fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
forget_reflectsIsomorphisms : (forget LightProfinite).ReflectsIsomorphisms := by constructor intro A B f hf rw [isIso_iff_bijective] at hf exact LightProfinite.isIso_of_bijective _ hf
instance
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
forget_reflectsIsomorphisms
null
epi_iff_surjective {X Y : LightProfinite.{u}} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f := by constructor · -- Note: in mathlib3 `contrapose` saw through `Function.Surjective`. dsimp [Function.Surjective] contrapose! rintro ⟨y, hy⟩ hf let C := Set.range f have hC : IsClosed C := (isCompact_range f.hom.continuous).isClosed let U := Cᶜ have hyU : y ∈ U := by refine Set.mem_compl ?_ rintro ⟨y', hy'⟩ exact hy y' hy' have hUy : U ∈ 𝓝 y := hC.compl_mem_nhds hyU obtain ⟨V, hV, hyV, hVU⟩ := isTopologicalBasis_isClopen.mem_nhds_iff.mp hUy classical let Z := of (ULift.{u} <| Fin 2) let g : Y ⟶ Z := CompHausLike.ofHom _ ⟨(LocallyConstant.ofIsClopen hV).map ULift.up, LocallyConstant.continuous _⟩ let h : Y ⟶ Z := CompHausLike.ofHom _ ⟨fun _ => ⟨1⟩, continuous_const⟩ have H : h = g := by rw [← cancel_epi f] ext x dsimp [g, LocallyConstant.ofIsClopen] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, hom_ofHom, ContinuousMap.coe_mk, Function.comp_apply, if_neg] refine mt (fun α => hVU α) ?_ simp [U, C] apply_fun fun e => (e y).down at H dsimp [g, LocallyConstant.ofIsClopen] at H rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Function.comp_apply, if_pos hyV] at H exact top_ne_bot H · rw [← CategoryTheory.epi_iff_surjective] apply (forget LightProfinite).epi_of_epi_map
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
epi_iff_surjective
null
LightDiagram : Type (u+1) where /-- The indexing diagram. -/ diagram : ℕᵒᵖ ⥤ FintypeCat /-- The limit cone. -/ cone : Cone (diagram ⋙ FintypeCat.toProfinite.{u}) /-- The limit cone is limiting. -/ isLimit : IsLimit cone
structure
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
LightDiagram
A structure containing the data of sequential limit in `Profinite` of finite sets.
toProfinite (S : LightDiagram) : Profinite := S.cone.pt @[simps!]
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
toProfinite
The underlying `Profinite` of a `LightDiagram`.
hasForget : ConcreteCategory LightDiagram (fun X Y => C(X.toProfinite, Y.toProfinite)) := InducedCategory.concreteCategory toProfinite
instance
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
hasForget
null
@[simps!] lightDiagramToProfinite : LightDiagram ⥤ Profinite := inducedFunctor _
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
lightDiagramToProfinite
The fully faithful embedding `LightDiagram ⥤ Profinite`
instCountableDiscreteQuotient (S : LightProfinite) : Countable (DiscreteQuotient ((lightToProfinite.obj S))) := (DiscreteQuotient.finsetClopens_inj S).countable
instance
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
instCountableDiscreteQuotient
null
noncomputable toLightDiagram (S : LightProfinite.{u}) : LightDiagram.{u} where diagram := IsCofiltered.sequentialFunctor _ ⋙ (lightToProfinite.obj S).fintypeDiagram cone := (Functor.Initial.limitConeComp (IsCofiltered.sequentialFunctor _) (lightToProfinite.obj S).lim).cone isLimit := (Functor.Initial.limitConeComp (IsCofiltered.sequentialFunctor _) (lightToProfinite.obj S).lim).isLimit
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
toLightDiagram
A profinite space which is light gives rise to a light profinite space.
@[simps] noncomputable lightProfiniteToLightDiagram : LightProfinite.{u} ⥤ LightDiagram.{u} where obj X := X.toLightDiagram map f := f open scoped Classical in
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
lightProfiniteToLightDiagram
The functor part of the equivalence `LightProfinite ≌ LightDiagram`
@[simps obj map] lightDiagramToLightProfinite : LightDiagram.{u} ⥤ LightProfinite.{u} where obj X := LightProfinite.of X.cone.pt map f := f
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
lightDiagramToLightProfinite
The inverse part of the equivalence `LightProfinite ≌ LightDiagram`
noncomputable LightProfinite.equivDiagram : LightProfinite.{u} ≌ LightDiagram.{u} where functor := lightProfiniteToLightDiagram inverse := lightDiagramToLightProfinite unitIso := Iso.refl _ counitIso := NatIso.ofComponents (fun _ ↦ lightDiagramToProfinite.preimageIso (Iso.refl _)) (by intro _ _ f simp only [Functor.comp_obj, lightDiagramToLightProfinite_obj, lightProfiniteToLightDiagram_obj, Functor.id_obj, Functor.comp_map, lightDiagramToLightProfinite_map, lightProfiniteToLightDiagram_map, lightDiagramToProfinite_obj, Functor.preimageIso_hom, Iso.refl_hom, Functor.id_map] erw [lightDiagramToProfinite.preimage_id, lightDiagramToProfinite.preimage_id, Category.comp_id f]) functor_unitIso_comp _ := by simpa using lightDiagramToProfinite.preimage_id
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
LightProfinite.equivDiagram
The equivalence of categories `LightProfinite ≌ LightDiagram`
LightDiagram' : Type u where /-- The diagram takes values in a small category equivalent to `FintypeCat`. -/ diagram : ℕᵒᵖ ⥤ FintypeCat.Skeleton.{u}
structure
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
LightDiagram'
This is an auxiliary definition used to show that `LightDiagram` is essentially small. Note that below we put a category instance on this structure which is completely different from the category instance on `ℕᵒᵖ ⥤ FintypeCat.Skeleton.{u}`. Neither the morphisms nor the objects are the same.
LightDiagram'.toProfinite (S : LightDiagram') : Profinite := limit (S.diagram ⋙ FintypeCat.Skeleton.equivalence.functor ⋙ FintypeCat.toProfinite.{u})
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
LightDiagram'.toProfinite
A `LightDiagram'` yields a `Profinite`.
LightDiagram'.toLightFunctor : LightDiagram'.{u} ⥤ LightDiagram.{u} where obj X := ⟨X.diagram ⋙ Skeleton.equivalence.functor, _, limit.isLimit _⟩ map f := f
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
LightDiagram'.toLightFunctor
The functor part of the equivalence of categories `LightDiagram' ≌ LightDiagram`.
LightDiagram.equivSmall : LightDiagram.{u} ≌ LightDiagram'.{u} := LightDiagram'.toLightFunctor.asEquivalence.symm
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Countable", "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.ClopenBox" ]
Mathlib/Topology/Category/LightProfinite/Basic.lean
LightDiagram.equivSmall
The equivalence between `LightDiagram` and a small category.
effectiveEpi_iff_surjective {X Y : LightProfinite.{u}} (f : X ⟶ Y) : EffectiveEpi f ↔ Function.Surjective f := by refine ⟨fun h ↦ ?_, fun h ↦ ⟨⟨effectiveEpiStruct f h⟩⟩⟩ rw [← epi_iff_surjective] infer_instance
theorem
Topology
[ "Mathlib.Topology.Category.CompHausLike.EffectiveEpi", "Mathlib.Topology.Category.LightProfinite.Limits" ]
Mathlib/Topology/Category/LightProfinite/EffectiveEpi.lean
effectiveEpi_iff_surjective
null
@[simps] functor : ℕᵒᵖ ⥤ StructuredArrow c.pt toLightProfinite where obj i := StructuredArrow.mk (c.π.app i) map f := StructuredArrow.homMk (F.map f) (c.w f)
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
functor
Given a sequential cone in `LightProfinite` consisting of finite sets, we obtain a functor from the indexing category to `StructuredArrow c.pt toLightProfinite`.
@[simps! obj map] functorOp : ℕ ⥤ CostructuredArrow toLightProfinite.op ⟨c.pt⟩ := (functor c).rightOp ⋙ StructuredArrow.toCostructuredArrow _ _
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
functorOp
Given a sequential cone in `LightProfinite` consisting of finite sets, we obtain a functor from the opposite of the indexing category to `CostructuredArrow toProfinite.op ⟨c.pt⟩`.
functor_initial (hc : IsLimit c) [∀ i, Epi (c.π.app i)] : Initial (functor c) := by rw [initial_iff_comp_equivalence _ (StructuredArrow.post _ _ lightToProfinite)] have : ∀ i, Epi ((lightToProfinite.mapCone c).π.app i) := fun i ↦ inferInstanceAs (Epi (lightToProfinite.map (c.π.app i))) exact Profinite.Extend.functor_initial _ (isLimitOfPreserves lightToProfinite hc)
theorem
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
functor_initial
If the projection maps in the cone are epimorphic and the cone is limiting, then `LightProfinite.Extend.functor` is initial.
functorOp_final (hc : IsLimit c) [∀ i, Epi (c.π.app i)] : Final (functorOp c) := by have := functor_initial c hc have : ((StructuredArrow.toCostructuredArrow toLightProfinite c.pt)).IsEquivalence := (inferInstance : (structuredArrowOpEquivalence _ _).functor.IsEquivalence ) have : (functor c).rightOp.Final := inferInstanceAs ((opOpEquivalence ℕ).inverse ⋙ (functor c).op).Final exact Functor.final_comp (functor c).rightOp _
theorem
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
functorOp_final
If the projection maps in the cone are epimorphic and the cone is limiting, then `LightProfinite.Extend.functorOp` is final.
cone (S : LightProfinite) : Cone (StructuredArrow.proj S toLightProfinite ⋙ toLightProfinite ⋙ G) where pt := G.obj S π := { app := fun i ↦ G.map i.hom naturality := fun _ _ f ↦ (by have := f.w simp only [const_obj_obj, StructuredArrow.left_eq_id, const_obj_map, Category.id_comp, StructuredArrow.w] at this simp only [const_obj_obj, comp_obj, StructuredArrow.proj_obj, const_obj_map, Category.id_comp, Functor.comp_map, StructuredArrow.proj_map, ← map_comp, StructuredArrow.w]) }
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
cone
Given a functor `G` from `LightProfinite` and `S : LightProfinite`, we obtain a cone on `(StructuredArrow.proj S toLightProfinite ⋙ toLightProfinite ⋙ G)` with cone point `G.obj S`. Whiskering this cone with `LightProfinite.Extend.functor c` gives `G.mapCone c` as we check in the example below.
noncomputable isLimitCone (hc : IsLimit c) [∀ i, Epi (c.π.app i)] (hc' : IsLimit <| G.mapCone c) : IsLimit (cone G c.pt) := (functor_initial c hc).isLimitWhiskerEquiv _ _ hc'
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
isLimitCone
If `c` and `G.mapCone c` are limit cones and the projection maps in `c` are epimorphic, then `cone G c.pt` is a limit cone.
@[simps] cocone (S : LightProfinite) : Cocone (CostructuredArrow.proj toLightProfinite.op ⟨S⟩ ⋙ toLightProfinite.op ⋙ G) where pt := G.obj ⟨S⟩ ι := { app := fun i ↦ G.map i.hom naturality := fun _ _ f ↦ (by have := f.w simp only [op_obj, const_obj_obj, op_map, CostructuredArrow.right_eq_id, const_obj_map, Category.comp_id] at this simp only [comp_obj, CostructuredArrow.proj_obj, op_obj, const_obj_obj, Functor.comp_map, CostructuredArrow.proj_map, op_map, ← map_comp, this, const_obj_map, Category.comp_id]) }
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
cocone
Given a functor `G` from `LightProfiniteᵒᵖ` and `S : LightProfinite`, we obtain a cocone on `(CostructuredArrow.proj toLightProfinite.op ⟨S⟩ ⋙ toLightProfinite.op ⋙ G)` with cocone point `G.obj ⟨S⟩`. Whiskering this cocone with `LightProfinite.Extend.functorOp c` gives `G.mapCocone c.op` as we check in the example below.
noncomputable isColimitCocone (hc : IsLimit c) [∀ i, Epi (c.π.app i)] (hc' : IsColimit <| G.mapCocone c.op) : IsColimit (cocone G c.pt) := haveI := functorOp_final c hc (Functor.final_comp (opOpEquivalence ℕ).functor (functorOp c)).isColimitWhiskerEquiv _ _ hc'
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
isColimitCocone
If `c` is a limit cone, `G.mapCocone c.op` is a colimit cone and the projection maps in `c` are epimorphic, then `cocone G c.pt` is a colimit cone.
fintypeDiagram' : StructuredArrow S toLightProfinite ⥤ FintypeCat := StructuredArrow.proj S toLightProfinite
abbrev
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
fintypeDiagram'
A functor `StructuredArrow S toLightProfinite ⥤ FintypeCat` whose limit in `LightProfinite` is isomorphic to `S`.
diagram' : StructuredArrow S toLightProfinite ⥤ LightProfinite := S.fintypeDiagram' ⋙ toLightProfinite
abbrev
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
diagram'
An abbreviation for `S.fintypeDiagram' ⋙ toLightProfinite`.
asLimitCone' : Cone (S.diagram') := cone (𝟭 _) S
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
asLimitCone'
A cone over `S.diagram'` whose cone point is `S`.
noncomputable asLimit' : IsLimit S.asLimitCone' := isLimitCone _ (𝟭 _) S.asLimit S.asLimit
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
asLimit'
`S.asLimitCone'` is a limit cone.
noncomputable lim' : LimitCone S.diagram' := ⟨S.asLimitCone', S.asLimit'⟩
def
Topology
[ "Mathlib.Topology.Category.LightProfinite.AsLimit", "Mathlib.Topology.Category.Profinite.Extend" ]
Mathlib/Topology/Category/LightProfinite/Extend.lean
lim'
A bundled version of `S.asLimitCone'` and `S.asLimit'`.
isTerminalPUnit : IsTerminal (LightProfinite.of PUnit.{u + 1}) := CompHausLike.isTerminalPUnit
abbrev
Topology
[ "Mathlib.Topology.Category.CompHausLike.Limits", "Mathlib.Topology.Category.LightProfinite.Basic" ]
Mathlib/Topology/Category/LightProfinite/Limits.lean
isTerminalPUnit
A one-element space is terminal in `Profinite`
noncomputable natUnionInftyEmbedding : C(OnePoint ℕ, ℝ) where toFun | ∞ => 0 | OnePoint.some n => 1 / (n + 1 : ℝ) continuous_toFun := OnePoint.continuous_iff_from_nat _ |>.mpr tendsto_one_div_add_atTop_nhds_zero_nat
def
Topology
[ "Mathlib.Topology.Compactification.OnePoint.Basic", "Mathlib.Topology.Category.LightProfinite.Basic" ]
Mathlib/Topology/Category/LightProfinite/Sequence.lean
natUnionInftyEmbedding
The continuous map from `ℕ∪{∞}` to `ℝ` sending `n` to `1/(n+1)` and `∞` to `0`.
isClosedEmbedding_natUnionInftyEmbedding : IsClosedEmbedding natUnionInftyEmbedding := by refine .of_continuous_injective_isClosedMap natUnionInftyEmbedding.continuous ?_ ?_ · rintro (_ | n) (_ | m) h · rfl · simp only [natUnionInftyEmbedding, one_div, ContinuousMap.coe_mk, zero_eq_inv] at h assumption_mod_cast · simp only [natUnionInftyEmbedding, one_div, ContinuousMap.coe_mk, inv_eq_zero] at h assumption_mod_cast · simp only [natUnionInftyEmbedding, one_div, ContinuousMap.coe_mk, inv_inj, add_left_inj, Nat.cast_inj] at h rw [h] · exact fun _ hC => (hC.isCompact.image natUnionInftyEmbedding.continuous).isClosed
lemma
Topology
[ "Mathlib.Topology.Compactification.OnePoint.Basic", "Mathlib.Topology.Category.LightProfinite.Basic" ]
Mathlib/Topology/Category/LightProfinite/Sequence.lean
isClosedEmbedding_natUnionInftyEmbedding
The continuous map from `ℕ∪{∞}` to `ℝ` sending `n` to `1/(n+1)` and `∞` to `0` is a closed embedding.
NatUnionInfty : LightProfinite := of (OnePoint ℕ) @[inherit_doc] scoped notation "ℕ∪{∞}" => NatUnionInfty
abbrev
Topology
[ "Mathlib.Topology.Compactification.OnePoint.Basic", "Mathlib.Topology.Category.LightProfinite.Basic" ]
Mathlib/Topology/Category/LightProfinite/Sequence.lean
NatUnionInfty
The one point compactification of the natural numbers as a light profinite set.
continuous_iff_convergent {Y : Type*} [TopologicalSpace Y] (f : ℕ∪{∞} → Y) : Continuous f ↔ Tendsto (fun x : ℕ ↦ f x) atTop (𝓝 (f ∞)) := continuous_iff_from_nat f
lemma
Topology
[ "Mathlib.Topology.Compactification.OnePoint.Basic", "Mathlib.Topology.Category.LightProfinite.Basic" ]
Mathlib/Topology/Category/LightProfinite/Sequence.lean
continuous_iff_convergent
null
fintypeDiagram : DiscreteQuotient X ⥤ FintypeCat where obj S := @FintypeCat.of S (Fintype.ofFinite S) map f := DiscreteQuotient.ofLE f.le map_comp _ _ := by funext; cat_disch
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
fintypeDiagram
The functor `DiscreteQuotient X ⥤ Fintype` whose limit is isomorphic to `X`.
diagram : DiscreteQuotient X ⥤ Profinite := X.fintypeDiagram ⋙ FintypeCat.toProfinite
abbrev
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
diagram
An abbreviation for `X.fintypeDiagram ⋙ FintypeCat.toProfinite`.
asLimitCone : CategoryTheory.Limits.Cone X.diagram := { pt := X π := { app := fun S => CompHausLike.ofHom (Y := X.diagram.obj S) _ ⟨S.proj, IsLocallyConstant.continuous (S.proj_isLocallyConstant)⟩ } }
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
asLimitCone
A cone over `X.diagram` whose cone point is `X`.
isIso_asLimitCone_lift : IsIso ((limitConeIsLimit.{u, u} X.diagram).lift X.asLimitCone) := CompHausLike.isIso_of_bijective _ (by refine ⟨fun a b h => ?_, fun a => ?_⟩ · refine DiscreteQuotient.eq_of_forall_proj_eq fun S => ?_ apply_fun fun f : (limitCone.{u, u} X.diagram).pt => f.val S at h exact h · obtain ⟨b, hb⟩ := DiscreteQuotient.exists_of_compat (fun S => a.val S) fun _ _ h => a.prop (homOfLE h) use b apply Subtype.ext apply funext rintro S apply hb )
instance
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
isIso_asLimitCone_lift
null
isoAsLimitConeLift : X ≅ (limitCone.{u, u} X.diagram).pt := asIso <| (limitConeIsLimit.{u, u} _).lift X.asLimitCone
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
isoAsLimitConeLift
The isomorphism between `X` and the explicit limit of `X.diagram`, induced by lifting `X.asLimitCone`.
asLimitConeIso : X.asLimitCone ≅ limitCone.{u, u} _ := Limits.Cones.ext (isoAsLimitConeLift _) fun _ => rfl
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
asLimitConeIso
The isomorphism of cones `X.asLimitCone` and `Profinite.limitCone X.diagram`. The underlying isomorphism is defeq to `X.isoAsLimitConeLift`.
asLimit : CategoryTheory.Limits.IsLimit X.asLimitCone := Limits.IsLimit.ofIsoLimit (limitConeIsLimit _) X.asLimitConeIso.symm
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
asLimit
`X.asLimitCone` is indeed a limit cone.
lim : Limits.LimitCone X.diagram := ⟨X.asLimitCone, X.asLimit⟩
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.DiscreteQuotient" ]
Mathlib/Topology/Category/Profinite/AsLimit.lean
lim
A bundled version of `X.asLimitCone` and `X.asLimit`.
and is a fully faithful subcategory of `TopCat`. The fully faithful functor is called `Profinite.toTop`.
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
and
null
Profinite := CompHausLike (fun X ↦ TotallyDisconnectedSpace X)
abbrev
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
Profinite
The type of profinite topological spaces.
of (X : Type*) [TopologicalSpace X] [CompactSpace X] [T2Space X] [TotallyDisconnectedSpace X] : Profinite := CompHausLike.of _ X
abbrev
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
of
Construct a term of `Profinite` from a type endowed with the structure of a compact, Hausdorff and totally disconnected topological space.
profiniteToCompHaus : Profinite ⥤ CompHaus := compHausLikeToCompHaus _
abbrev
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
profiniteToCompHaus
The fully faithful embedding of `Profinite` in `CompHaus`.
Profinite.toTopCat : Profinite ⥤ TopCat := CompHausLike.compHausLikeToTop _
abbrev
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
Profinite.toTopCat
The fully faithful embedding of `Profinite` in `TopCat`. This is definitionally the same as the obvious composite.
@[stacks 0900] CompHaus.toProfiniteObj (X : CompHaus.{u}) : Profinite.{u} where toTop := TopCat.of (ConnectedComponents X) is_compact := Quotient.compactSpace is_hausdorff := ConnectedComponents.t2 prop := ConnectedComponents.totallyDisconnectedSpace
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
CompHaus.toProfiniteObj
(Implementation) The object part of the connected_components functor from compact Hausdorff spaces to Profinite spaces, given by quotienting a space by its connected components.
Profinite.toCompHausEquivalence (X : CompHaus.{u}) (Y : Profinite.{u}) : (CompHaus.toProfiniteObj X ⟶ Y) ≃ (X ⟶ profiniteToCompHaus.obj Y) where toFun f := ofHom _ (f.hom.comp ⟨Quotient.mk'', continuous_quotient_mk'⟩) invFun g := TopCat.ofHom { toFun := Continuous.connectedComponentsLift g.hom.2 continuous_toFun := Continuous.connectedComponentsLift_continuous g.hom.2 } left_inv _ := TopCat.ext <| ConnectedComponents.surjective_coe.forall.2 fun _ => rfl
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
Profinite.toCompHausEquivalence
(Implementation) The bijection of homsets to establish the reflective adjunction of Profinite spaces in compact Hausdorff spaces.
CompHaus.toProfinite : CompHaus ⥤ Profinite := Adjunction.leftAdjointOfEquiv Profinite.toCompHausEquivalence fun _ _ _ _ _ => rfl
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
CompHaus.toProfinite
The connected_components functor from compact Hausdorff spaces to profinite spaces, left adjoint to the inclusion functor.
CompHaus.toProfinite_obj' (X : CompHaus) : ↥(CompHaus.toProfinite.obj X) = ConnectedComponents X := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
CompHaus.toProfinite_obj'
null
FintypeCat.botTopology (A : FintypeCat) : TopologicalSpace A := ⊥
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
FintypeCat.botTopology
Finite types are given the discrete topology.
FintypeCat.discreteTopology (A : FintypeCat) : DiscreteTopology A := ⟨rfl⟩ attribute [local instance] FintypeCat.discreteTopology
theorem
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
FintypeCat.discreteTopology
null
@[simps! -isSimp map_hom_apply] FintypeCat.toProfinite : FintypeCat ⥤ Profinite where obj A := Profinite.of A map f := ofHom _ ⟨f, by continuity⟩
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
FintypeCat.toProfinite
The natural functor from `Fintype` to `Profinite`, endowing a finite type with the discrete topology.
FintypeCat.toProfiniteFullyFaithful : toProfinite.FullyFaithful where preimage f := (f : _ → _) map_preimage _ := rfl preimage_map _ := rfl
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
FintypeCat.toProfiniteFullyFaithful
`FintypeCat.toLightProfinite` is fully faithful.
limitCone {J : Type v} [SmallCategory J] (F : J ⥤ Profinite.{max u v}) : Limits.Cone F where pt := { toTop := (CompHaus.limitCone.{v, u} (F ⋙ profiniteToCompHaus)).pt.toTop prop := by change TotallyDisconnectedSpace ({ u : ∀ j : J, F.obj j | _ } : Type _) exact Subtype.totallyDisconnectedSpace } π := { app := (CompHaus.limitCone.{v, u} (F ⋙ profiniteToCompHaus)).π.app naturality := by intro j k f ext ⟨g, p⟩ exact (p f).symm }
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
limitCone
An explicit limit cone for a functor `F : J ⥤ Profinite`, defined in terms of `CompHaus.limitCone`, which is defined in terms of `TopCat.limitCone`.
limitConeIsLimit {J : Type v} [SmallCategory J] (F : J ⥤ Profinite.{max u v}) : Limits.IsLimit (limitCone F) where lift S := (CompHaus.limitConeIsLimit.{v, u} (F ⋙ profiniteToCompHaus)).lift (profiniteToCompHaus.mapCone S) uniq S _ h := (CompHaus.limitConeIsLimit.{v, u} _).uniq (profiniteToCompHaus.mapCone S) _ h
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
limitConeIsLimit
The limit cone `Profinite.limitCone F` is indeed a limit cone.
toProfiniteAdjToCompHaus : CompHaus.toProfinite ⊣ profiniteToCompHaus := Adjunction.adjunctionOfEquivLeft _ _
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
toProfiniteAdjToCompHaus
The adjunction between CompHaus.to_Profinite and Profinite.to_CompHaus
toCompHaus.reflective : Reflective profiniteToCompHaus where L := CompHaus.toProfinite adj := Profinite.toProfiniteAdjToCompHaus
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
toCompHaus.reflective
The category of profinite sets is reflective in the category of compact Hausdorff spaces
noncomputable toCompHaus.createsLimits : CreatesLimits profiniteToCompHaus := monadicCreatesLimits _
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
toCompHaus.createsLimits
null
noncomputable toTopCat.reflective : Reflective Profinite.toTopCat := Reflective.comp profiniteToCompHaus compHausToTop
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
toTopCat.reflective
null
noncomputable toTopCat.createsLimits : CreatesLimits Profinite.toTopCat := monadicCreatesLimits _
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
toTopCat.createsLimits
null
hasLimits : Limits.HasLimits Profinite := hasLimits_of_hasLimits_createsLimits Profinite.toTopCat
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
hasLimits
null
hasColimits : Limits.HasColimits Profinite := hasColimits_of_reflective profiniteToCompHaus
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
hasColimits
null
forget_preservesLimits : Limits.PreservesLimits (forget Profinite) := by apply Limits.comp_preservesLimits Profinite.toTopCat (forget TopCat)
instance
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
forget_preservesLimits
null
epi_iff_surjective {X Y : Profinite.{u}} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f := by constructor · dsimp [Function.Surjective] contrapose! rintro ⟨y, hy⟩ hf let C := Set.range f have hC : IsClosed C := (isCompact_range f.hom.continuous).isClosed let U := Cᶜ have hyU : y ∈ U := by refine Set.mem_compl ?_ rintro ⟨y', hy'⟩ exact hy y' hy' have hUy : U ∈ 𝓝 y := hC.compl_mem_nhds hyU obtain ⟨V, hV, hyV, hVU⟩ := isTopologicalBasis_isClopen.mem_nhds_iff.mp hUy classical let Z := of (ULift.{u} <| Fin 2) let g : Y ⟶ Z := ofHom _ ⟨(LocallyConstant.ofIsClopen hV).map ULift.up, LocallyConstant.continuous _⟩ let h : Y ⟶ Z := ofHom _ ⟨fun _ => ⟨1⟩, continuous_const⟩ have H : h = g := by rw [← cancel_epi f] ext x dsimp [g, LocallyConstant.ofIsClopen] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, ConcreteCategory.hom_ofHom, ContinuousMap.coe_mk, Function.comp_apply, if_neg] refine mt (fun α => hVU α) ?_ simp [U, C] apply_fun fun e => (e y).down at H dsimp [g, LocallyConstant.ofIsClopen] at H rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Function.comp_apply, if_pos hyV] at H exact top_ne_bot H · rw [← CategoryTheory.epi_iff_surjective] apply (forget Profinite).epi_of_epi_map
theorem
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
epi_iff_surjective
null
pi {α : Type u} (β : α → Profinite) : Profinite := .of (Π (a : α), β a)
def
Topology
[ "Mathlib.CategoryTheory.FintypeCat", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.Separation.Profinite" ]
Mathlib/Topology/Category/Profinite/Basic.lean
pi
The pi-type of profinite spaces is profinite.
exists_isClopen_of_cofiltered {U : Set C.pt} (hC : IsLimit C) (hU : IsClopen U) : ∃ (j : J) (V : Set (F.obj j)), IsClopen V ∧ U = C.π.app j ⁻¹' V := by have hB := TopCat.isTopologicalBasis_cofiltered_limit.{u, v} (F ⋙ Profinite.toTopCat) (Profinite.toTopCat.mapCone C) (isLimitOfPreserves _ hC) (fun j => {W | IsClopen W}) ?_ (fun i => isClopen_univ) (fun i U1 U2 hU1 hU2 => hU1.inter hU2) ?_ rotate_left · intro i change TopologicalSpace.IsTopologicalBasis {W : Set (F.obj i) | IsClopen W} apply isTopologicalBasis_isClopen · rintro i j f V (hV : IsClopen _) refine ⟨hV.1.preimage ?_, hV.2.preimage ?_⟩ <;> continuity obtain ⟨S, hS, h⟩ := hB.open_eq_sUnion hU.2 clear hB let j : S → J := fun s => (hS s.2).choose let V : ∀ s : S, Set (F.obj (j s)) := fun s => (hS s.2).choose_spec.choose have hV : ∀ s : S, IsClopen (V s) ∧ s.1 = C.π.app (j s) ⁻¹' V s := fun s => (hS s.2).choose_spec.choose_spec have hUo : ∀ (i : ↑S), IsOpen ((fun s ↦ (C.π.app (j s)) ⁻¹' V s) i) := by intro s exact (hV s).1.2.preimage (C.π.app (j s)).hom.continuous have hsU : U ⊆ ⋃ (i : ↑S), (fun s ↦ C.π.app (j s) ⁻¹' V s) i := by dsimp only rw [h] rintro x ⟨T, hT, hx⟩ refine ⟨_, ⟨⟨T, hT⟩, rfl⟩, ?_⟩ dsimp only rwa [← (hV ⟨T, hT⟩).2] have := hU.1.isCompact.elim_finite_subcover (fun s : S => C.π.app (j s) ⁻¹' V s) hUo hsU obtain ⟨G, hG⟩ := this classical obtain ⟨j0, hj0⟩ := IsCofiltered.inf_objs_exists (G.image j) let f : ∀ s ∈ G, j0 ⟶ j s := fun s hs => (hj0 (Finset.mem_image.mpr ⟨s, hs, rfl⟩)).some let W : S → Set (F.obj j0) := fun s => if hs : s ∈ G then F.map (f s hs) ⁻¹' V s else Set.univ refine ⟨j0, ⋃ (s : S) (_ : s ∈ G), W s, ?_, ?_⟩ · apply isClopen_biUnion_finset intro s hs dsimp [W] rw [dif_pos hs] refine ⟨(hV s).1.1.preimage ?_, (hV s).1.2.preimage ?_⟩ <;> fun_prop · ext x constructor · intro hx simp_rw [W, Set.preimage_iUnion, Set.mem_iUnion] obtain ⟨_, ⟨s, rfl⟩, _, ⟨hs, rfl⟩, hh⟩ := hG hx refine ⟨s, hs, ?_⟩ rwa [dif_pos hs, ← Set.preimage_comp, ← CompHausLike.coe_comp, C.w] · intro hx simp_rw [W, Set.preimage_iUnion, Set.mem_iUnion] at hx obtain ⟨s, hs, hx⟩ := hx rw [h] refine ⟨s.1, s.2, ?_⟩ ...
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.DiscreteQuotient", "Mathlib.Topology.Category.TopCat.Limits.Cofiltered", "Mathlib.Topology.Category.TopCat.Limits.Konig" ]
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
exists_isClopen_of_cofiltered
If `X` is a cofiltered limit of profinite sets, then any clopen subset of `X` arises from a clopen set in one of the terms in the limit.
exists_locallyConstant_fin_two (hC : IsLimit C) (f : LocallyConstant C.pt (Fin 2)) : ∃ (j : J) (g : LocallyConstant (F.obj j) (Fin 2)), f = g.comap (C.π.app _).hom := by let U := f ⁻¹' {0} have hU : IsClopen U := f.isLocallyConstant.isClopen_fiber _ obtain ⟨j, V, hV, h⟩ := exists_isClopen_of_cofiltered C hC hU classical use j, LocallyConstant.ofIsClopen hV apply LocallyConstant.locallyConstant_eq_of_fiber_zero_eq simp only [Fin.isValue, Functor.const_obj_obj, LocallyConstant.coe_comap, Set.preimage_comp, LocallyConstant.ofIsClopen_fiber_zero] exact h open Classical in
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.DiscreteQuotient", "Mathlib.Topology.Category.TopCat.Limits.Cofiltered", "Mathlib.Topology.Category.TopCat.Limits.Konig" ]
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
exists_locallyConstant_fin_two
null
exists_locallyConstant_finite_aux {α : Type*} [Finite α] (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) (α → Fin 2)), (f.map fun a b => if a = b then (0 : Fin 2) else 1) = g.comap (C.π.app _).hom := by cases nonempty_fintype α let ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 let ff := (f.map ι).flip have hff := fun a : α => exists_locallyConstant_fin_two _ hC (ff a) choose j g h using hff let G : Finset J := Finset.univ.image j obtain ⟨j0, hj0⟩ := IsCofiltered.inf_objs_exists G have hj : ∀ a, j a ∈ (Finset.univ.image j : Finset J) := by grind let fs : ∀ a : α, j0 ⟶ j a := fun a => (hj0 (hj a)).some let gg : α → LocallyConstant (F.obj j0) (Fin 2) := fun a => (g a).comap (F.map (fs _)).hom let ggg := LocallyConstant.unflip gg refine ⟨j0, ggg, ?_⟩ have : f.map ι = LocallyConstant.unflip (f.map ι).flip := by simp rw [this]; clear this have : LocallyConstant.comap (C.π.app j0).hom ggg = LocallyConstant.unflip (LocallyConstant.comap (C.π.app j0).hom ggg).flip := by simp rw [this]; clear this congr 1 ext1 a change ff a = _ rw [h] dsimp ext1 x change _ = (g a) ((C.π.app j0 ≫ F.map (fs a)) x) rw [C.w]; rfl
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.DiscreteQuotient", "Mathlib.Topology.Category.TopCat.Limits.Cofiltered", "Mathlib.Topology.Category.TopCat.Limits.Konig" ]
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
exists_locallyConstant_finite_aux
null
exists_locallyConstant_finite_nonempty {α : Type*} [Finite α] [Nonempty α] (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) α), f = g.comap (C.π.app _).hom := by inhabit α obtain ⟨j, gg, h⟩ := exists_locallyConstant_finite_aux _ hC f classical let ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 let σ : (α → Fin 2) → α := fun f => if h : ∃ a : α, ι a = f then h.choose else default refine ⟨j, gg.map σ, ?_⟩ ext x simp only [Functor.const_obj_obj, LocallyConstant.coe_comap, LocallyConstant.map_apply, Function.comp_apply] dsimp [σ] have h1 : ι (f x) = gg (C.π.app j x) := by change f.map (fun a b => if a = b then (0 : Fin 2) else 1) x = _ rw [h] rfl have h2 : ∃ a : α, ι a = gg (C.π.app j x) := ⟨f x, h1⟩ rw [dif_pos] swap · assumption apply_fun ι · rw [h2.choose_spec] exact h1 · intro a b hh have hhh := congr_fun hh a dsimp [ι] at hhh rw [if_pos rfl] at hhh split_ifs at hhh with hh1 · exact hh1.symm · exact False.elim (bot_ne_top hhh)
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.DiscreteQuotient", "Mathlib.Topology.Category.TopCat.Limits.Cofiltered", "Mathlib.Topology.Category.TopCat.Limits.Konig" ]
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
exists_locallyConstant_finite_nonempty
null
exists_locallyConstant {α : Type*} (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) α), f = g.comap (C.π.app _).hom := by let S := f.discreteQuotient let ff : S → α := f.lift cases isEmpty_or_nonempty S · suffices ∃ j, IsEmpty (F.obj j) by refine this.imp fun j hj => ?_ refine ⟨⟨hj.elim, fun A => ?_⟩, ?_⟩ · suffices (fun a ↦ IsEmpty.elim hj a) ⁻¹' A = ∅ by rw [this] exact isOpen_empty exact @Set.eq_empty_of_isEmpty _ hj _ · ext x exact hj.elim' (C.π.app j x) by_contra! h haveI : ∀ j : J, Nonempty ((F ⋙ Profinite.toTopCat).obj j) := h haveI : ∀ j : J, T2Space ((F ⋙ Profinite.toTopCat).obj j) := fun j => (inferInstance : T2Space (F.obj j)) haveI : ∀ j : J, CompactSpace ((F ⋙ Profinite.toTopCat).obj j) := fun j => (inferInstance : CompactSpace (F.obj j)) have cond := TopCat.nonempty_limitCone_of_compact_t2_cofiltered_system.{u} (F ⋙ Profinite.toTopCat) suffices Nonempty C.pt from IsEmpty.false (S.proj this.some) let D := Profinite.toTopCat.mapCone C have hD : IsLimit D := isLimitOfPreserves Profinite.toTopCat hC have CD := (hD.conePointUniqueUpToIso (TopCat.limitConeIsLimit.{v, max u v} _)).inv exact cond.map CD · let f' : LocallyConstant C.pt S := ⟨S.proj, S.proj_isLocallyConstant⟩ obtain ⟨j, g', hj⟩ := exists_locallyConstant_finite_nonempty _ hC f' refine ⟨j, ⟨ff ∘ g', g'.isLocallyConstant.comp _⟩, ?_⟩ ext1 t apply_fun fun e => e t at hj dsimp at hj ⊢ rw [← hj] rfl
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.LocallyConstant.Basic", "Mathlib.Topology.DiscreteQuotient", "Mathlib.Topology.Category.TopCat.Limits.Cofiltered", "Mathlib.Topology.Category.TopCat.Limits.Konig" ]
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
exists_locallyConstant
Any locally constant function from a cofiltered limit of profinite sets factors through one of the components.
effectiveEpi_tfae {B X : Profinite.{u}} (π : X ⟶ B) : TFAE [ EffectiveEpi π , Epi π , Function.Surjective π ] := by tfae_have 1 → 2 := fun _ ↦ inferInstance tfae_have 2 ↔ 3 := epi_iff_surjective π tfae_have 3 → 1 := fun hπ ↦ ⟨⟨CompHausLike.effectiveEpiStruct π hπ⟩⟩ tfae_finish
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Profinite.Limits", "Mathlib.Topology.Category.Stonean.Basic" ]
Mathlib/Topology/Category/Profinite/EffectiveEpi.lean
effectiveEpi_tfae
null
noncomputable profiniteToCompHausEffectivePresentation (X : CompHaus) : profiniteToCompHaus.EffectivePresentation X where p := Stonean.toProfinite.obj X.presentation f := CompHaus.presentation.π X effectiveEpi := ((CompHaus.effectiveEpi_tfae _).out 0 1).mpr (inferInstance : Epi _)
def
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Profinite.Limits", "Mathlib.Topology.Category.Stonean.Basic" ]
Mathlib/Topology/Category/Profinite/EffectiveEpi.lean
profiniteToCompHausEffectivePresentation
An effective presentation of an `X : Profinite` with respect to the inclusion functor from `Stonean`
effectiveEpiFamily_tfae {α : Type} [Finite α] {B : Profinite.{u}} (X : α → Profinite.{u}) (π : (a : α) → (X a ⟶ B)) : TFAE [ EffectiveEpiFamily X π , Epi (Sigma.desc π) , ∀ b : B, ∃ (a : α) (x : X a), π a x = b ] := by tfae_have 2 → 1 | _ => by simpa [← effectiveEpi_desc_iff_effectiveEpiFamily, (effectiveEpi_tfae (Sigma.desc π)).out 0 1] tfae_have 1 → 2 := fun _ ↦ inferInstance tfae_have 3 ↔ 1 := by erw [((CompHaus.effectiveEpiFamily_tfae (fun a ↦ profiniteToCompHaus.obj (X a)) (fun a ↦ profiniteToCompHaus.map (π a))).out 2 0 : )] exact ⟨fun h ↦ profiniteToCompHaus.finite_effectiveEpiFamily_of_map _ _ h, fun _ ↦ inferInstance⟩ tfae_finish
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Profinite.Limits", "Mathlib.Topology.Category.Stonean.Basic" ]
Mathlib/Topology/Category/Profinite/EffectiveEpi.lean
effectiveEpiFamily_tfae
null
effectiveEpiFamily_of_jointly_surjective {α : Type} [Finite α] {B : Profinite.{u}} (X : α → Profinite.{u}) (π : (a : α) → (X a ⟶ B)) (surj : ∀ b : B, ∃ (a : α) (x : X a), π a x = b) : EffectiveEpiFamily X π := ((effectiveEpiFamily_tfae X π).out 2 0).mp surj
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Coherent.ReflectsPreregular", "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "Mathlib.Topology.Category.Profinite.Limits", "Mathlib.Topology.Category.Stonean.Basic" ]
Mathlib/Topology/Category/Profinite/EffectiveEpi.lean
effectiveEpiFamily_of_jointly_surjective
null
exists_hom (hc : IsLimit c) {X : FintypeCat} (f : c.pt ⟶ toProfinite.obj X) : ∃ (i : I) (g : F.obj i ⟶ X), f = c.π.app i ≫ toProfinite.map g := by let _ : TopologicalSpace X := ⊥ have : DiscreteTopology (toProfinite.obj X) := ⟨rfl⟩ let f' : LocallyConstant c.pt (toProfinite.obj X) := ⟨f, (IsLocallyConstant.iff_continuous _).mpr f.hom.continuous⟩ obtain ⟨i, g, h⟩ := exists_locallyConstant.{_, u} c hc f' refine ⟨i, (g : _ → _), ?_⟩ ext x exact LocallyConstant.congr_fun h x
lemma
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
exists_hom
A continuous map from a profinite set to a finite set factors through one of the components of the profinite set when written as a cofiltered limit of finite sets.
@[simps] functor : I ⥤ StructuredArrow c.pt toProfinite where obj i := StructuredArrow.mk (c.π.app i) map f := StructuredArrow.homMk (F.map f) (c.w f)
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
functor
Given a cone in `Profinite`, consisting of finite sets and indexed by a cofiltered category, we obtain a functor from the indexing category to `StructuredArrow c.pt toProfinite`.
@[simps! obj map] functorOp : Iᵒᵖ ⥤ CostructuredArrow toProfinite.op ⟨c.pt⟩ := (functor c).op ⋙ StructuredArrow.toCostructuredArrow _ _
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
functorOp
Given a cone in `Profinite`, consisting of finite sets and indexed by a cofiltered category, we obtain a functor from the opposite of the indexing category to `CostructuredArrow toProfinite.op ⟨c.pt⟩`.
functor_initial (hc : IsLimit c) [∀ i, Epi (c.π.app i)] : Initial (functor c) := by let e : I ≌ ULiftHom.{w} (ULift.{w} I) := ULiftHomULiftCategory.equiv _ suffices (e.inverse ⋙ functor c).Initial from initial_of_equivalence_comp e.inverse (functor c) rw [initial_iff_of_isCofiltered (F := e.inverse ⋙ functor c)] constructor · intro ⟨_, X, (f : c.pt ⟶ _)⟩ obtain ⟨i, g, h⟩ := exists_hom c hc f exact ⟨⟨i⟩, ⟨StructuredArrow.homMk g h.symm⟩⟩ · intro ⟨_, X, (f : c.pt ⟶ _)⟩ ⟨i⟩ ⟨_, (s : F.obj i ⟶ X), (w : f = c.π.app i ≫ _)⟩ ⟨_, (s' : F.obj i ⟶ X), (w' : f = c.π.app i ≫ _)⟩ simp only [StructuredArrow.hom_eq_iff, StructuredArrow.comp_right] refine ⟨⟨i⟩, 𝟙 _, ?_⟩ simp only [CategoryTheory.Functor.map_id] rw [w] at w' exact toProfinite.map_injective <| Epi.left_cancellation _ _ w'
lemma
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
functor_initial
If the projection maps in the cone are epimorphic and the cone is limiting, then `Profinite.Extend.functor` is initial. TODO: investigate how to weaken the assumption `∀ i, Epi (c.π.app i)` to `∀ i, ∃ j (_ : j ⟶ i), Epi (c.π.app j)`.
functorOp_final (hc : IsLimit c) [∀ i, Epi (c.π.app i)] : Final (functorOp c) := by have := functor_initial c hc have : ((StructuredArrow.toCostructuredArrow toProfinite c.pt)).IsEquivalence := (inferInstance : (structuredArrowOpEquivalence _ _).functor.IsEquivalence ) exact Functor.final_comp (functor c).op _
lemma
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
functorOp_final
If the projection maps in the cone are epimorphic and the cone is limiting, then `Profinite.Extend.functorOp` is final.
@[simps] cone (S : Profinite) : Cone (StructuredArrow.proj S toProfinite ⋙ toProfinite ⋙ G) where pt := G.obj S π := { app := fun i ↦ G.map i.hom naturality := fun _ _ f ↦ (by simp [← map_comp]) }
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
cone
Given a functor `G` from `Profinite` and `S : Profinite`, we obtain a cone on `(StructuredArrow.proj S toProfinite ⋙ toProfinite ⋙ G)` with cone point `G.obj S`. Whiskering this cone with `Profinite.Extend.functor c` gives `G.mapCone c` as we check in the example below.
noncomputable isLimitCone (hc : IsLimit c) [∀ i, Epi (c.π.app i)] (hc' : IsLimit <| G.mapCone c) : IsLimit (cone G c.pt) := (functor_initial c hc).isLimitWhiskerEquiv _ _ hc'
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
isLimitCone
If `c` and `G.mapCone c` are limit cones and the projection maps in `c` are epimorphic, then `cone G c.pt` is a limit cone.
@[simps] cocone (S : Profinite) : Cocone (CostructuredArrow.proj toProfinite.op ⟨S⟩ ⋙ toProfinite.op ⋙ G) where pt := G.obj ⟨S⟩ ι := { app := fun i ↦ G.map i.hom naturality := fun _ _ f ↦ (by have := f.w simp only [op_obj, const_obj_obj, op_map, CostructuredArrow.right_eq_id, const_obj_map, Category.comp_id] at this simp [← map_comp, this]) }
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
cocone
Given a functor `G` from `Profiniteᵒᵖ` and `S : Profinite`, we obtain a cocone on `(CostructuredArrow.proj toProfinite.op ⟨S⟩ ⋙ toProfinite.op ⋙ G)` with cocone point `G.obj ⟨S⟩`. Whiskering this cocone with `Profinite.Extend.functorOp c` gives `G.mapCocone c.op` as we check in the example below.
noncomputable isColimitCocone (hc : IsLimit c) [∀ i, Epi (c.π.app i)] (hc' : IsColimit <| G.mapCocone c.op) : IsColimit (cocone G c.pt) := (functorOp_final c hc).isColimitWhiskerEquiv _ _ hc'
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
isColimitCocone
If `c` is a limit cone, `G.mapCocone c.op` is a colimit cone and the projection maps in `c` are epimorphic, then `cocone G c.pt` is a colimit cone.
fintypeDiagram' : StructuredArrow S toProfinite ⥤ FintypeCat := StructuredArrow.proj S toProfinite
abbrev
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
fintypeDiagram'
A functor `StructuredArrow S toProfinite ⥤ FintypeCat` whose limit in `Profinite` is isomorphic to `S`.
diagram' : StructuredArrow S toProfinite ⥤ Profinite := S.fintypeDiagram' ⋙ toProfinite
abbrev
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
diagram'
An abbreviation for `S.fintypeDiagram' ⋙ toProfinite`.
asLimitCone' : Cone (S.diagram') := cone (𝟭 _) S
abbrev
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
asLimitCone'
A cone over `S.diagram'` whose cone point is `S`.
noncomputable asLimit' : IsLimit S.asLimitCone' := isLimitCone _ (𝟭 _) S.asLimit S.asLimit
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
asLimit'
`S.asLimitCone'` is a limit cone.
noncomputable lim' : LimitCone S.diagram' := ⟨S.asLimitCone', S.asLimit'⟩
def
Topology
[ "Mathlib.Topology.Category.Profinite.AsLimit", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.CategoryTheory.Filtered.Final" ]
Mathlib/Topology/Category/Profinite/Extend.lean
lim'
A bundled version of `S.asLimitCone'` and `S.asLimit'`.
isTerminalPUnit : IsTerminal (Profinite.of PUnit.{u + 1}) := CompHausLike.isTerminalPUnit
abbrev
Topology
[ "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Category.CompHausLike.Limits" ]
Mathlib/Topology/Category/Profinite/Limits.lean
isTerminalPUnit
A one-element space is terminal in `Profinite`
obj : Set ((i : {i : ι // J i}) → X i) := ContinuousMap.precomp (Subtype.val (p := J)) '' C
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
obj
The object part of the functor `indexFunctor : (Finset ι)ᵒᵖ ⥤ Profinite`.
π_app : C(C, obj C J) := ⟨Set.MapsTo.restrict (precomp (Subtype.val (p := J))) _ _ (Set.mapsTo_image _ _), Continuous.restrict _ (Pi.continuous_precomp' _)⟩ variable {J K}
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
π_app
The projection maps in the limit cone `indexCone`.
map (h : ∀ i, J i → K i) : C(obj C K, obj C J) := ⟨Set.MapsTo.restrict (precomp (Set.inclusion h)) _ _ (fun _ hx ↦ by obtain ⟨y, hy⟩ := hx rw [← hy.2] exact ⟨y, hy.1, rfl⟩), Continuous.restrict _ (Pi.continuous_precomp' _)⟩
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
map
The morphism part of the functor `indexFunctor : (Finset ι)ᵒᵖ ⥤ Profinite`.
surjective_π_app : Function.Surjective (π_app C J) := by intro x obtain ⟨y, hy⟩ := x.prop exact ⟨⟨y, hy.1⟩, Subtype.ext hy.2⟩
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
surjective_π_app
null
map_comp_π_app (h : ∀ i, J i → K i) : map C h ∘ π_app C K = π_app C J := rfl variable {C}
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
map_comp_π_app
null
eq_of_forall_π_app_eq (a b : C) (h : ∀ (J : Finset ι), π_app C (· ∈ J) a = π_app C (· ∈ J) b) : a = b := by ext i specialize h ({i} : Finset ι) rw [Subtype.ext_iff] at h simp only [π_app, ContinuousMap.precomp, ContinuousMap.coe_mk, Set.MapsTo.val_restrict_apply] at h exact congr_fun h ⟨i, Finset.mem_singleton.mpr rfl⟩
theorem
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
eq_of_forall_π_app_eq
null
noncomputable indexFunctor (hC : IsCompact C) : (Finset ι)ᵒᵖ ⥤ Profinite.{u} where obj J := @Profinite.of (obj C (· ∈ (unop J))) _ (by rw [← isCompact_iff_compactSpace]; exact hC.image (Pi.continuous_precomp' _)) _ _ map h := TopCat.ofHom (map C (leOfHom h.unop))
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
indexFunctor
The functor from the poset of finsets of `ι` to `Profinite`, indexing the limit.
noncomputable indexCone (hC : IsCompact C) : Cone (indexFunctor hC) where pt := @Profinite.of C _ (by rwa [← isCompact_iff_compactSpace]) _ _ π := { app := fun J ↦ TopCat.ofHom (π_app C (· ∈ unop J)) } variable (hC : IsCompact C)
def
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
indexCone
The limit cone on `indexFunctor`
isIso_indexCone_lift : IsIso ((limitConeIsLimit.{u, u} (indexFunctor hC)).lift (indexCone hC)) := haveI : CompactSpace C := by rwa [← isCompact_iff_compactSpace] CompHausLike.isIso_of_bijective _ (by refine ⟨fun a b h ↦ ?_, fun a ↦ ?_⟩ · refine eq_of_forall_π_app_eq a b (fun J ↦ ?_) apply_fun fun f : (limitCone.{u, u} (indexFunctor hC)).pt => f.val (op J) at h exact h · rsuffices ⟨b, hb⟩ : ∃ (x : C), ∀ (J : Finset ι), π_app C (· ∈ J) x = a.val (op J) · use b apply Subtype.ext apply funext intro J exact hb (unop J) have hc : ∀ (J : Finset ι) s, IsClosed ((π_app C (· ∈ J)) ⁻¹' {s}) := by intro J s refine IsClosed.preimage (π_app C (· ∈ J)).continuous ?_ exact T1Space.t1 s have H₁ : ∀ (Q₁ Q₂ : Finset ι), Q₁ ≤ Q₂ → π_app C (· ∈ Q₁) ⁻¹' {a.val (op Q₁)} ⊇ π_app C (· ∈ Q₂) ⁻¹' {a.val (op Q₂)} := by intro J K h x hx simp only [Set.mem_preimage, Set.mem_singleton_iff] at hx ⊢ rw [← map_comp_π_app C h, Function.comp_apply, hx, ← a.prop (homOfLE h).op] rfl obtain ⟨x, hx⟩ : Set.Nonempty (⋂ (J : Finset ι), π_app C (· ∈ J) ⁻¹' {a.val (op J)}) := IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed (fun J : Finset ι => π_app C (· ∈ J) ⁻¹' {a.val (op J)}) (directed_of_isDirected_le H₁) (fun J => (Set.singleton_nonempty _).preimage (surjective_π_app _)) (fun J => (hc J (a.val (op J))).isCompact) fun J => hc J (a.val (op J)) exact ⟨x, Set.mem_iInter.1 hx⟩)
instance
Topology
[ "Mathlib.Topology.Category.Profinite.Basic" ]
Mathlib/Topology/Category/Profinite/Product.lean
isIso_indexCone_lift
null