of_isOpenMap {X Y : TopCat.{u}} (f : X ⟶ Y) (hfbij : Function.Bijective f) (hfcl : IsOpenMap f) : IsIso f := let e : X ≃ₜ Y := (Equiv.ofBijective f hfbij).toHomeomorphOfContinuousOpen f.hom.continuous hfcl inferInstanceAs <| IsIso (TopCat.isoOfHomeo e).hom
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isIso_of_bijective_of_isOpenMap
null
isIso_of_bijective_of_isClosedMap {X Y : TopCat.{u}} (f : X ⟶ Y) (hfbij : Function.Bijective f) (hfcl : IsClosedMap f) : IsIso f := let e : X ≃ₜ Y := (Equiv.ofBijective f hfbij).toHomeomorphOfContinuousClosed f.hom.continuous hfcl inferInstanceAs <| IsIso (TopCat.isoOfHomeo e).hom
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isIso_of_bijective_of_isClosedMap
null
isIso_iff_isHomeomorph {X Y : TopCat.{u}} (f : X ⟶ Y) : IsIso f ↔ IsHomeomorph f := ⟨fun _ ↦ (homeoOfIso (asIso f)).isHomeomorph, fun H ↦ isIso_of_bijective_of_isOpenMap _ H.bijective H.isOpenMap⟩
lemma
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isIso_iff_isHomeomorph
null
isOpenEmbedding_iff_comp_isIso {X Y Z : TopCat} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso g] : IsOpenEmbedding (f ≫ g) ↔ IsOpenEmbedding f := (TopCat.homeoOfIso (asIso g)).isOpenEmbedding.of_comp_iff f @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isOpenEmbedding_iff_comp_isIso
null
isOpenEmbedding_iff_comp_isIso' {X Y Z : TopCat} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso g] : IsOpenEmbedding (g ∘ f) ↔ IsOpenEmbedding f := by simp only exact isOpenEmbedding_iff_comp_isIso f g
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isOpenEmbedding_iff_comp_isIso'
null
isOpenEmbedding_iff_isIso_comp {X Y Z : TopCat} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso f] : IsOpenEmbedding (f ≫ g) ↔ IsOpenEmbedding g := by constructor · intro h convert h.comp (TopCat.homeoOfIso (asIso f).symm).isOpenEmbedding exact congr_arg (DFunLike.coe ∘ ConcreteCategory.hom) (IsIso.inv_hom_id_assoc f g).symm · exact fun h => h.comp (TopCat.homeoOfIso (asIso f)).isOpenEmbedding @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isOpenEmbedding_iff_isIso_comp
null
isOpenEmbedding_iff_isIso_comp' {X Y Z : TopCat} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso f] : IsOpenEmbedding (g ∘ f) ↔ IsOpenEmbedding g := by simp only exact isOpenEmbedding_iff_isIso_comp f g
theorem
Topology
[ "Mathlib.CategoryTheory.Elementwise", "Mathlib.Topology.ContinuousMap.Basic" ]
Mathlib/Topology/Category/TopCat/Basic.lean
isOpenEmbedding_iff_isIso_comp'
null
noncomputable effectiveEpiStructOfQuotientMap {B X : TopCat.{u}} (π : X ⟶ B) (hπ : IsQuotientMap π) : EffectiveEpiStruct π where /- `IsQuotientMap.lift` gives the required morphism -/ desc e h := ofHom <| hπ.lift e.hom fun a b hab ↦ CategoryTheory.congr_fun (h (ofHom ⟨fun _ ↦ a, continuous_const⟩) (ofHom ⟨fun _ ↦ b, continuous_const⟩) (by ext; exact hab)) a /- `IsQuotientMap.lift_comp` gives the factorisation -/ fac e h := hom_ext (hπ.lift_comp e.hom fun a b hab ↦ CategoryTheory.congr_fun (h (ofHom ⟨fun _ ↦ a, continuous_const⟩) (ofHom ⟨fun _ ↦ b, continuous_const⟩) (by ext; exact hab)) a) /- Uniqueness follows from the fact that `IsQuotientMap.lift` is an equivalence (given by `IsQuotientMap.liftEquiv`). -/ uniq e h g hm := by suffices g = ofHom (hπ.liftEquiv ⟨e.hom, fun a b hab ↦ CategoryTheory.congr_fun (h (ofHom ⟨fun _ ↦ a, continuous_const⟩) (ofHom ⟨fun _ ↦ b, continuous_const⟩) (by ext; exact hab)) a⟩) by assumption apply hom_ext rw [hom_ofHom, ← Equiv.symm_apply_eq hπ.liftEquiv] ext simp only [IsQuotientMap.liftEquiv_symm_apply_coe, ContinuousMap.comp_apply, ← hm] rfl
def
Topology
[ "Mathlib.CategoryTheory.EffectiveEpi.RegularEpi", "Mathlib.Topology.Category.TopCat.Limits.Pullbacks" ]
Mathlib/Topology/Category/TopCat/EffectiveEpi.lean
effectiveEpiStructOfQuotientMap
Implementation: If `π` is a morphism in `TopCat` which is a quotient map, then it is an effective epimorphism. The theorem `TopCat.effectiveEpi_iff_isQuotientMap` should be used instead of this definition.
effectiveEpi_iff_isQuotientMap {B X : TopCat.{u}} (π : X ⟶ B) : EffectiveEpi π ↔ IsQuotientMap π := by /- The backward direction is given by `effectiveEpiStructOfQuotientMap` above. -/ refine ⟨fun _ ↦ ?_, fun hπ ↦ ⟨⟨effectiveEpiStructOfQuotientMap π hπ⟩⟩⟩ /- Since `TopCat` has pullbacks, `π` is in fact a `RegularEpi`. This means that it exhibits `B` as a coequalizer of two maps into `X`. It suffices to prove that `π` followed by the isomorphism to an arbitrary coequalizer is a quotient map. -/ have hπ : RegularEpi π := inferInstance exact isQuotientMap_of_isColimit_cofork _ hπ.isColimit
theorem
Topology
[ "Mathlib.CategoryTheory.EffectiveEpi.RegularEpi", "Mathlib.Topology.Category.TopCat.Limits.Pullbacks" ]
Mathlib/Topology/Category/TopCat/EffectiveEpi.lean
effectiveEpi_iff_isQuotientMap
The effective epimorphisms in `TopCat` are precisely the quotient maps.
epi_iff_surjective {X Y : TopCat.{u}} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f := by suffices Epi f ↔ Epi ((forget TopCat).map f) by rw [this, CategoryTheory.epi_iff_surjective] rfl constructor · intro infer_instance · apply Functor.epi_of_epi_map
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Functor.EpiMono" ]
Mathlib/Topology/Category/TopCat/EpiMono.lean
epi_iff_surjective
null
mono_iff_injective {X Y : TopCat.{u}} (f : X ⟶ Y) : Mono f ↔ Function.Injective f := by suffices Mono f ↔ Mono ((forget TopCat).map f) by rw [this, CategoryTheory.mono_iff_injective] rfl constructor · intro infer_instance · apply Functor.mono_of_mono_map
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Adjunctions", "Mathlib.CategoryTheory.Functor.EpiMono" ]
Mathlib/Topology/Category/TopCat/EpiMono.lean
mono_iff_injective
null
OpenNhds (x : X) := ObjectProperty.FullSubcategory fun U : Opens X => x ∈ U
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
OpenNhds
The type of open neighbourhoods of a point `x` in a (bundled) topological space.
partialOrder (x : X) : PartialOrder (OpenNhds x) where le U V := U.1 ≤ V.1 le_refl _ := le_rfl le_trans _ _ _ := le_trans le_antisymm _ _ i j := ObjectProperty.FullSubcategory.ext <| le_antisymm i j
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
partialOrder
null
openNhdsCategory (x : X) : Category.{u} (OpenNhds x) := inferInstance
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
openNhdsCategory
null
opensNhds.instFunLike : FunLike (U ⟶ V) U.1 V.1 where coe f := Set.inclusion f.le coe_injective' := by rintro ⟨⟨_⟩⟩ _ _; congr! @[simp] lemma apply_mk (f : U ⟶ V) (y : X) (hy) : f ⟨y, hy⟩ = ⟨y, f.le hy⟩ := rfl @[simp] lemma val_apply (f : U ⟶ V) (y : U.1) : (f y : X) = y := rfl @[simp, norm_cast] lemma coe_id (f : U ⟶ U) : ⇑f = id := rfl
instance
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
opensNhds.instFunLike
null
id_apply (f : U ⟶ U) (y : U.1) : f y = y := rfl @[simp] lemma comp_apply (f : U ⟶ V) (g : V ⟶ W) (x : U.1) : (f ≫ g) x = g (f x) := rfl
lemma
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
id_apply
null
infLELeft {x : X} (U V : OpenNhds x) : U ⊓ V ⟶ U := homOfLE inf_le_left
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
infLELeft
The inclusion `U ⊓ V ⟶ U` as a morphism in the category of open sets.
infLERight {x : X} (U V : OpenNhds x) : U ⊓ V ⟶ V := homOfLE inf_le_right
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
infLERight
The inclusion `U ⊓ V ⟶ V` as a morphism in the category of open sets.
inclusion (x : X) : OpenNhds x ⥤ Opens X := ObjectProperty.ι _ @[simp]
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
inclusion
The inclusion functor from open neighbourhoods of `x` to open sets in the ambient topological space.
inclusion_obj (x : X) (U) (p) : (inclusion x).obj ⟨U, p⟩ = U := rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
inclusion_obj
null
isOpenEmbedding {x : X} (U : OpenNhds x) : IsOpenEmbedding U.1.inclusion' := U.1.isOpenEmbedding
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
isOpenEmbedding
null
map (x : X) : OpenNhds (f x) ⥤ OpenNhds x where obj U := ⟨(Opens.map f).obj U.1, U.2⟩ map i := (Opens.map f).map i @[simp]
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
map
The preimage functor from neighborhoods of `f x` to neighborhoods of `x`.
map_obj (x : X) (U) (q) : (map f x).obj ⟨U, q⟩ = ⟨(Opens.map f).obj U, q⟩ := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
map_obj
null
map_id_obj (x : X) (U) : (map (𝟙 X) x).obj U = U := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
map_id_obj
null
map_id_obj' (x : X) (U) (p) (q) : (map (𝟙 X) x).obj ⟨⟨U, p⟩, q⟩ = ⟨⟨U, p⟩, q⟩ := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
map_id_obj'
null
map_id_obj_unop (x : X) (U : (OpenNhds x)ᵒᵖ) : (map (𝟙 X) x).obj (unop U) = unop U := by simp @[simp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
map_id_obj_unop
null
op_map_id_obj (x : X) (U : (OpenNhds x)ᵒᵖ) : (map (𝟙 X) x).op.obj U = U := by simp
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
op_map_id_obj
null
@[simps! hom_app inv_app] inclusionMapIso (x : X) : inclusion (f x) ⋙ Opens.map f ≅ map f x ⋙ inclusion x := NatIso.ofComponents fun U => { hom := 𝟙 _, inv := 𝟙 _ } @[simp]
def
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
inclusionMapIso
`Opens.map f` and `OpenNhds.map f` form a commuting square (up to natural isomorphism) with the inclusion functors into `Opens X`.
inclusionMapIso_hom (x : X) : (inclusionMapIso f x).hom = 𝟙 _ := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
inclusionMapIso_hom
null
inclusionMapIso_inv (x : X) : (inclusionMapIso f x).inv = 𝟙 _ := rfl
theorem
Topology
[ "Mathlib.Topology.Category.TopCat.Opens", "Mathlib.Data.Set.Subsingleton" ]
Mathlib/Topology/Category/TopCat/OpenNhds.lean
inclusionMapIso_inv
null