fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
constOfIsEmpty_toAlternatingMap [IsEmpty ι] (m : N) : (constOfIsEmpty R M ι m).toAlternatingMap = AlternatingMap.constOfIsEmpty R M ι m := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
constOfIsEmpty_toAlternatingMap
null
compContinuousLinearMap (g : M [⋀^ι]→L[R] N) (f : M' →L[R] M) : M' [⋀^ι]→L[R] N := { g.toAlternatingMap.compLinearMap (f : M' →ₗ[R] M) with toContinuousMultilinearMap := g.1.compContinuousLinearMap fun _ => f } @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
compContinuousLinearMap
If `g` is continuous alternating and `f` is a continuous linear map, then `g (f m₁, ..., f mₙ)` is again a continuous alternating map, that we call `g.compContinuousLinearMap f`.
compContinuousLinearMap_apply (g : M [⋀^ι]→L[R] N) (f : M' →L[R] M) (m : ι → M') : g.compContinuousLinearMap f m = g (f ∘ m) := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
compContinuousLinearMap_apply
null
_root_.ContinuousLinearMap.compContinuousAlternatingMap (g : N →L[R] N') (f : M [⋀^ι]→L[R] N) : M [⋀^ι]→L[R] N' := { (g : N →ₗ[R] N').compAlternatingMap f.toAlternatingMap with toContinuousMultilinearMap := g.compContinuousMultilinearMap f.1 } @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearMap.compContinuousAlternatingMap
Composing a continuous alternating map with a continuous linear map gives again a continuous alternating map.
_root_.ContinuousLinearMap.compContinuousAlternatingMap_coe (g : N →L[R] N') (f : M [⋀^ι]→L[R] N) : ⇑(g.compContinuousAlternatingMap f) = g ∘ f := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearMap.compContinuousAlternatingMap_coe
null
@[simps -fullyApplied apply] _root_.ContinuousLinearEquiv.continuousAlternatingMapCongrLeftEquiv (e : M ≃L[R] M') : M [⋀^ι]→L[R] N ≃ M' [⋀^ι]→L[R] N where toFun f := f.compContinuousLinearMap ↑e.symm invFun f := f.compContinuousLinearMap ↑e left_inv f := by ext; simp [Function.comp_def] right_inv f := by ext; simp [Function.comp_def] @[deprecated (since := "2025-04-16")] alias _root_.ContinuousLinearEquiv.continuousAlternatingMapComp := ContinuousLinearEquiv.continuousAlternatingMapCongrLeftEquiv
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearEquiv.continuousAlternatingMapCongrLeftEquiv
A continuous linear equivalence of domains defines an equivalence between continuous alternating maps. This is available as a continuous linear isomorphism at `ContinuousLinearEquiv.continuousAlternatingMapCongrLeft`. This is `ContinuousAlternatingMap.compContinuousLinearMap` as an equivalence.
@[simps -fullyApplied apply] _root_.ContinuousLinearEquiv.continuousAlternatingMapCongrRightEquiv (e : N ≃L[R] N') : M [⋀^ι]→L[R] N ≃ M [⋀^ι]→L[R] N' where toFun := (e : N →L[R] N').compContinuousAlternatingMap invFun := (e.symm : N' →L[R] N).compContinuousAlternatingMap left_inv f := by ext; simp [(· ∘ ·)] right_inv f := by ext; simp [(· ∘ ·)] @[deprecated (since := "2025-04-16")] alias _root_.ContinuousLinearEquiv.compContinuousAlternatingMap := ContinuousLinearEquiv.continuousAlternatingMapCongrRightEquiv set_option linter.deprecated false in @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearEquiv.continuousAlternatingMapCongrRightEquiv
A continuous linear equivalence of codomains defines an equivalence between continuous alternating maps.
_root_.ContinuousLinearEquiv.compContinuousAlternatingMap_coe (e : N ≃L[R] N') (f : M [⋀^ι]→L[R] N) : ⇑(e.compContinuousAlternatingMap f) = e ∘ f := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearEquiv.compContinuousAlternatingMap_coe
null
_root_.ContinuousLinearEquiv.continuousAlternatingMapCongrEquiv (e : M ≃L[R] M') (e' : N ≃L[R] N') : M [⋀^ι]→L[R] N ≃ M' [⋀^ι]→L[R] N' := e.continuousAlternatingMapCongrLeftEquiv.trans e'.continuousAlternatingMapCongrRightEquiv
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearEquiv.continuousAlternatingMapCongrEquiv
Continuous linear equivalences between domains and codomains define an equivalence between the spaces of continuous alternating maps.
@[simps] piEquiv {ι' : Type*} {N : ι' → Type*} [∀ i, AddCommMonoid (N i)] [∀ i, TopologicalSpace (N i)] [∀ i, Module R (N i)] : (∀ i, M [⋀^ι]→L[R] N i) ≃ M [⋀^ι]→L[R] ∀ i, N i where toFun := pi invFun f i := (ContinuousLinearMap.proj i : _ →L[R] N i).compContinuousAlternatingMap f
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
piEquiv
`ContinuousAlternatingMap.pi` as an `Equiv`.
cons_add (f : ContinuousAlternatingMap R M N (Fin (n + 1))) (m : Fin n → M) (x y : M) : f (Fin.cons (x + y) m) = f (Fin.cons x m) + f (Fin.cons y m) := f.toMultilinearMap.cons_add m x y
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
cons_add
In the specific case of continuous alternating maps on spaces indexed by `Fin (n+1)`, where one can build an element of `Π(i : Fin (n+1)), M i` using `cons`, one can express directly the additivity of an alternating map along the first variable.
vecCons_add (f : ContinuousAlternatingMap R M N (Fin (n + 1))) (m : Fin n → M) (x y : M) : f (vecCons (x + y) m) = f (vecCons x m) + f (vecCons y m) := f.toMultilinearMap.cons_add m x y
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
vecCons_add
In the specific case of continuous alternating maps on spaces indexed by `Fin (n+1)`, where one can build an element of `Π(i : Fin (n+1)), M i` using `cons`, one can express directly the additivity of an alternating map along the first variable.
cons_smul (f : ContinuousAlternatingMap R M N (Fin (n + 1))) (m : Fin n → M) (c : R) (x : M) : f (Fin.cons (c • x) m) = c • f (Fin.cons x m) := f.toMultilinearMap.cons_smul m c x
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
cons_smul
In the specific case of continuous alternating maps on spaces indexed by `Fin (n+1)`, where one can build an element of `Π(i : Fin (n+1)), M i` using `cons`, one can express directly the multiplicativity of an alternating map along the first variable.
vecCons_smul (f : ContinuousAlternatingMap R M N (Fin (n + 1))) (m : Fin n → M) (c : R) (x : M) : f (vecCons (c • x) m) = c • f (vecCons x m) := f.toMultilinearMap.cons_smul m c x
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
vecCons_smul
In the specific case of continuous alternating maps on spaces indexed by `Fin (n+1)`, where one can build an element of `Π(i : Fin (n+1)), M i` using `cons`, one can express directly the multiplicativity of an alternating map along the first variable.
map_piecewise_add [DecidableEq ι] (m m' : ι → M) (t : Finset ι) : f (t.piecewise (m + m') m') = ∑ s ∈ t.powerset, f (s.piecewise m m') := f.toMultilinearMap.map_piecewise_add _ _ _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_piecewise_add
null
map_add_univ [DecidableEq ι] [Fintype ι] (m m' : ι → M) : f (m + m') = ∑ s : Finset ι, f (s.piecewise m m') := f.toMultilinearMap.map_add_univ _ _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_add_univ
Additivity of a continuous alternating map along all coordinates at the same time, writing `f (m + m')` as the sum of `f (s.piecewise m m')` over all sets `s`.
map_sum_finset : (f fun i => ∑ j ∈ A i, g' i j) = ∑ r ∈ piFinset A, f fun i => g' i (r i) := f.toMultilinearMap.map_sum_finset _ _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_sum_finset
If `f` is continuous alternating, then `f (Σ_{j₁ ∈ A₁} g₁ j₁, ..., Σ_{jₙ ∈ Aₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions with `r 1 ∈ A₁`, ..., `r n ∈ Aₙ`. This follows from multilinearity by expanding successively with respect to each coordinate.
map_sum [∀ i, Fintype (α i)] : (f fun i => ∑ j, g' i j) = ∑ r : ∀ i, α i, f fun i => g' i (r i) := f.toMultilinearMap.map_sum _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_sum
If `f` is continuous alternating, then `f (Σ_{j₁} g₁ j₁, ..., Σ_{jₙ} gₙ jₙ)` is the sum of `f (g₁ (r 1), ..., gₙ (r n))` where `r` ranges over all functions `r`. This follows from multilinearity by expanding successively with respect to each coordinate.
restrictScalars (f : M [⋀^ι]→L[A] N) : M [⋀^ι]→L[R] N := { f with toContinuousMultilinearMap := f.1.restrictScalars R } @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
restrictScalars
Reinterpret a continuous `A`-alternating map as a continuous `R`-alternating map, if `A` is an algebra over `R` and their actions on all involved modules agree with the action of `R` on `A`.
coe_restrictScalars (f : M [⋀^ι]→L[A] N) : ⇑(f.restrictScalars R) = f := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_restrictScalars
null
@[simp] map_update_sub [DecidableEq ι] (m : ι → M) (i : ι) (x y : M) : f (update m i (x - y)) = f (update m i x) - f (update m i y) := f.toMultilinearMap.map_update_sub _ _ _ _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_update_sub
null
@[simp] coe_neg : ⇑(-f) = -f := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_neg
null
neg_apply (m : ι → M) : (-f) m = -f m := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
neg_apply
null
@[simp] coe_sub : ⇑(f - g) = ⇑f - ⇑g := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_sub
null
sub_apply (m : ι → M) : (f - g) m = f m - g m := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
sub_apply
null
map_piecewise_smul [DecidableEq ι] (c : ι → R) (m : ι → M) (s : Finset ι) : f (s.piecewise (fun i => c i • m i) m) = (∏ i ∈ s, c i) • f m := f.toMultilinearMap.map_piecewise_smul _ _ _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_piecewise_smul
null
map_smul_univ [Fintype ι] (c : ι → R) (m : ι → M) : (f fun i => c i • m i) = (∏ i, c i) • f m := f.toMultilinearMap.map_smul_univ _ _
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
map_smul_univ
Multiplicativity of a continuous alternating map along all coordinates at the same time, writing `f (fun i ↦ c i • m i)` as `(∏ i, c i) • f m`.
@[ext] ext_ring [Finite ι] [TopologicalSpace R] ⦃f g : R [⋀^ι]→L[R] M⦄ (h : f (fun _ ↦ 1) = g (fun _ ↦ 1)) : f = g := toAlternatingMap_injective <| AlternatingMap.ext_ring h
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
ext_ring
If two continuous `R`-alternating maps from `R` are equal on 1, then they are equal. This is the alternating version of `ContinuousLinearMap.ext_ring`.
uniqueOfCommRing [Finite ι] [Nontrivial ι] [TopologicalSpace R] : Unique (R [⋀^ι]→L[R] N) where uniq _ := toAlternatingMap_injective <| Subsingleton.elim _ _
instance
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
uniqueOfCommRing
The only continuous `R`-alternating map from two or more copies of `R` is the zero map.
@[simps] toContinuousMultilinearMapLinear : M [⋀^ι]→L[A] N →ₗ[R] ContinuousMultilinearMap A (fun _ : ι => M) N where toFun := toContinuousMultilinearMap map_add' _ _ := rfl map_smul' _ _ := rfl
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toContinuousMultilinearMapLinear
The space of continuous alternating maps over an algebra over `R` is a module over `R`, for the pointwise addition and scalar multiplication. -/ instance : Module R (M [⋀^ι]→L[A] N) := Function.Injective.module _ toMultilinearAddHom toContinuousMultilinearMap_injective fun _ _ => rfl /-- Linear map version of the map `toMultilinearMap` associating to a continuous alternating map the corresponding multilinear map.
@[simps -fullyApplied apply] toAlternatingMapLinear : (M [⋀^ι]→L[A] N) →ₗ[R] (M [⋀^ι]→ₗ[A] N) where toFun := toAlternatingMap map_add' := by simp map_smul' := by simp
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toAlternatingMapLinear
Linear map version of the map `toAlternatingMap` associating to a continuous alternating map the corresponding alternating map.
@[simps +simpRhs] piLinearEquiv {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, ContinuousAdd (M' i)] [∀ i, Module R (M' i)] [∀ i, Module A (M' i)] [∀ i, SMulCommClass A R (M' i)] [∀ i, ContinuousConstSMul R (M' i)] : (∀ i, M [⋀^ι]→L[A] M' i) ≃ₗ[R] M [⋀^ι]→L[A] ∀ i, M' i := { piEquiv with map_add' := fun _ _ => rfl map_smul' := fun _ _ => rfl }
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
piLinearEquiv
`ContinuousAlternatingMap.pi` as a `LinearEquiv`.
@[simps! toContinuousMultilinearMap apply] smulRight : M [⋀^ι]→L[R] N := { f.toAlternatingMap.smulRight z with toContinuousMultilinearMap := f.1.smulRight z }
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
smulRight
Given a continuous `R`-alternating map `f` taking values in `R`, `f.smulRight z` is the continuous alternating map sending `m` to `f m • z`.
@[simps] compContinuousLinearMapₗ (f : M →L[R] M') : (M' [⋀^ι]→L[R] N) →ₗ[R] (M [⋀^ι]→L[R] N) where toFun g := g.compContinuousLinearMap f map_add' g g' := by ext; simp map_smul' c g := by ext; simp variable (R M N N')
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
compContinuousLinearMapₗ
`ContinuousAlternatingMap.compContinuousLinearMap` as a bundled `LinearMap`.
_root_.ContinuousLinearMap.compContinuousAlternatingMapₗ : (N →L[R] N') →ₗ[R] (M [⋀^ι]→L[R] N) →ₗ[R] (M [⋀^ι]→L[R] N') := LinearMap.mk₂ R ContinuousLinearMap.compContinuousAlternatingMap (fun _ _ _ => rfl) (fun _ _ _ => rfl) (fun f g₁ g₂ => by ext1; apply f.map_add) fun c f g => by ext1; simp
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
_root_.ContinuousLinearMap.compContinuousAlternatingMapₗ
`ContinuousLinearMap.compContinuousAlternatingMap` as a bundled bilinear map.
@[simps -isSimp apply_toContinuousMultilinearMap] alternatization : ContinuousMultilinearMap R (fun _ : ι => M) N →+ M [⋀^ι]→L[R] N where toFun f := { toContinuousMultilinearMap := ∑ σ : Equiv.Perm ι, Equiv.Perm.sign σ • f.domDomCongr σ map_eq_zero_of_eq' := fun v i j hv hne => by simpa [MultilinearMap.alternatization_apply] using f.1.alternatization.map_eq_zero_of_eq' v i j hv hne } map_zero' := by ext; simp map_add' _ _ := by ext; simp [Finset.sum_add_distrib]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
alternatization
Alternatization of a continuous multilinear map.
alternatization_apply_apply (v : ι → M) : alternatization f v = ∑ σ : Equiv.Perm ι, Equiv.Perm.sign σ • f (v ∘ σ) := by simp [alternatization, Function.comp_def] @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
alternatization_apply_apply
null
alternatization_apply_toAlternatingMap : (alternatization f).toAlternatingMap = MultilinearMap.alternatization f.1 := by ext v simp [alternatization_apply_apply, MultilinearMap.alternatization_apply, Function.comp_def]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
alternatization_apply_toAlternatingMap
null
instTopologicalSpace : TopologicalSpace (E [⋀^ι]→L[𝕜] F) := .induced toContinuousMultilinearMap inferInstance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instTopologicalSpace
null
isClosed_range_toContinuousMultilinearMap [ContinuousSMul 𝕜 E] [T2Space F] : IsClosed (Set.range (toContinuousMultilinearMap : (E [⋀^ι]→L[𝕜] F) → ContinuousMultilinearMap 𝕜 (fun _ : ι ↦ E) F)) := by simp only [range_toContinuousMultilinearMap, setOf_forall] repeat refine isClosed_iInter fun _ ↦ ?_ exact isClosed_singleton.preimage (continuous_eval_const _)
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isClosed_range_toContinuousMultilinearMap
null
instUniformSpace : UniformSpace (E [⋀^ι]→L[𝕜] F) := .comap toContinuousMultilinearMap inferInstance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instUniformSpace
null
isUniformEmbedding_toContinuousMultilinearMap : IsUniformEmbedding (toContinuousMultilinearMap : (E [⋀^ι]→L[𝕜] F) → _) where injective := toContinuousMultilinearMap_injective comap_uniformity := rfl
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isUniformEmbedding_toContinuousMultilinearMap
null
uniformContinuous_toContinuousMultilinearMap : UniformContinuous (toContinuousMultilinearMap : (E [⋀^ι]→L[𝕜] F) → _) := isUniformEmbedding_toContinuousMultilinearMap.uniformContinuous
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
uniformContinuous_toContinuousMultilinearMap
null
uniformContinuous_coe_fun [ContinuousSMul 𝕜 E] : UniformContinuous (DFunLike.coe : (E [⋀^ι]→L[𝕜] F) → (ι → E) → F) := ContinuousMultilinearMap.uniformContinuous_coe_fun.comp uniformContinuous_toContinuousMultilinearMap
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
uniformContinuous_coe_fun
null
uniformContinuous_eval_const [ContinuousSMul 𝕜 E] (x : ι → E) : UniformContinuous fun f : E [⋀^ι]→L[𝕜] F ↦ f x := uniformContinuous_pi.1 uniformContinuous_coe_fun x
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
uniformContinuous_eval_const
null
instIsUniformAddGroup : IsUniformAddGroup (E [⋀^ι]→L[𝕜] F) := isUniformEmbedding_toContinuousMultilinearMap.isUniformAddGroup (toContinuousMultilinearMapLinear (R := ℕ))
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instIsUniformAddGroup
null
instUniformContinuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜 M F] [ContinuousConstSMul M F] : UniformContinuousConstSMul M (E [⋀^ι]→L[𝕜] F) := isUniformEmbedding_toContinuousMultilinearMap.uniformContinuousConstSMul fun _ _ ↦ rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instUniformContinuousConstSMul
null
isUniformInducing_postcomp {G : Type*} [AddCommGroup G] [UniformSpace G] [IsUniformAddGroup G] [Module 𝕜 G] (g : F →L[𝕜] G) (hg : IsUniformInducing g) : IsUniformInducing (g.compContinuousAlternatingMap : (E [⋀^ι]→L[𝕜] F) → (E [⋀^ι]→L[𝕜] G)) := by rw [← isUniformEmbedding_toContinuousMultilinearMap.1.of_comp_iff] exact (ContinuousMultilinearMap.isUniformInducing_postcomp g hg).comp isUniformEmbedding_toContinuousMultilinearMap.1
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isUniformInducing_postcomp
null
completeSpace (h : IsCoherentWith {s : Set (ι → E) | IsVonNBounded 𝕜 s}) : CompleteSpace (E [⋀^ι]→L[𝕜] F) := by wlog hF : T2Space F generalizing F · rw [(isUniformInducing_postcomp (SeparationQuotient.mkCLM _ _) SeparationQuotient.isUniformInducing_mk).completeSpace_congr] · exact this inferInstance · intro f use (SeparationQuotient.outCLM _ _).compContinuousAlternatingMap f ext simp have := ContinuousMultilinearMap.completeSpace (F := F) h rw [completeSpace_iff_isComplete_range isUniformEmbedding_toContinuousMultilinearMap.isUniformInducing] apply isClosed_range_toContinuousMultilinearMap.isComplete
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
completeSpace
null
instCompleteSpace [IsTopologicalAddGroup E] [SequentialSpace (ι → E)] : CompleteSpace (E [⋀^ι]→L[𝕜] F) := completeSpace <| .of_seq fun _u x hux ↦ (hux.isVonNBounded_range 𝕜).insert x
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instCompleteSpace
null
isUniformEmbedding_restrictScalars : IsUniformEmbedding (restrictScalars 𝕜' : E [⋀^ι]→L[𝕜] F → E [⋀^ι]→L[𝕜'] F) := by rw [← isUniformEmbedding_toContinuousMultilinearMap.of_comp_iff] exact (ContinuousMultilinearMap.isUniformEmbedding_restrictScalars 𝕜').comp isUniformEmbedding_toContinuousMultilinearMap
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isUniformEmbedding_restrictScalars
null
uniformContinuous_restrictScalars : UniformContinuous (restrictScalars 𝕜' : E [⋀^ι]→L[𝕜] F → E [⋀^ι]→L[𝕜'] F) := (isUniformEmbedding_restrictScalars 𝕜').uniformContinuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
uniformContinuous_restrictScalars
null
isEmbedding_toContinuousMultilinearMap : IsEmbedding (toContinuousMultilinearMap : (E [⋀^ι]→L[𝕜] F → _)) := letI := IsTopologicalAddGroup.toUniformSpace F haveI := isUniformAddGroup_of_addCommGroup (G := F) isUniformEmbedding_toContinuousMultilinearMap.isEmbedding
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isEmbedding_toContinuousMultilinearMap
null
instIsTopologicalAddGroup : IsTopologicalAddGroup (E [⋀^ι]→L[𝕜] F) := isEmbedding_toContinuousMultilinearMap.topologicalAddGroup (toContinuousMultilinearMapLinear (R := ℕ)) @[continuity, fun_prop]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instIsTopologicalAddGroup
null
continuous_toContinuousMultilinearMap : Continuous (toContinuousMultilinearMap : (E [⋀^ι]→L[𝕜] F → _)) := isEmbedding_toContinuousMultilinearMap.continuous
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
continuous_toContinuousMultilinearMap
null
instContinuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜 M F] [ContinuousConstSMul M F] : ContinuousConstSMul M (E [⋀^ι]→L[𝕜] F) := isEmbedding_toContinuousMultilinearMap.continuousConstSMul id rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instContinuousConstSMul
null
instContinuousSMul [ContinuousSMul 𝕜 F] : ContinuousSMul 𝕜 (E [⋀^ι]→L[𝕜] F) := isEmbedding_toContinuousMultilinearMap.continuousSMul continuous_id rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instContinuousSMul
null
hasBasis_nhds_zero_of_basis {ι' : Type*} {p : ι' → Prop} {b : ι' → Set F} (h : (𝓝 (0 : F)).HasBasis p b) : (𝓝 (0 : E [⋀^ι]→L[𝕜] F)).HasBasis (fun Si : Set (ι → E) × ι' => IsVonNBounded 𝕜 Si.1 ∧ p Si.2) fun Si => { f | MapsTo f Si.1 (b Si.2) } := by rw [nhds_induced] exact (ContinuousMultilinearMap.hasBasis_nhds_zero_of_basis h).comap _
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
hasBasis_nhds_zero_of_basis
null
hasBasis_nhds_zero : (𝓝 (0 : E [⋀^ι]→L[𝕜] F)).HasBasis (fun SV : Set (ι → E) × Set F => IsVonNBounded 𝕜 SV.1 ∧ SV.2 ∈ 𝓝 0) fun SV => { f | MapsTo f SV.1 SV.2 } := hasBasis_nhds_zero_of_basis (Filter.basis_sets _) variable [ContinuousSMul 𝕜 E]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
hasBasis_nhds_zero
null
isClosedEmbedding_toContinuousMultilinearMap [T2Space F] : IsClosedEmbedding (toContinuousMultilinearMap : (E [⋀^ι]→L[𝕜] F) → ContinuousMultilinearMap 𝕜 (fun _ : ι ↦ E) F) := ⟨isEmbedding_toContinuousMultilinearMap, isClosed_range_toContinuousMultilinearMap⟩
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isClosedEmbedding_toContinuousMultilinearMap
null
instContinuousEvalConst : ContinuousEvalConst (E [⋀^ι]→L[𝕜] F) (ι → E) F := .of_continuous_forget continuous_toContinuousMultilinearMap
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instContinuousEvalConst
null
instT2Space [T2Space F] : T2Space (E [⋀^ι]→L[𝕜] F) := .of_injective_continuous DFunLike.coe_injective continuous_coeFun
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instT2Space
null
instT3Space [T2Space F] : T3Space (E [⋀^ι]→L[𝕜] F) := inferInstance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
instT3Space
null
@[simps! -fullyApplied] toContinuousMultilinearMapCLM (R : Type*) [Semiring R] [Module R F] [ContinuousConstSMul R F] [SMulCommClass 𝕜 R F] : E [⋀^ι]→L[𝕜] F →L[R] ContinuousMultilinearMap 𝕜 (fun _ : ι ↦ E) F := ⟨toContinuousMultilinearMapLinear, continuous_induced_dom⟩
def
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
toContinuousMultilinearMapCLM
The inclusion of *alternating* continuous multi-linear maps into continuous multi-linear maps as a continuous linear map.
isEmbedding_restrictScalars : IsEmbedding (restrictScalars 𝕜' : E [⋀^ι]→L[𝕜] F → E [⋀^ι]→L[𝕜'] F) := letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup (isUniformEmbedding_restrictScalars _).isEmbedding @[continuity, fun_prop]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
isEmbedding_restrictScalars
null
continuous_restrictScalars : Continuous (restrictScalars 𝕜' : E [⋀^ι]→L[𝕜] F → E [⋀^ι]→L[𝕜'] F) := isEmbedding_restrictScalars.continuous variable (𝕜') in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
continuous_restrictScalars
null
@[simps -fullyApplied apply] restrictScalarsCLM [ContinuousConstSMul 𝕜' F] : E [⋀^ι]→L[𝕜] F →L[𝕜'] E [⋀^ι]→L[𝕜'] F where toFun := restrictScalars 𝕜' map_add' _ _ := rfl map_smul' _ _ := rfl
def
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
restrictScalarsCLM
`ContinuousMultilinearMap.restrictScalars` as a `ContinuousLinearMap`.
apply [ContinuousConstSMul 𝕜 F] (m : ι → E) : E [⋀^ι]→L[𝕜] F →L[𝕜] F where toFun c := c m map_add' _ _ := rfl map_smul' _ _ := rfl cont := continuous_eval_const m variable {𝕜 E F} @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
apply
The application of a multilinear map as a `ContinuousLinearMap`.
apply_apply [ContinuousConstSMul 𝕜 F] {m : ι → E} {c : E [⋀^ι]→L[𝕜] F} : apply 𝕜 E F m c = c m := rfl
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
apply_apply
null
hasSum_eval {α : Type*} {p : α → E [⋀^ι]→L[𝕜] F} {q : E [⋀^ι]→L[𝕜] F} (h : HasSum p q) (m : ι → E) : HasSum (fun a => p a m) (q m) := h.map (applyAddHom m) (continuous_eval_const m)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
hasSum_eval
null
tsum_eval [T2Space F] {α : Type*} {p : α → E [⋀^ι]→L[𝕜] F} (hp : Summable p) (m : ι → E) : (∑' a, p a) m = ∑' a, p a m := (hasSum_eval hp.hasSum m).tsum_eq.symm
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Multilinear.Topology", "Mathlib.Topology.Algebra.Module.Alternating.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Topology.lean
tsum_eval
null
ContinuousMultilinearMap (R : Type u) {ι : Type v} (M₁ : ι → Type w₁) (M₂ : Type w₂) [Semiring R] [∀ i, AddCommMonoid (M₁ i)] [AddCommMonoid M₂] [∀ i, Module R (M₁ i)] [Module R M₂] [∀ i, TopologicalSpace (M₁ i)] [TopologicalSpace M₂] extends MultilinearMap R M₁ M₂ where cont : Continuous toFun attribute [inherit_doc ContinuousMultilinearMap] ContinuousMultilinearMap.cont @[inherit_doc] notation:25 M " [×" n "]→L[" R "] " M' => ContinuousMultilinearMap R (fun i : Fin n => M) M'
structure
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
ContinuousMultilinearMap
Continuous multilinear maps over the ring `R`, from `∀ i, M₁ i` to `M₂` where `M₁ i` and `M₂` are modules over `R` with a topological structure. In applications, there will be compatibility conditions between the algebraic and the topological structures, but this is not needed for the definition.
toMultilinearMap_injective : Function.Injective (ContinuousMultilinearMap.toMultilinearMap : ContinuousMultilinearMap R M₁ M₂ → MultilinearMap R M₁ M₂) | ⟨f, hf⟩, ⟨g, hg⟩, h => by subst h; rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
toMultilinearMap_injective
null
funLike : FunLike (ContinuousMultilinearMap R M₁ M₂) (∀ i, M₁ i) M₂ where coe f := f.toFun coe_injective' _ _ h := toMultilinearMap_injective <| MultilinearMap.coe_injective h
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
funLike
null
continuousMapClass : ContinuousMapClass (ContinuousMultilinearMap R M₁ M₂) (∀ i, M₁ i) M₂ where map_continuous := ContinuousMultilinearMap.cont
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
continuousMapClass
null
Simps.apply (L₁ : ContinuousMultilinearMap R M₁ M₂) (v : ∀ i, M₁ i) : M₂ := L₁ v initialize_simps_projections ContinuousMultilinearMap (-toMultilinearMap, toMultilinearMap_toFun → apply) @[continuity]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
Simps.apply
See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections.
coe_continuous : Continuous (f : (∀ i, M₁ i) → M₂) := f.cont @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
coe_continuous
null
coe_coe : (f.toMultilinearMap : (∀ i, M₁ i) → M₂) = f := rfl @[ext]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
coe_coe
null
ext {f f' : ContinuousMultilinearMap R M₁ M₂} (H : ∀ x, f x = f' x) : f = f' := DFunLike.ext _ _ H @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
ext
null
map_update_add [DecidableEq ι] (m : ∀ i, M₁ i) (i : ι) (x y : M₁ i) : f (update m i (x + y)) = f (update m i x) + f (update m i y) := f.map_update_add' m i x y @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_update_add
null
map_update_smul [DecidableEq ι] (m : ∀ i, M₁ i) (i : ι) (c : R) (x : M₁ i) : f (update m i (c • x)) = c • f (update m i x) := f.map_update_smul' m i c x
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_update_smul
null
map_coord_zero {m : ∀ i, M₁ i} (i : ι) (h : m i = 0) : f m = 0 := f.toMultilinearMap.map_coord_zero i h @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_coord_zero
null
map_zero [Nonempty ι] : f 0 = 0 := f.toMultilinearMap.map_zero
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
map_zero
null
@[simp] zero_apply (m : ∀ i, M₁ i) : (0 : ContinuousMultilinearMap R M₁ M₂) m = 0 := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
zero_apply
null
toMultilinearMap_zero : (0 : ContinuousMultilinearMap R M₁ M₂).toMultilinearMap = 0 := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
toMultilinearMap_zero
null
@[simp] smul_apply (f : ContinuousMultilinearMap A M₁ M₂) (c : R') (m : ∀ i, M₁ i) : (c • f) m = c • f m := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
smul_apply
null
toMultilinearMap_smul (c : R') (f : ContinuousMultilinearMap A M₁ M₂) : (c • f).toMultilinearMap = c • f.toMultilinearMap := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
toMultilinearMap_smul
null
@[simp] add_apply (m : ∀ i, M₁ i) : (f + f') m = f m + f' m := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
add_apply
null
toMultilinearMap_add (f g : ContinuousMultilinearMap R M₁ M₂) : (f + g).toMultilinearMap = f.toMultilinearMap + g.toMultilinearMap := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
toMultilinearMap_add
null
addCommMonoid : AddCommMonoid (ContinuousMultilinearMap R M₁ M₂) := toMultilinearMap_injective.addCommMonoid _ rfl (fun _ _ => rfl) fun _ _ => rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
addCommMonoid
null
applyAddHom (m : ∀ i, M₁ i) : ContinuousMultilinearMap R M₁ M₂ →+ M₂ where toFun f := f m map_zero' := rfl map_add' _ _ := rfl @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
applyAddHom
Evaluation of a `ContinuousMultilinearMap` at a vector as an `AddMonoidHom`.
sum_apply {α : Type*} (f : α → ContinuousMultilinearMap R M₁ M₂) (m : ∀ i, M₁ i) {s : Finset α} : (∑ a ∈ s, f a) m = ∑ a ∈ s, f a m := map_sum (applyAddHom m) f s
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
sum_apply
null
@[simps!] toContinuousLinearMap [DecidableEq ι] (m : ∀ i, M₁ i) (i : ι) : M₁ i →L[R] M₂ := { f.toMultilinearMap.toLinearMap m i with cont := f.cont.comp (continuous_const.update i continuous_id) }
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
toContinuousLinearMap
If `f` is a continuous multilinear map, then `f.toContinuousLinearMap m i` is the continuous linear map obtained by fixing all coordinates but `i` equal to those of `m`, and varying the `i`-th coordinate.
prod (f : ContinuousMultilinearMap R M₁ M₂) (g : ContinuousMultilinearMap R M₁ M₃) : ContinuousMultilinearMap R M₁ (M₂ × M₃) := { f.toMultilinearMap.prod g.toMultilinearMap with cont := f.cont.prodMk g.cont } @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
prod
The Cartesian product of two continuous multilinear maps, as a continuous multilinear map.
prod_apply (f : ContinuousMultilinearMap R M₁ M₂) (g : ContinuousMultilinearMap R M₁ M₃) (m : ∀ i, M₁ i) : (f.prod g) m = (f m, g m) := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
prod_apply
null
pi {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] (f : ∀ i, ContinuousMultilinearMap R M₁ (M' i)) : ContinuousMultilinearMap R M₁ (∀ i, M' i) where cont := continuous_pi fun i => (f i).coe_continuous toMultilinearMap := MultilinearMap.pi fun i => (f i).toMultilinearMap @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
pi
Combine a family of continuous multilinear maps with the same domain and codomains `M' i` into a continuous multilinear map taking values in the space of functions `∀ i, M' i`.
coe_pi {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] (f : ∀ i, ContinuousMultilinearMap R M₁ (M' i)) : ⇑(pi f) = fun m j => f j m := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
coe_pi
null
pi_apply {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] (f : ∀ i, ContinuousMultilinearMap R M₁ (M' i)) (m : ∀ i, M₁ i) (j : ι') : pi f m j = f j m := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
pi_apply
null
@[simps! toMultilinearMap apply_coe] codRestrict (f : ContinuousMultilinearMap R M₁ M₂) (p : Submodule R M₂) (h : ∀ v, f v ∈ p) : ContinuousMultilinearMap R M₁ p := ⟨f.1.codRestrict p h, f.cont.subtype_mk _⟩
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
codRestrict
Restrict the codomain of a continuous multilinear map to a submodule.
@[simps! apply_toMultilinearMap apply_apply symm_apply_apply] ofSubsingleton [Subsingleton ι] (i : ι) : (M₂ →L[R] M₃) ≃ ContinuousMultilinearMap R (fun _ : ι => M₂) M₃ where toFun f := ⟨MultilinearMap.ofSubsingleton R M₂ M₃ i f, (map_continuous f).comp (continuous_apply i)⟩ invFun f := ⟨(MultilinearMap.ofSubsingleton R M₂ M₃ i).symm f.toMultilinearMap, (map_continuous f).comp <| continuous_pi fun _ ↦ continuous_id⟩ right_inv f := toMultilinearMap_injective <| (MultilinearMap.ofSubsingleton R M₂ M₃ i).apply_symm_apply f.toMultilinearMap variable (M₁) {M₂}
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMapPiProd", "Mathlib.LinearAlgebra.Multilinear.Basic", "Mathlib.Algebra.BigOperators.Fin" ]
Mathlib/Topology/Algebra/Module/Multilinear/Basic.lean
ofSubsingleton
The natural equivalence between continuous linear maps from `M₂` to `M₃` and continuous 1-multilinear maps from `M₂` to `M₃`.