fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
@[simps! toMultilinearMap apply] constOfIsEmpty [IsEmpty ι] (m : M₂) : ContinuousMultilinearMap R M₁ M₂ where toMultilinearMap := MultilinearMap.constOfIsEmpty R _ m cont := continuous_const
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
constOfIsEmpty
The constant map is multilinear when `ι` is empty.
compContinuousLinearMap (g : ContinuousMultilinearMap R M₁' M₄) (f : ∀ i : ι, M₁ i →L[R] M₁' i) : ContinuousMultilinearMap R M₁ M₄ := { g.toMultilinearMap.compLinearMap fun i => (f i).toLinearMap with cont := g.cont.comp <| continuous_pi fun j => (f j).cont.comp <| continuous_apply _ } @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
compContinuousLinearMap
If `g` is continuous multilinear and `f` is a collection of continuous linear maps, then `g (f₁ m₁, ..., fₙ mₙ)` is again a continuous multilinear map, that we call `g.compContinuousLinearMap f`.
compContinuousLinearMap_apply (g : ContinuousMultilinearMap R M₁' M₄) (f : ∀ i : ι, M₁ i →L[R] M₁' i) (m : ∀ i, M₁ i) : g.compContinuousLinearMap f m = g fun i => f i <| m i := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
compContinuousLinearMap_apply
null
_root_.ContinuousLinearMap.compContinuousMultilinearMap (g : M₂ →L[R] M₃) (f : ContinuousMultilinearMap R M₁ M₂) : ContinuousMultilinearMap R M₁ M₃ := { g.toLinearMap.compMultilinearMap f.toMultilinearMap with cont := g.cont.comp f.cont } @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
_root_.ContinuousLinearMap.compContinuousMultilinearMap
Composing a continuous multilinear map with a continuous linear map gives again a continuous multilinear map.
_root_.ContinuousLinearMap.compContinuousMultilinearMap_coe (g : M₂ →L[R] M₃) (f : ContinuousMultilinearMap R M₁ M₂) : (g.compContinuousMultilinearMap f : (∀ i, M₁ i) → M₃) = (g : M₂ → M₃) ∘ (f : (∀ i, M₁ i) → M₂) := by ext m rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
_root_.ContinuousLinearMap.compContinuousMultilinearMap_coe
null
@[simps apply symm_apply_fst symm_apply_snd, simps -isSimp symm_apply] prodEquiv : (ContinuousMultilinearMap R M₁ M₂ × ContinuousMultilinearMap R M₁ M₃) ≃ ContinuousMultilinearMap R M₁ (M₂ × M₃) where toFun f := f.1.prod f.2 invFun f := ((ContinuousLinearMap.fst _ _ _).compContinuousMultilinearMap f, (ContinuousLinearMap.snd _ _ _).compContinuousMultilinearMap f)
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
prodEquiv
`ContinuousMultilinearMap.prod` as an `Equiv`.
prod_ext_iff {f g : ContinuousMultilinearMap R M₁ (M₂ × M₃)} : f = g ↔ (ContinuousLinearMap.fst _ _ _).compContinuousMultilinearMap f = (ContinuousLinearMap.fst _ _ _).compContinuousMultilinearMap g ∧ (ContinuousLinearMap.snd _ _ _).compContinuousMultilinearMap f = (ContinuousLinearMap.snd _ _ _).compContinuousMultilinearMap g := by rw [← Prod.mk_inj, ← prodEquiv_symm_apply, ← prodEquiv_symm_apply, Equiv.apply_eq_iff_eq] @[ext]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
prod_ext_iff
null
prod_ext {f g : ContinuousMultilinearMap R M₁ (M₂ × M₃)} (h₁ : (ContinuousLinearMap.fst _ _ _).compContinuousMultilinearMap f = (ContinuousLinearMap.fst _ _ _).compContinuousMultilinearMap g) (h₂ : (ContinuousLinearMap.snd _ _ _).compContinuousMultilinearMap f = (ContinuousLinearMap.snd _ _ _).compContinuousMultilinearMap g) : f = g := prod_ext_iff.mpr ⟨h₁, h₂⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
prod_ext
null
eq_prod_iff {f : ContinuousMultilinearMap R M₁ (M₂ × M₃)} {g : ContinuousMultilinearMap R M₁ M₂} {h : ContinuousMultilinearMap R M₁ M₃} : f = g.prod h ↔ (ContinuousLinearMap.fst _ _ _).compContinuousMultilinearMap f = g ∧ (ContinuousLinearMap.snd _ _ _).compContinuousMultilinearMap f = h := prod_ext_iff
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
eq_prod_iff
null
add_prod_add [ContinuousAdd M₂] [ContinuousAdd M₃] (f₁ f₂ : ContinuousMultilinearMap R M₁ M₂) (g₁ g₂ : ContinuousMultilinearMap R M₁ M₃) : (f₁ + f₂).prod (g₁ + g₂) = f₁.prod g₁ + f₂.prod g₂ := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
add_prod_add
null
smul_prod_smul {S : Type*} [Monoid S] [DistribMulAction S M₂] [DistribMulAction S M₃] [ContinuousConstSMul S M₂] [SMulCommClass R S M₂] [ContinuousConstSMul S M₃] [SMulCommClass R S M₃] (c : S) (f : ContinuousMultilinearMap R M₁ M₂) (g : ContinuousMultilinearMap R M₁ M₃) : (c • f).prod (c • g) = c • f.prod g := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
smul_prod_smul
null
zero_prod_zero : (0 : ContinuousMultilinearMap R M₁ M₂).prod (0 : ContinuousMultilinearMap R M₁ M₃) = 0 := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
zero_prod_zero
null
@[simps] piEquiv {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] : (∀ i, ContinuousMultilinearMap R M₁ (M' i)) ≃ ContinuousMultilinearMap R M₁ (∀ i, M' i) where toFun := ContinuousMultilinearMap.pi invFun f i := (ContinuousLinearMap.proj i : _ →L[R] M' i).compContinuousMultilinearMap f
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
piEquiv
`ContinuousMultilinearMap.pi` as an `Equiv`.
@[simps] domDomCongrEquiv {ι' : Type*} (e : ι ≃ ι') : ContinuousMultilinearMap R (fun _ : ι => M₂) M₃ ≃ ContinuousMultilinearMap R (fun _ : ι' => M₂) M₃ where toFun := domDomCongr e invFun := domDomCongr e.symm left_inv _ := ext fun _ => by simp right_inv _ := ext fun _ => by simp
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
domDomCongrEquiv
An equivalence of the index set defines an equivalence between the spaces of continuous multilinear maps. This is the forward map of this equivalence. -/ @[simps! toMultilinearMap apply] nonrec def domDomCongr {ι' : Type*} (e : ι ≃ ι') (f : ContinuousMultilinearMap R (fun _ : ι => M₂) M₃) : ContinuousMultilinearMap R (fun _ : ι' => M₂) M₃ where toMultilinearMap := f.domDomCongr e cont := f.cont.comp <| continuous_pi fun _ => continuous_apply _ /-- An equivalence of the index set defines an equivalence between the spaces of continuous multilinear maps. In case of normed spaces, this is a linear isometric equivalence, see `ContinuousMultilinearMap.domDomCongrₗᵢ`.
linearDeriv : (∀ i, M₁ i) →L[R] M₂ := ∑ i : ι, (f.toContinuousLinearMap x i).comp (.proj i) @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
linearDeriv
The derivative of a continuous multilinear map, as a continuous linear map from `∀ i, M₁ i` to `M₂`; see `ContinuousMultilinearMap.hasFDerivAt`.
linearDeriv_apply : f.linearDeriv x y = ∑ i, f (Function.update x i (y i)) := by unfold linearDeriv toContinuousLinearMap simp only [ContinuousLinearMap.coe_sum', ContinuousLinearMap.coe_comp', ContinuousLinearMap.coe_mk', Finset.sum_apply] rfl
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
linearDeriv_apply
null
cons_add (f : ContinuousMultilinearMap R M M₂) (m : ∀ i : Fin n, M i.succ) (x y : M 0) : f (cons (x + y) m) = f (cons x m) + f (cons y m) := f.toMultilinearMap.cons_add m x y
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
cons_add
In the specific case of continuous multilinear maps on spaces indexed by `Fin (n+1)`, where one can build an element of `(i : Fin (n+1)) → M i` using `cons`, one can express directly the additivity of a multilinear map along the first variable.
cons_smul (f : ContinuousMultilinearMap R M M₂) (m : ∀ i : Fin n, M i.succ) (c : R) (x : M 0) : f (cons (c • x) m) = c • f (cons x m) := f.toMultilinearMap.cons_smul m c x
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
cons_smul
In the specific case of continuous multilinear maps on spaces indexed by `Fin (n+1)`, where one can build an element of `(i : Fin (n+1)) → M i` using `cons`, one can express directly the multiplicativity of a multilinear map along the first variable.
map_piecewise_add [DecidableEq ι] (m m' : ∀ i, M₁ i) (t : Finset ι) : f (t.piecewise (m + m') m') = ∑ s ∈ t.powerset, f (s.piecewise m m') := f.toMultilinearMap.map_piecewise_add _ _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_piecewise_add
null
map_add_univ [DecidableEq ι] [Fintype ι] (m m' : ∀ i, M₁ i) : f (m + m') = ∑ s : Finset ι, f (s.piecewise m m') := f.toMultilinearMap.map_add_univ _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_add_univ
Additivity of a continuous multilinear map along all coordinates at the same time, writing `f (m + m')` as the sum of `f (s.piecewise m m')` over all sets `s`.
map_sum_finset [DecidableEq ι] : (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) := f.toMultilinearMap.map_sum_finset _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_sum_finset
If `f` is continuous multilinear, then `f (Σ_{j₁ ∈ A₁} g₁ j₁, ..., Σ_{jₙ ∈ Aₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions with `r 1 ∈ A₁`, ..., `r n ∈ Aₙ`. This follows from multilinearity by expanding successively with respect to each coordinate.
map_sum [DecidableEq ι] [∀ i, Fintype (α i)] : (f fun i => ∑ j, g i j) = ∑ r : ∀ i, α i, f fun i => g i (r i) := f.toMultilinearMap.map_sum _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_sum
If `f` is continuous multilinear, then `f (Σ_{j₁} g₁ j₁, ..., Σ_{jₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions `r`. This follows from multilinearity by expanding successively with respect to each coordinate.
restrictScalars (f : ContinuousMultilinearMap A M₁ M₂) : ContinuousMultilinearMap R M₁ M₂ where toMultilinearMap := f.toMultilinearMap.restrictScalars R cont := f.cont @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
restrictScalars
Reinterpret an `A`-multilinear map as an `R`-multilinear map, if `A` is an algebra over `R` and their actions on all involved modules agree with the action of `R` on `A`.
coe_restrictScalars (f : ContinuousMultilinearMap A M₁ M₂) : ⇑(f.restrictScalars R) = f := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
coe_restrictScalars
null
@[simp] map_update_sub [DecidableEq ι] (m : ∀ i, M₁ i) (i : ι) (x y : M₁ i) : f (update m i (x - y)) = f (update m i x) - f (update m i y) := f.toMultilinearMap.map_update_sub _ _ _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_update_sub
null
@[simp] neg_apply (m : ∀ i, M₁ i) : (-f) m = -f m := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
neg_apply
null
@[simp] sub_apply (m : ∀ i, M₁ i) : (f - f') m = f m - f' m := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
sub_apply
null
neg_prod_neg [AddCommGroup M₃] [Module R M₃] [TopologicalSpace M₃] [IsTopologicalAddGroup M₃] (f : ContinuousMultilinearMap R M₁ M₂) (g : ContinuousMultilinearMap R M₁ M₃) : (-f).prod (-g) = - f.prod g := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
neg_prod_neg
null
sub_prod_sub [AddCommGroup M₃] [Module R M₃] [TopologicalSpace M₃] [IsTopologicalAddGroup M₃] (f₁ f₂ : ContinuousMultilinearMap R M₁ M₂) (g₁ g₂ : ContinuousMultilinearMap R M₁ M₃) : (f₁ - f₂).prod (g₁ - g₂) = f₁.prod g₁ - f₂.prod g₂ := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
sub_prod_sub
null
map_piecewise_smul [DecidableEq ι] (c : ι → R) (m : ∀ i, M₁ i) (s : Finset ι) : f (s.piecewise (fun i => c i • m i) m) = (∏ i ∈ s, c i) • f m := f.toMultilinearMap.map_piecewise_smul _ _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_piecewise_smul
null
map_smul_univ [Fintype ι] (c : ι → R) (m : ∀ i, M₁ i) : (f fun i => c i • m i) = (∏ i, c i) • f m := f.toMultilinearMap.map_smul_univ _ _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_smul_univ
Multiplicativity of a continuous multilinear map along all coordinates at the same time, writing `f (fun i ↦ c i • m i)` as `(∏ i, c i) • f m`.
@[ext] ext_ring [Finite ι] [TopologicalSpace R] ⦃f g : ContinuousMultilinearMap R (fun _ : ι => R) M₂⦄ (h : f (fun _ ↦ 1) = g (fun _ ↦ 1)) : f = g := toMultilinearMap_injective <| MultilinearMap.ext_ring h
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
ext_ring
If two continuous `R`-multilinear maps from `R` are equal on 1, then they are equal. This is the multilinear version of `ContinuousLinearMap.ext_ring`.
@[simps] toMultilinearMapLinear : ContinuousMultilinearMap A M₁ M₂ →ₗ[R'] MultilinearMap A M₁ M₂ where toFun := toMultilinearMap map_add' := toMultilinearMap_add map_smul' := toMultilinearMap_smul
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
toMultilinearMapLinear
The space of continuous multilinear maps over an algebra over `R` is a module over `R`, for the pointwise addition and scalar multiplication. -/ instance : Module R' (ContinuousMultilinearMap A M₁ M₂) := Function.Injective.module _ { toFun := toMultilinearMap, map_zero' := toMultilinearMap_zero, map_add' := toMultilinearMap_add } toMultilinearMap_injective fun _ _ => rfl /-- Linear map version of the map `toMultilinearMap` associating to a continuous multilinear map the corresponding multilinear map.
@[simps +simpRhs] piLinearEquiv {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, ContinuousAdd (M' i)] [∀ i, Module R' (M' i)] [∀ i, Module A (M' i)] [∀ i, SMulCommClass A R' (M' i)] [∀ i, ContinuousConstSMul R' (M' i)] : (∀ i, ContinuousMultilinearMap A M₁ (M' i)) ≃ₗ[R'] ContinuousMultilinearMap A M₁ (∀ i, M' i) := { piEquiv with map_add' := fun _ _ => rfl map_smul' := fun _ _ => rfl }
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
piLinearEquiv
`ContinuousMultilinearMap.pi` as a `LinearEquiv`.
protected mkPiAlgebraFin : A[×n]→L[R] A where cont := by change Continuous fun m => (List.ofFn m).prod simp_rw [List.ofFn_eq_map] exact continuous_list_prod _ fun i _ => continuous_apply _ toMultilinearMap := MultilinearMap.mkPiAlgebraFin R n A variable {R n A} @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiAlgebraFin
The continuous multilinear map on `A^n`, where `A` is a normed algebra over `𝕜`, associating to `m` the product of all the `m i`. See also: `ContinuousMultilinearMap.mkPiAlgebra`.
mkPiAlgebraFin_apply (m : Fin n → A) : ContinuousMultilinearMap.mkPiAlgebraFin R n A m = (List.ofFn m).prod := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiAlgebraFin_apply
null
protected mkPiAlgebra : ContinuousMultilinearMap R (fun _ : ι => A) A where cont := continuous_finset_prod _ fun _ _ => continuous_apply _ toMultilinearMap := MultilinearMap.mkPiAlgebra R ι A @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiAlgebra
The continuous multilinear map on `A^ι`, where `A` is a normed commutative algebra over `𝕜`, associating to `m` the product of all the `m i`. See also `ContinuousMultilinearMap.mkPiAlgebraFin`.
mkPiAlgebra_apply (m : ι → A) : ContinuousMultilinearMap.mkPiAlgebra R ι A m = ∏ i, m i := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiAlgebra_apply
null
mkPiAlgebra_eq_mkPiAlgebraFin {n : ℕ} : ContinuousMultilinearMap.mkPiAlgebra R (Fin n) A = ContinuousMultilinearMap.mkPiAlgebraFin R n A := by ext simp [List.prod_ofFn]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiAlgebra_eq_mkPiAlgebraFin
null
@[simps! toMultilinearMap apply] smulRight : ContinuousMultilinearMap R M₁ M₂ where toMultilinearMap := f.toMultilinearMap.smulRight z cont := f.cont.smul continuous_const
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
smulRight
Given a continuous `R`-multilinear map `f` taking values in `R`, `f.smulRight z` is the continuous multilinear map sending `m` to `f m • z`.
protected mkPiRing (z : M) : ContinuousMultilinearMap R (fun _ : ι => R) M := (ContinuousMultilinearMap.mkPiAlgebra R ι R).smulRight z @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiRing
The canonical continuous multilinear map on `R^ι`, associating to `m` the product of all the `m i` (multiplied by a fixed reference element `z` in the target module)
mkPiRing_apply (z : M) (m : ι → R) : (ContinuousMultilinearMap.mkPiRing R ι z : (ι → R) → M) m = (∏ i, m i) • z := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiRing_apply
null
mkPiRing_apply_one_eq_self (f : ContinuousMultilinearMap R (fun _ : ι => R) M) : ContinuousMultilinearMap.mkPiRing R ι (f fun _ => 1) = f := toMultilinearMap_injective f.toMultilinearMap.mkPiRing_apply_one_eq_self
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiRing_apply_one_eq_self
null
mkPiRing_eq_iff {z₁ z₂ : M} : ContinuousMultilinearMap.mkPiRing R ι z₁ = ContinuousMultilinearMap.mkPiRing R ι z₂ ↔ z₁ = z₂ := by rw [← toMultilinearMap_injective.eq_iff] exact MultilinearMap.mkPiRing_eq_iff
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiRing_eq_iff
null
mkPiRing_zero : ContinuousMultilinearMap.mkPiRing R ι (0 : M) = 0 := by ext; rw [mkPiRing_apply, smul_zero, ContinuousMultilinearMap.zero_apply]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiRing_zero
null
mkPiRing_eq_zero_iff (z : M) : ContinuousMultilinearMap.mkPiRing R ι z = 0 ↔ z = 0 := by rw [← mkPiRing_zero, mkPiRing_eq_iff]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
mkPiRing_eq_zero_iff
null
image_multilinear' [Nonempty ι] {s : Set (∀ i, E i)} (hs : IsVonNBounded 𝕜 s) (f : ContinuousMultilinearMap 𝕜 E F) : IsVonNBounded 𝕜 (f '' s) := fun V hV ↦ by classical if h₁ : ∀ c : 𝕜, ‖c‖ ≤ 1 then exact absorbs_iff_norm.2 ⟨2, fun c hc ↦ by linarith [h₁ c]⟩ else let _ : NontriviallyNormedField 𝕜 := ⟨by simpa using h₁⟩ obtain ⟨I, t, ht₀, hft⟩ : ∃ (I : Finset ι) (t : ∀ i, Set (E i)), (∀ i, t i ∈ 𝓝 0) ∧ Set.pi I t ⊆ f ⁻¹' V := by have hfV : f ⁻¹' V ∈ 𝓝 0 := (map_continuous f).tendsto' _ _ f.map_zero hV rwa [nhds_pi, Filter.mem_pi, exists_finite_iff_finset] at hfV have : ∀ i, ∃ c : 𝕜, c ≠ 0 ∧ ∀ c' : 𝕜, ‖c'‖ ≤ ‖c‖ → ∀ x ∈ s, c' • x i ∈ t i := fun i ↦ by rw [isVonNBounded_pi_iff] at hs have := (hs i).tendsto_smallSets_nhds.eventually (mem_lift' (ht₀ i)) rcases NormedAddCommGroup.nhds_zero_basis_norm_lt.eventually_iff.1 this with ⟨r, hr₀, hr⟩ rcases NormedField.exists_norm_lt 𝕜 hr₀ with ⟨c, hc₀, hc⟩ refine ⟨c, norm_pos_iff.1 hc₀, fun c' hle x hx ↦ ?_⟩ exact hr (hle.trans_lt hc) ⟨_, ⟨x, hx, rfl⟩, rfl⟩ choose c hc₀ hc using this rw [absorbs_iff_eventually_nhds_zero (mem_of_mem_nhds hV), NormedAddCommGroup.nhds_zero_basis_norm_lt.eventually_iff] have hc₀' : ∏ i ∈ I, c i ≠ 0 := Finset.prod_ne_zero_iff.2 fun i _ ↦ hc₀ i refine ⟨‖∏ i ∈ I, c i‖, norm_pos_iff.2 hc₀', fun a ha ↦ mapsTo_image_iff.2 fun x hx ↦ ?_⟩ let ⟨i₀⟩ := ‹Nonempty ι› set y := I.piecewise (fun i ↦ c i • x i) x calc f (update y i₀ ((a / ∏ i ∈ I, c i) • y i₀)) ∈ V := hft fun i hi => by rcases eq_or_ne i i₀ with rfl | hne · simp_rw [update_self, y, I.piecewise_eq_of_mem _ _ hi, smul_smul] refine hc _ _ ?_ _ hx calc ‖(a / ∏ i ∈ I, c i) * c i‖ ≤ (‖∏ i ∈ I, c i‖ / ‖∏ i ∈ I, c i‖) * ‖c i‖ := by rw [norm_mul, norm_div]; gcongr; exact ha.out.le _ ≤ 1 * ‖c i‖ := by gcongr; apply div_self_le_one _ = ‖c i‖ := one_mul _ · simp_rw [update_of_ne hne, y, I.piecewise_eq_of_mem _ _ hi] exact hc _ _ le_rfl _ hx _ = a • f x := by rw [f.map_update_smul, update_eq_self, f.map_piecewise_smul, div_eq_mul_inv, mul_smul, inv_smul_smul₀ hc₀']
theorem
Topology
[ "Mathlib.Analysis.LocallyConvex.Bounded", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Bounded.lean
image_multilinear'
The image of a von Neumann bounded set under a continuous multilinear map is von Neumann bounded. This version does not assume that the topologies on the domain and on the codomain agree with the vector space structure in any way but it assumes that `ι` is nonempty.
image_multilinear [ContinuousSMul 𝕜 F] {s : Set (∀ i, E i)} (hs : IsVonNBounded 𝕜 s) (f : ContinuousMultilinearMap 𝕜 E F) : IsVonNBounded 𝕜 (f '' s) := by cases isEmpty_or_nonempty ι with | inl h => exact (isBounded_iff_isVonNBounded _).1 <| @Set.Finite.isBounded _ (vonNBornology 𝕜 F) _ (s.toFinite.image _) | inr h => exact hs.image_multilinear' f
theorem
Topology
[ "Mathlib.Analysis.LocallyConvex.Bounded", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Bounded.lean
image_multilinear
The image of a von Neumann bounded set under a continuous multilinear map is von Neumann bounded. This version assumes that the codomain is a topological vector space.
toUniformOnFun [TopologicalSpace F] (f : ContinuousMultilinearMap 𝕜 E F) : (Π i, E i) →ᵤ[{s | IsVonNBounded 𝕜 s}] F := UniformOnFun.ofFun _ f open UniformOnFun in
def
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
toUniformOnFun
An auxiliary definition used to define topology on `ContinuousMultilinearMap 𝕜 E F`.
range_toUniformOnFun [DecidableEq ι] [TopologicalSpace F] : range toUniformOnFun = {f : (Π i, E i) →ᵤ[{s | IsVonNBounded 𝕜 s}] F | Continuous (toFun _ f) ∧ (∀ (m : Π i, E i) i x y, toFun _ f (update m i (x + y)) = toFun _ f (update m i x) + toFun _ f (update m i y)) ∧ (∀ (m : Π i, E i) i (c : 𝕜) x, toFun _ f (update m i (c • x)) = c • toFun _ f (update m i x))} := by ext f constructor · rintro ⟨f, rfl⟩ exact ⟨f.cont, f.map_update_add, f.map_update_smul⟩ · rintro ⟨hcont, hadd, hsmul⟩ exact ⟨⟨⟨f, by intro; convert hadd, by intro; convert hsmul⟩, hcont⟩, rfl⟩ @[simp]
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
range_toUniformOnFun
null
toUniformOnFun_toFun [TopologicalSpace F] (f : ContinuousMultilinearMap 𝕜 E F) : UniformOnFun.toFun _ f.toUniformOnFun = f := rfl
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
toUniformOnFun_toFun
null
instTopologicalSpace [TopologicalSpace F] [IsTopologicalAddGroup F] : TopologicalSpace (ContinuousMultilinearMap 𝕜 E F) := .induced toUniformOnFun <| @UniformOnFun.topologicalSpace _ _ (IsTopologicalAddGroup.toUniformSpace F) _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instTopologicalSpace
null
instUniformSpace [UniformSpace F] [IsUniformAddGroup F] : UniformSpace (ContinuousMultilinearMap 𝕜 E F) := .replaceTopology (.comap toUniformOnFun <| UniformOnFun.uniformSpace _ _ _) <| by rw [instTopologicalSpace, IsUniformAddGroup.toUniformSpace_eq]; rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instUniformSpace
null
isUniformInducing_toUniformOnFun : IsUniformInducing (toUniformOnFun : ContinuousMultilinearMap 𝕜 E F → ((Π i, E i) →ᵤ[{s | IsVonNBounded 𝕜 s}] F)) := ⟨rfl⟩
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
isUniformInducing_toUniformOnFun
null
isUniformEmbedding_toUniformOnFun : IsUniformEmbedding (toUniformOnFun : ContinuousMultilinearMap 𝕜 E F → _) := ⟨isUniformInducing_toUniformOnFun, DFunLike.coe_injective⟩
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
isUniformEmbedding_toUniformOnFun
null
isEmbedding_toUniformOnFun : IsEmbedding (toUniformOnFun : ContinuousMultilinearMap 𝕜 E F → ((Π i, E i) →ᵤ[{s | IsVonNBounded 𝕜 s}] F)) := isUniformEmbedding_toUniformOnFun.isEmbedding
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
isEmbedding_toUniformOnFun
null
uniformContinuous_coe_fun [∀ i, ContinuousSMul 𝕜 (E i)] : UniformContinuous (DFunLike.coe : ContinuousMultilinearMap 𝕜 E F → (Π i, E i) → F) := (UniformOnFun.uniformContinuous_toFun isVonNBounded_covers).comp isUniformEmbedding_toUniformOnFun.uniformContinuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
uniformContinuous_coe_fun
null
uniformContinuous_eval_const [∀ i, ContinuousSMul 𝕜 (E i)] (x : Π i, E i) : UniformContinuous fun f : ContinuousMultilinearMap 𝕜 E F ↦ f x := uniformContinuous_pi.1 uniformContinuous_coe_fun x
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
uniformContinuous_eval_const
null
instIsUniformAddGroup : IsUniformAddGroup (ContinuousMultilinearMap 𝕜 E F) := let φ : ContinuousMultilinearMap 𝕜 E F →+ (Π i, E i) →ᵤ[{s | IsVonNBounded 𝕜 s}] F := { toFun := toUniformOnFun, map_add' := fun _ _ ↦ rfl, map_zero' := rfl } isUniformEmbedding_toUniformOnFun.isUniformAddGroup φ
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instIsUniformAddGroup
null
instUniformContinuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜 M F] [ContinuousConstSMul M F] : UniformContinuousConstSMul M (ContinuousMultilinearMap 𝕜 E F) := haveI := uniformContinuousConstSMul_of_continuousConstSMul M F isUniformEmbedding_toUniformOnFun.uniformContinuousConstSMul fun _ _ ↦ rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instUniformContinuousConstSMul
null
isUniformInducing_postcomp {G : Type*} [AddCommGroup G] [UniformSpace G] [IsUniformAddGroup G] [Module 𝕜 G] (g : F →L[𝕜] G) (hg : IsUniformInducing g) : IsUniformInducing (g.compContinuousMultilinearMap : ContinuousMultilinearMap 𝕜 E F → ContinuousMultilinearMap 𝕜 E G) := by rw [← isUniformInducing_toUniformOnFun.of_comp_iff] exact (UniformOnFun.postcomp_isUniformInducing hg).comp isUniformInducing_toUniformOnFun
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
isUniformInducing_postcomp
null
completeSpace (h : IsCoherentWith {s : Set (Π i, E i) | IsVonNBounded 𝕜 s}) : CompleteSpace (ContinuousMultilinearMap 𝕜 E F) := by classical wlog hF : T2Space F generalizing F · rw [(isUniformInducing_postcomp (SeparationQuotient.mkCLM _ _) SeparationQuotient.isUniformInducing_mk).completeSpace_congr] · exact this inferInstance · intro f use (SeparationQuotient.outCLM _ _).compContinuousMultilinearMap f simp [DFunLike.ext_iff] have H : ∀ {m : Π i, E i}, Continuous fun f : (Π i, E i) →ᵤ[{s | IsVonNBounded 𝕜 s}] F ↦ toFun _ f m := (uniformContinuous_eval (isVonNBounded_covers) _).continuous rw [completeSpace_iff_isComplete_range isUniformInducing_toUniformOnFun, range_toUniformOnFun] simp only [setOf_and, setOf_forall] apply_rules [IsClosed.isComplete, IsClosed.inter] · exact UniformOnFun.isClosed_setOf_continuous h · exact isClosed_iInter fun m ↦ isClosed_iInter fun i ↦ isClosed_iInter fun x ↦ isClosed_iInter fun y ↦ isClosed_eq H (H.add H) · exact isClosed_iInter fun m ↦ isClosed_iInter fun i ↦ isClosed_iInter fun c ↦ isClosed_iInter fun x ↦ isClosed_eq H (H.const_smul _)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
completeSpace
null
instCompleteSpace [∀ i, IsTopologicalAddGroup (E i)] [SequentialSpace (Π i, E i)] : CompleteSpace (ContinuousMultilinearMap 𝕜 E F) := completeSpace <| .of_seq fun _u x hux ↦ (hux.isVonNBounded_range 𝕜).insert x
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instCompleteSpace
null
isUniformEmbedding_restrictScalars : IsUniformEmbedding (restrictScalars 𝕜' : ContinuousMultilinearMap 𝕜 E F → ContinuousMultilinearMap 𝕜' E F) := by letI : NontriviallyNormedField 𝕜 := ⟨let ⟨x, hx⟩ := @NontriviallyNormedField.non_trivial 𝕜' _; ⟨algebraMap 𝕜' 𝕜 x, by simpa⟩⟩ rw [← isUniformEmbedding_toUniformOnFun.of_comp_iff] convert isUniformEmbedding_toUniformOnFun using 4 with s exact ⟨fun h ↦ h.extend_scalars _, fun h ↦ h.restrict_scalars _⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
isUniformEmbedding_restrictScalars
null
uniformContinuous_restrictScalars : UniformContinuous (restrictScalars 𝕜' : ContinuousMultilinearMap 𝕜 E F → ContinuousMultilinearMap 𝕜' E F) := (isUniformEmbedding_restrictScalars 𝕜').uniformContinuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
uniformContinuous_restrictScalars
null
instIsTopologicalAddGroup : IsTopologicalAddGroup (ContinuousMultilinearMap 𝕜 E F) := letI := IsTopologicalAddGroup.toUniformSpace F haveI := isUniformAddGroup_of_addCommGroup (G := F) inferInstance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instIsTopologicalAddGroup
null
instContinuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜 M F] [ContinuousConstSMul M F] : ContinuousConstSMul M (ContinuousMultilinearMap 𝕜 E F) := by letI := IsTopologicalAddGroup.toUniformSpace F haveI := isUniformAddGroup_of_addCommGroup (G := F) infer_instance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instContinuousConstSMul
null
instContinuousSMul [ContinuousSMul 𝕜 F] : ContinuousSMul 𝕜 (ContinuousMultilinearMap 𝕜 E F) := letI := IsTopologicalAddGroup.toUniformSpace F haveI := isUniformAddGroup_of_addCommGroup (G := F) let φ : ContinuousMultilinearMap 𝕜 E F →ₗ[𝕜] (Π i, E i) → F := { toFun := (↑), map_add' := fun _ _ ↦ rfl, map_smul' := fun _ _ ↦ rfl } UniformOnFun.continuousSMul_induced_of_image_bounded _ _ _ _ φ isEmbedding_toUniformOnFun.isInducing fun _ _ hu ↦ hu.image_multilinear _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instContinuousSMul
null
hasBasis_nhds_zero_of_basis {ι : Type*} {p : ι → Prop} {b : ι → Set F} (h : (𝓝 (0 : F)).HasBasis p b) : (𝓝 (0 : ContinuousMultilinearMap 𝕜 E F)).HasBasis (fun Si : Set (Π i, E i) × ι => IsVonNBounded 𝕜 Si.1 ∧ p Si.2) fun Si => { f | MapsTo f Si.1 (b Si.2) } := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup rw [nhds_induced] refine (UniformOnFun.hasBasis_nhds_zero_of_basis _ ?_ ?_ h).comap DFunLike.coe · exact ⟨∅, isVonNBounded_empty _ _⟩ · exact directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
hasBasis_nhds_zero_of_basis
null
hasBasis_nhds_zero : (𝓝 (0 : ContinuousMultilinearMap 𝕜 E F)).HasBasis (fun SV : Set (Π i, E i) × Set F => IsVonNBounded 𝕜 SV.1 ∧ SV.2 ∈ 𝓝 0) fun SV => { f | MapsTo f SV.1 SV.2 } := hasBasis_nhds_zero_of_basis (Filter.basis_sets _) variable [∀ i, ContinuousSMul 𝕜 (E i)]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
hasBasis_nhds_zero
null
instT2Space [T2Space F] : T2Space (ContinuousMultilinearMap 𝕜 E F) := .of_injective_continuous DFunLike.coe_injective continuous_coeFun
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instT2Space
null
instT3Space [T2Space F] : T3Space (ContinuousMultilinearMap 𝕜 E F) := inferInstance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
instT3Space
null
isEmbedding_restrictScalars : IsEmbedding (restrictScalars 𝕜' : ContinuousMultilinearMap 𝕜 E F → ContinuousMultilinearMap 𝕜' E F) := letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup (isUniformEmbedding_restrictScalars _).isEmbedding @[continuity, fun_prop]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
isEmbedding_restrictScalars
null
continuous_restrictScalars : Continuous (restrictScalars 𝕜' : ContinuousMultilinearMap 𝕜 E F → ContinuousMultilinearMap 𝕜' E F) := isEmbedding_restrictScalars.continuous variable (𝕜') in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
continuous_restrictScalars
null
@[simps -fullyApplied apply] restrictScalarsLinear [ContinuousConstSMul 𝕜' F] : ContinuousMultilinearMap 𝕜 E F →L[𝕜'] ContinuousMultilinearMap 𝕜' E F where toFun := restrictScalars 𝕜' map_add' _ _ := rfl map_smul' _ _ := rfl
def
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
restrictScalarsLinear
`ContinuousMultilinearMap.restrictScalars` as a `ContinuousLinearMap`.
apply [ContinuousConstSMul 𝕜 F] (m : Π i, E i) : ContinuousMultilinearMap 𝕜 E F →L[𝕜] F where toFun c := c m map_add' _ _ := rfl map_smul' _ _ := rfl cont := continuous_eval_const m variable {𝕜 E F} @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
apply
The application of a multilinear map as a `ContinuousLinearMap`.
apply_apply [ContinuousConstSMul 𝕜 F] {m : Π i, E i} {c : ContinuousMultilinearMap 𝕜 E F} : apply 𝕜 E F m c = c m := rfl
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
apply_apply
null
hasSum_eval {α : Type*} {p : α → ContinuousMultilinearMap 𝕜 E F} {q : ContinuousMultilinearMap 𝕜 E F} (h : HasSum p q) (m : Π i, E i) : HasSum (fun a => p a m) (q m) := h.map (applyAddHom m) (continuous_eval_const m)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
hasSum_eval
null
tsum_eval [T2Space F] {α : Type*} {p : α → ContinuousMultilinearMap 𝕜 E F} (hp : Summable p) (m : Π i, E i) : (∑' a, p a) m = ∑' a, p a m := (hasSum_eval hp.hasSum m).tsum_eq.symm
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Bounded", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst", "Mathlib.Topology.Algebra.InfiniteSum.Basic" ]
Mathlib/Topology/Algebra/Module/Multilinear/Topology.lean
tsum_eval
null
making it a full subcategory of `TopCat`. The fully faithful functor `CompHaus ⥤ TopCat` is denoted `compHausToTop`. **Note:** The file `Mathlib/Topology/Category/Compactum.lean` provides the equivalence between `Compactum`, which is defined as the category of algebras for the ultrafilter monad, and `CompHaus`. `CompactumToCompHaus` is the functor from `Compactum` to `CompHaus` which is proven to be an equivalence of categories in `CompactumToCompHaus.isEquivalence`. See `Mathlib/Topology/Category/Compactum.lean` for a more detailed discussion where these definitions are introduced.
instance
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
making
null
CompHaus := CompHausLike (fun _ ↦ True)
abbrev
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
CompHaus
The category of compact Hausdorff spaces.
of : CompHaus := CompHausLike.of _ X
abbrev
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
of
A constructor for objects of the category `CompHaus`, taking a type, and bundling the compact Hausdorff topology found by typeclass inference.
compHausToTop : CompHaus.{u} ⥤ TopCat.{u} := CompHausLike.compHausLikeToTop _
abbrev
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
compHausToTop
The fully faithful embedding of `CompHaus` in `TopCat`.
@[simps!] stoneCechObj (X : TopCat) : CompHaus := CompHaus.of (StoneCech X)
def
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
stoneCechObj
(Implementation) The object part of the compactification functor from topological spaces to compact Hausdorff spaces.
noncomputable stoneCechEquivalence (X : TopCat.{u}) (Y : CompHaus.{u}) : (stoneCechObj X ⟶ Y) ≃ (X ⟶ compHausToTop.obj Y) where toFun f := TopCat.ofHom { toFun := f ∘ stoneCechUnit continuous_toFun := f.hom.2.comp (@continuous_stoneCechUnit X _) } invFun f := CompHausLike.ofHom _ { toFun := stoneCechExtend f.hom.2 continuous_toFun := continuous_stoneCechExtend f.hom.2 } left_inv := by rintro ⟨f : StoneCech X ⟶ Y, hf : Continuous f⟩ ext x refine congr_fun ?_ x apply Continuous.ext_on denseRange_stoneCechUnit (continuous_stoneCechExtend _) hf · rintro _ ⟨y, rfl⟩ apply congr_fun (stoneCechExtend_extends (hf.comp _)) y apply continuous_stoneCechUnit right_inv := by rintro ⟨f : (X : Type _) ⟶ Y, hf : Continuous f⟩ ext exact congr_fun (stoneCechExtend_extends hf) _
def
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
stoneCechEquivalence
(Implementation) The bijection of homsets to establish the reflective adjunction of compact Hausdorff spaces in topological spaces.
noncomputable topToCompHaus : TopCat.{u} ⥤ CompHaus.{u} := Adjunction.leftAdjointOfEquiv stoneCechEquivalence.{u} fun _ _ _ _ _ => rfl
def
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
topToCompHaus
The Stone-Cech compactification functor from topological spaces to compact Hausdorff spaces, left adjoint to the inclusion functor.
topToCompHaus_obj (X : TopCat) : ↥(topToCompHaus.obj X) = StoneCech X := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
topToCompHaus_obj
null
noncomputable compHausToTop.reflective : Reflective compHausToTop where L := topToCompHaus adj := Adjunction.adjunctionOfEquivLeft _ _
instance
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
compHausToTop.reflective
The category of compact Hausdorff spaces is reflective in the category of topological spaces.
noncomputable compHausToTop.createsLimits : CreatesLimits compHausToTop := monadicCreatesLimits _
instance
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
compHausToTop.createsLimits
null
CompHaus.hasLimits : Limits.HasLimits CompHaus := hasLimits_of_hasLimits_createsLimits compHausToTop
instance
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
CompHaus.hasLimits
null
CompHaus.hasColimits : Limits.HasColimits CompHaus := hasColimits_of_reflective compHausToTop
instance
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
CompHaus.hasColimits
null
limitCone {J : Type v} [SmallCategory J] (F : J ⥤ CompHaus.{max v u}) : Limits.Cone F := letI FF : J ⥤ TopCat := F ⋙ compHausToTop { pt := { toTop := (TopCat.limitCone FF).pt is_compact := by change CompactSpace { u : ∀ j, F.obj j | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j } rw [← isCompact_iff_compactSpace] apply IsClosed.isCompact have : { u : ∀ j, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j } = ⋂ (i : J) (j : J) (f : i ⟶ j), { u | F.map f (u i) = u j } := by ext1 simp only [Set.mem_iInter, Set.mem_setOf_eq] rw [this] apply isClosed_iInter intro i apply isClosed_iInter intro j apply isClosed_iInter intro f apply isClosed_eq · exact ((F.map f).hom.continuous).comp (continuous_apply i) · exact continuous_apply j is_hausdorff := show T2Space { u : ∀ j, F.obj j | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j } from inferInstance prop := trivial } π := { app := fun j => (TopCat.limitCone FF).π.app j naturality := by intro _ _ f ext ⟨x, hx⟩ simp only [Functor.const_obj_map] exact (hx f).symm } }
def
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
limitCone
An explicit limit cone for a functor `F : J ⥤ CompHaus`, defined in terms of `TopCat.limitCone`.
limitConeIsLimit {J : Type v} [SmallCategory J] (F : J ⥤ CompHaus.{max v u}) : Limits.IsLimit.{v} (limitCone.{v,u} F) := letI FF : J ⥤ TopCat := F ⋙ compHausToTop { lift := fun S => (TopCat.limitConeIsLimit FF).lift (compHausToTop.mapCone S) fac := fun S => (TopCat.limitConeIsLimit FF).fac (compHausToTop.mapCone S) uniq := fun S => (TopCat.limitConeIsLimit FF).uniq (compHausToTop.mapCone S) }
def
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
limitConeIsLimit
The limit cone `CompHaus.limitCone F` is indeed a limit cone.
epi_iff_surjective {X Y : CompHaus.{u}} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f := by constructor · dsimp [Function.Surjective] contrapose! rintro ⟨y, hy⟩ hf let C := Set.range f have hC : IsClosed C := (isCompact_range f.hom.continuous).isClosed let D := ({y} : Set Y) have hD : IsClosed D := isClosed_singleton have hCD : Disjoint C D := by rw [Set.disjoint_singleton_right] rintro ⟨y', hy'⟩ exact hy y' hy' obtain ⟨φ, hφ0, hφ1, hφ01⟩ := exists_continuous_zero_one_of_isClosed hC hD hCD haveI : CompactSpace (ULift.{u} <| Set.Icc (0 : ℝ) 1) := Homeomorph.ulift.symm.compactSpace haveI : T2Space (ULift.{u} <| Set.Icc (0 : ℝ) 1) := Homeomorph.ulift.symm.t2Space let Z := of (ULift.{u} <| Set.Icc (0 : ℝ) 1) let g : Y ⟶ Z := ofHom _ ⟨fun y' => ⟨⟨φ y', hφ01 y'⟩⟩, continuous_uliftUp.comp (φ.continuous.subtype_mk fun y' => hφ01 y')⟩ let h : Y ⟶ Z := ofHom _ ⟨fun _ => ⟨⟨0, Set.left_mem_Icc.mpr zero_le_one⟩⟩, continuous_const⟩ have H : h = g := by rw [← cancel_epi f] ext x : 4 simp [g, h, Z, hφ0 (Set.mem_range_self x)] apply_fun fun e => (e y).down.1 at H dsimp [g, h, Z] at H simp only [hφ1 (Set.mem_singleton y), Pi.one_apply] at H exact zero_ne_one H · rw [← CategoryTheory.epi_iff_surjective] apply (forget CompHaus).epi_of_epi_map
theorem
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
epi_iff_surjective
null
compHausLikeToCompHaus (P : TopCat → Prop) : CompHausLike P ⥤ CompHaus := CompHausLike.toCompHausLike (by simp only [implies_true])
abbrev
Topology
[ "Mathlib.CategoryTheory.Monad.Limits", "Mathlib.Topology.Compactification.StoneCech", "Mathlib.Topology.UrysohnsLemma", "Mathlib.Topology.Category.CompHausLike.Basic", "Mathlib.Topology.Category.TopCat.Limits.Basic" ]
Mathlib/Topology/Category/CompHaus/Basic.lean
compHausLikeToCompHaus
Every `CompHausLike` admits a functor to `CompHaus`.
effectiveEpi_tfae {B X : CompHaus.{u}} (π : X ⟶ B) : TFAE [ EffectiveEpi π , Epi π , Function.Surjective π ] := by tfae_have 1 → 2 := fun _ ↦ inferInstance tfae_have 2 ↔ 3 := epi_iff_surjective π tfae_have 3 → 1 := fun hπ ↦ ⟨⟨effectiveEpiStruct π hπ⟩⟩ tfae_finish
theorem
Topology
[ "Mathlib.Topology.Category.CompHaus.Limits", "Mathlib.Topology.Category.CompHausLike.EffectiveEpi" ]
Mathlib/Topology/Category/CompHaus/EffectiveEpi.lean
effectiveEpi_tfae
null
effectiveEpiFamily_tfae {α : Type} [Finite α] {B : CompHaus.{u}} (X : α → CompHaus.{u}) (π : (a : α) → (X a ⟶ B)) : TFAE [ EffectiveEpiFamily X π , Epi (Sigma.desc π) , ∀ b : B, ∃ (a : α) (x : X a), π a x = b ] := by tfae_have 2 → 1 | _ => by simpa [← effectiveEpi_desc_iff_effectiveEpiFamily, (effectiveEpi_tfae (Sigma.desc π)).out 0 1] tfae_have 1 → 2 | _ => inferInstance tfae_have 3 → 2 | e => by rw [epi_iff_surjective] intro b obtain ⟨t, x, h⟩ := e b refine ⟨Sigma.ι X t x, ?_⟩ change (Sigma.ι X t ≫ Sigma.desc π) x = _ simpa using h tfae_have 2 → 3 | e => by rw [epi_iff_surjective] at e let i : ∐ X ≅ finiteCoproduct X := (colimit.isColimit _).coconePointUniqueUpToIso (finiteCoproduct.isColimit _) intro b obtain ⟨t, rfl⟩ := e b let q := i.hom t refine ⟨q.1,q.2,?_⟩ have : t = i.inv (i.hom t) := show t = (i.hom ≫ i.inv) t by simp only [i.hom_inv_id]; rfl rw [this] change _ = (i.inv ≫ Sigma.desc π) (i.hom t) suffices i.inv ≫ Sigma.desc π = finiteCoproduct.desc X π by rw [this]; rfl rw [Iso.inv_comp_eq] apply colimit.hom_ext rintro ⟨a⟩ simp only [i, Discrete.functor_obj, colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, colimit.comp_coconePointUniqueUpToIso_hom_assoc] ext; rfl tfae_finish
theorem
Topology
[ "Mathlib.Topology.Category.CompHaus.Limits", "Mathlib.Topology.Category.CompHausLike.EffectiveEpi" ]
Mathlib/Topology/Category/CompHaus/EffectiveEpi.lean
effectiveEpiFamily_tfae
null
effectiveEpiFamily_of_jointly_surjective {α : Type} [Finite α] {B : CompHaus.{u}} (X : α → CompHaus.{u}) (π : (a : α) → (X a ⟶ B)) (surj : ∀ b : B, ∃ (a : α) (x : X a), π a x = b) : EffectiveEpiFamily X π := ((effectiveEpiFamily_tfae X π).out 2 0).mp surj
theorem
Topology
[ "Mathlib.Topology.Category.CompHaus.Limits", "Mathlib.Topology.Category.CompHausLike.EffectiveEpi" ]
Mathlib/Topology/Category/CompHaus/EffectiveEpi.lean
effectiveEpiFamily_of_jointly_surjective
null
@[simps] topCatOpToFrm : TopCatᵒᵖ ⥤ Frm where obj X := Frm.of (Opens (unop X : TopCat)) map f := Frm.ofHom <| Opens.comap <| (Quiver.Hom.unop f).hom
def
Topology
[ "Mathlib.Order.Category.Frm", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/CompHaus/Frm.lean
topCatOpToFrm
The forgetful functor from `TopCatᵒᵖ` to `Frm`.
CompHausOpToFrame.faithful : (compHausToTop.op ⋙ topCatOpToFrm.{u}).Faithful := ⟨fun {X _ _ _} h => Quiver.Hom.unop_inj <| ConcreteCategory.ext <| Opens.comap_injective (β := (unop X).toTop) <| FrameHom.ext <| CategoryTheory.congr_fun h⟩
instance
Topology
[ "Mathlib.Order.Category.Frm", "Mathlib.Topology.Category.CompHaus.Basic", "Mathlib.Topology.Sets.Opens" ]
Mathlib/Topology/Category/CompHaus/Frm.lean
CompHausOpToFrame.faithful
null