fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
isClopen_sphere {r : ValueGroupWithZero R} (hr : r ≠ 0) : IsClopen {x | v x = r} := by have h : {x : R | v x = r} = {x | v x ≤ r} \ {x | v x < r} := by ext x simp [← le_antisymm_iff] rw [h] exact IsClopen.diff (isClopen_closedBall hr) (isClopen_ball _) @[deprecated (since := "2025-08-01")] alias _root_.ValuativeTopology.isClopen_sphere := isClopen_sphere
theorem
Topology
[ "Mathlib.RingTheory.Valuation.ValuativeRel.Basic", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology" ]
Mathlib/Topology/Algebra/Valued/ValuativeRel.lean
isClopen_sphere
null
isOpen_sphere {r : ValueGroupWithZero R} (hr : r ≠ 0) : IsOpen {x | v x = r} := isClopen_sphere hr |>.isOpen @[deprecated (since := "2025-08-01")] alias _root_.ValuativeTopology.isOpen_sphere := isOpen_sphere open WithZeroTopology in
lemma
Topology
[ "Mathlib.RingTheory.Valuation.ValuativeRel.Basic", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology" ]
Mathlib/Topology/Algebra/Valued/ValuativeRel.lean
isOpen_sphere
null
continuous_valuation : Continuous v := by simp only [continuous_iff_continuousAt, ContinuousAt] rintro x by_cases hx : v x = 0 · simpa [hx, (hasBasis_nhds _).tendsto_iff WithZeroTopology.hasBasis_nhds_zero, Valuation.map_sub_of_right_eq_zero _ hx] using fun i hi ↦ ⟨.mk0 i hi, fun y ↦ id⟩ · simpa [(hasBasis_nhds _).tendsto_iff (WithZeroTopology.hasBasis_nhds_of_ne_zero hx)] using ⟨.mk0 (v x) hx, fun _ ↦ Valuation.map_eq_of_sub_lt _⟩
lemma
Topology
[ "Mathlib.RingTheory.Valuation.ValuativeRel.Basic", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology" ]
Mathlib/Topology/Algebra/Valued/ValuativeRel.lean
continuous_valuation
null
Valuation.inversion_estimate {x y : K} {γ : Γ₀ˣ} (y_ne : y ≠ 0) (h : v (x - y) < min (γ * (v y * v y)) (v y)) : v (x⁻¹ - y⁻¹) < γ := by have hyp1 : v (x - y) < γ * (v y * v y) := lt_of_lt_of_le h (min_le_left _ _) have hyp1' : v (x - y) * (v y * v y)⁻¹ < γ := mul_inv_lt_of_lt_mul₀ hyp1 have hyp2 : v (x - y) < v y := lt_of_lt_of_le h (min_le_right _ _) have key : v x = v y := Valuation.map_eq_of_sub_lt v hyp2 have x_ne : x ≠ 0 := by intro h apply y_ne rw [h, v.map_zero] at key exact v.zero_iff.1 key.symm have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹ := by rw [mul_sub_left_distrib, sub_mul, mul_assoc, show y * y⁻¹ = 1 from mul_inv_cancel₀ y_ne, show x⁻¹ * x = 1 from inv_mul_cancel₀ x_ne, mul_one, one_mul] calc v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) := by rw [decomp] _ = v x⁻¹ * (v <| y - x) * v y⁻¹ := by repeat' rw [Valuation.map_mul] _ = (v x)⁻¹ * (v <| y - x) * (v y)⁻¹ := by rw [map_inv₀, map_inv₀] _ = (v <| y - x) * (v y * v y)⁻¹ := by rw [mul_assoc, mul_comm, key, mul_assoc, mul_inv_rev] _ = (v <| y - x) * (v y * v y)⁻¹ := rfl _ = (v <| x - y) * (v y * v y)⁻¹ := by rw [Valuation.map_sub_swap] _ < γ := hyp1'
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
Valuation.inversion_estimate
null
Valuation.inversion_estimate' {x y r s : K} (y_ne : y ≠ 0) (hr : r ≠ 0) (hs : s ≠ 0) (h : v (x - y) < min ((v s / v r) * (v y * v y)) (v y)) : v (x⁻¹ - y⁻¹) * v r < v s := by have hr' : 0 < v r := by simp [zero_lt_iff, hr] let γ : Γ₀ˣ := .mk0 (v s / v r) (by simp [hs, hr]) calc v (x⁻¹ - y⁻¹) * v r < γ * v r := by gcongr; exact Valuation.inversion_estimate v y_ne h _ = v s := div_mul_cancel₀ _ (by simpa)
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
Valuation.inversion_estimate'
null
noncomputable extension : hat K → Γ₀ := Completion.isDenseInducing_coe.extend (v : K → Γ₀)
def
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
extension
The topology coming from a valuation on a division ring makes it a topological division ring [BouAC, VI.5.1 middle of Proposition 1] -/ instance (priority := 100) Valued.isTopologicalDivisionRing [Valued K Γ₀] : IsTopologicalDivisionRing K := { (by infer_instance : IsTopologicalRing K) with continuousAt_inv₀ := by intro x x_ne s s_in obtain ⟨γ, hs⟩ := Valued.mem_nhds.mp s_in; clear s_in rw [mem_map, Valued.mem_nhds] change ∃ γ : Γ₀ˣ, { y : K | (v (y - x) : Γ₀) < γ } ⊆ { x : K | x⁻¹ ∈ s } have vx_ne := (Valuation.ne_zero_iff <| v).mpr x_ne let γ' := Units.mk0 _ vx_ne use min (γ * (γ' * γ')) γ' intro y y_in apply hs simp only [mem_setOf_eq] at y_in rw [Units.min_val, Units.val_mul, Units.val_mul] at y_in exact Valuation.inversion_estimate _ x_ne y_in } /-- A valued division ring is separated. -/ instance (priority := 100) ValuedRing.separated [Valued K Γ₀] : T0Space K := by suffices T2Space K by infer_instance apply IsTopologicalAddGroup.t2Space_of_zero_sep intro x x_ne refine ⟨{ k | v k < v x }, ?_, fun h => lt_irrefl _ h⟩ rw [Valued.mem_nhds] have vx_ne := (Valuation.ne_zero_iff <| v).mpr x_ne let γ' := Units.mk0 _ vx_ne exact ⟨γ', fun y hy => by simpa using hy⟩ section open WithZeroTopology open Valued theorem Valued.continuous_valuation [Valued K Γ₀] : Continuous (v : K → Γ₀) := by rw [continuous_iff_continuousAt] intro x rcases eq_or_ne x 0 with (rfl | h) · rw [ContinuousAt, map_zero, WithZeroTopology.tendsto_zero] intro γ hγ rw [Filter.Eventually, Valued.mem_nhds_zero] use Units.mk0 γ hγ; rfl · have v_ne : (v x : Γ₀) ≠ 0 := (Valuation.ne_zero_iff _).mpr h rw [ContinuousAt, WithZeroTopology.tendsto_of_ne_zero v_ne] apply Valued.loc_const v_ne end end ValuationTopologicalDivisionRing end DivisionRing namespace Valued open UniformSpace variable {K : Type*} [Field K] {Γ₀ : Type*} [LinearOrderedCommGroupWithZero Γ₀] [hv : Valued K Γ₀] local notation "hat " => Completion /-- A valued field is completable. -/ instance (priority := 100) completable : CompletableTopField K := { ValuedRing.separated with nice := by rintro F hF h0 have : ∃ γ₀ : Γ₀ˣ, ∃ M ∈ F, ∀ x ∈ M, (γ₀ : Γ₀) ≤ v x := by rcases Filter.inf_eq_bot_iff.mp h0 with ⟨U, U_in, M, M_in, H⟩ rcases Valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩ exists γ₀, M, M_in intro x xM apply le_of_not_gt _ intro hyp have : x ∈ U ∩ M := ⟨hU hyp, xM⟩ rwa [H] at this rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩ rw [Valued.cauchy_iff] at hF ⊢ refine ⟨hF.1.map _, ?_⟩ replace hF := hF.2 intro γ rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩ clear hF use (fun x : K => x⁻¹) '' (M₀ ∩ M₁) constructor · rw [mem_map] apply mem_of_superset (Filter.inter_mem M₀_in M₁_in) exact subset_preimage_image _ _ · rintro _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ _ ⟨y, ⟨_, y_in₁⟩, rfl⟩ simp only specialize H₁ x x_in₁ y y_in₁ replace x_in₀ := H₀ x x_in₀ clear H₀ apply Valuation.inversion_estimate · have : (v x : Γ₀) ≠ 0 := by intro h rw [h] at x_in₀ simp at x_in₀ exact (Valuation.ne_zero_iff _).mp this · refine lt_of_lt_of_le H₁ ?_ rw [Units.min_val] apply min_le_min _ x_in₀ rw [mul_assoc] have : ((γ₀ * γ₀ : Γ₀ˣ) : Γ₀) ≤ v x * v x := calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x := mul_le_mul_left' x_in₀ ↑γ₀ _ ≤ _ := mul_le_mul_right' x_in₀ (v x) rw [Units.val_mul] exact mul_le_mul_left' this γ } open WithZeroTopology lemma valuation_isClosedMap : IsClosedMap (v : K → Γ₀) := by refine IsClosedMap.of_nonempty ?_ intro U hU hU' simp only [← isOpen_compl_iff, isOpen_iff_mem_nhds, mem_compl_iff, mem_nhds, subset_compl_comm, compl_setOf, not_lt] at hU simp only [isClosed_iff, mem_image, map_eq_zero, exists_eq_right, ne_eq, image_subset_iff] refine (em _).imp_right fun h ↦ ?_ obtain ⟨γ, h⟩ := hU _ h simp only [sub_zero] at h refine ⟨γ, γ.ne_zero, h.trans ?_⟩ intro simp /-- The extension of the valuation of a valued field to the completion of the field.
continuous_extension : Continuous (Valued.extension : hat K → Γ₀) := by refine Completion.isDenseInducing_coe.continuous_extend ?_ intro x₀ rcases eq_or_ne x₀ 0 with (rfl | h) · refine ⟨0, ?_⟩ erw [← Completion.isDenseInducing_coe.isInducing.nhds_eq_comap] exact Valued.continuous_valuation.tendsto' 0 0 (map_zero v) · have preimage_one : v ⁻¹' {(1 : Γ₀)} ∈ 𝓝 (1 : K) := by have : (v (1 : K) : Γ₀) ≠ 0 := by rw [Valuation.map_one] exact zero_ne_one.symm convert Valued.loc_const this ext x rw [Valuation.map_one, mem_preimage, mem_singleton_iff, mem_setOf_eq] obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → (v x : Γ₀) = 1 := by rwa [Completion.isDenseInducing_coe.nhds_eq_comap, mem_comap] at preimage_one have : ∃ V' ∈ 𝓝 (1 : hat K), (0 : hat K) ∉ V' ∧ ∀ (x) (_ : x ∈ V') (y) (_ : y ∈ V'), x * y⁻¹ ∈ V := by have : Tendsto (fun p : hat K × hat K => p.1 * p.2⁻¹) ((𝓝 1) ×ˢ (𝓝 1)) (𝓝 1) := by rw [← nhds_prod_eq] conv => congr rfl rfl rw [← one_mul (1 : hat K)] refine Tendsto.mul continuous_fst.continuousAt (Tendsto.comp ?_ continuous_snd.continuousAt) convert (continuousAt_inv₀ (zero_ne_one.symm : 1 ≠ (0 : hat K))).tendsto exact inv_one.symm rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩ let hatKstar := ({0}ᶜ : Set <| hat K) have : hatKstar ∈ 𝓝 (1 : hat K) := compl_singleton_mem_nhds zero_ne_one.symm use U ∩ hatKstar, Filter.inter_mem U_in this constructor · rintro ⟨_, h'⟩ rw [mem_compl_singleton_iff] at h' exact h' rfl · rintro x ⟨hx, _⟩ y ⟨hy, _⟩ apply hU <;> assumption rcases this with ⟨V', V'_in, zeroV', hV'⟩ have nhds_right : (fun x => x * x₀) '' V' ∈ 𝓝 x₀ := by have l : Function.LeftInverse (fun x : hat K => x * x₀⁻¹) fun x : hat K => x * x₀ := by intro x simp only [mul_assoc, mul_inv_cancel₀ h, mul_one] have r : Function.RightInverse (fun x : hat K => x * x₀⁻¹) fun x : hat K => x * x₀ := by intro x simp only [mul_assoc, inv_mul_cancel₀ h, mul_one] have c : Continuous fun x : hat K => x * x₀⁻¹ := continuous_id.mul continuous_const rw [image_eq_preimage_of_inverse l r] rw [← mul_inv_cancel₀ h] at V'_in exact c.continuousAt V'_in ...
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
continuous_extension
null
extension_extends (x : K) : extension (x : hat K) = v x := by refine Completion.isDenseInducing_coe.extend_eq_of_tendsto ?_ rw [← Completion.isDenseInducing_coe.nhds_eq_comap] exact Valued.continuous_valuation.continuousAt
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
extension_extends
null
noncomputable extensionValuation : Valuation (hat K) Γ₀ where toFun := Valued.extension map_zero' := by rw [← v.map_zero (R := K), ← Valued.extension_extends (0 : K)] rfl map_one' := by rw [← Completion.coe_one, Valued.extension_extends (1 : K)] exact Valuation.map_one _ map_mul' x y := by apply Completion.induction_on₂ x y (p := fun x y => extension (x * y) = extension x * extension y) · have c1 : Continuous fun x : hat K × hat K => Valued.extension (x.1 * x.2) := Valued.continuous_extension.comp (continuous_fst.mul continuous_snd) have c2 : Continuous fun x : hat K × hat K => Valued.extension x.1 * Valued.extension x.2 := (Valued.continuous_extension.comp continuous_fst).mul (Valued.continuous_extension.comp continuous_snd) exact isClosed_eq c1 c2 · intro x y norm_cast exact Valuation.map_mul _ _ _ map_add_le_max' x y := by rw [le_max_iff] apply Completion.induction_on₂ x y (p := fun x y => extension (x + y) ≤ extension x ∨ extension (x + y) ≤ extension y) · have cont : Continuous (Valued.extension : hat K → Γ₀) := Valued.continuous_extension exact (isClosed_le (cont.comp continuous_add) <| cont.comp continuous_fst).union (isClosed_le (cont.comp continuous_add) <| cont.comp continuous_snd) · intro x y norm_cast rw [← le_max_iff] exact v.map_add x y @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
extensionValuation
the extension of a valuation on a division ring to its completion.
extensionValuation_apply_coe (x : K) : Valued.extensionValuation (x : hat K) = v x := extension_extends x @[simp]
lemma
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
extensionValuation_apply_coe
null
extension_eq_zero_iff {x : hat K} : extension x = 0 ↔ x = 0 := by suffices extensionValuation x = 0 ↔ x = 0 from this simp
lemma
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
extension_eq_zero_iff
null
continuous_extensionValuation : Continuous (Valued.extensionValuation : hat K → Γ₀) := continuous_extension
lemma
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
continuous_extensionValuation
null
exists_coe_eq_v (x : hat K) : ∃ r : K, extensionValuation x = v r := by rcases eq_or_ne x 0 with (rfl | h) · use 0 exact extensionValuation_apply_coe 0 · refine Completion.denseRange_coe.induction_on x ?_ (by simp) simpa [eq_comm] using valuation_isClosedMap.isClosed_range.preimage continuous_extensionValuation
lemma
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
exists_coe_eq_v
null
closure_coe_completion_v_lt {γ : Γ₀ˣ} : closure ((↑) '' { x : K | v x < (γ : Γ₀) }) = { x : hat K | extensionValuation x < (γ : Γ₀) } := by ext x let γ₀ := extensionValuation x suffices γ₀ ≠ 0 → (x ∈ closure ((↑) '' { x : K | v x < (γ : Γ₀) }) ↔ γ₀ < (γ : Γ₀)) by rcases eq_or_ne γ₀ 0 with h | h · simp only [(Valuation.zero_iff _).mp h, mem_setOf_eq, Valuation.map_zero, Units.zero_lt, iff_true] apply subset_closure exact ⟨0, by simp only [mem_setOf_eq, Valuation.map_zero, Units.zero_lt, true_and]; rfl⟩ · exact this h intro h have hγ₀ : extension ⁻¹' {γ₀} ∈ 𝓝 x := continuous_extension.continuousAt.preimage_mem_nhds (WithZeroTopology.singleton_mem_nhds_of_ne_zero h) rw [mem_closure_iff_nhds'] refine ⟨fun hx => ?_, fun hx s hs => ?_⟩ · obtain ⟨⟨-, y, hy₁ : v y < (γ : Γ₀), rfl⟩, hy₂⟩ := hx _ hγ₀ replace hy₂ : v y = γ₀ := by simpa using hy₂ rwa [← hy₂] · obtain ⟨y, hy₁, hy₂⟩ := Completion.denseRange_coe.mem_nhds (inter_mem hγ₀ hs) replace hy₁ : v y = γ₀ := by simpa using hy₁ rw [← hy₁] at hx exact ⟨⟨y, ⟨y, hx, rfl⟩⟩, hy₂⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
closure_coe_completion_v_lt
null
closure_coe_completion_v_mul_v_lt {r s : K} (hr : r ≠ 0) (hs : s ≠ 0) : closure ((↑) '' { x : K | v x * v r < v s }) = { x : hat K | extensionValuation x * v r < v s } := by have hrs : v s / v r ≠ 0 := by simp [hr, hs] convert closure_coe_completion_v_lt (γ := .mk0 _ hrs) using 3 all_goals simp [← lt_div_iff₀, zero_lt_iff, hr]
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
closure_coe_completion_v_mul_v_lt
null
noncomputable valuedCompletion : Valued (hat K) Γ₀ where v := extensionValuation is_topological_valuation s := by suffices HasBasis (𝓝 (0 : hat K)) (fun _ => True) fun γ : Γ₀ˣ => { x | extensionValuation x < γ } by rw [this.mem_iff] exact exists_congr fun γ => by simp simp_rw [← closure_coe_completion_v_lt] exact (hasBasis_nhds_zero K Γ₀).hasBasis_of_isDenseInducing Completion.isDenseInducing_coe @[simp]
instance
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
valuedCompletion
null
valuedCompletion_apply (x : K) : Valued.v (x : hat K) = v x := extension_extends x
theorem
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
valuedCompletion_apply
null
valuedCompletion_surjective_iff : Function.Surjective (v : hat K → Γ₀) ↔ Function.Surjective (v : K → Γ₀) := by constructor <;> intro h γ <;> obtain ⟨a, ha⟩ := h γ · induction a using Completion.induction_on · by_cases H : ∃ x : K, (v : K → Γ₀) x = γ · simp [H] · simp only [H, imp_false] rcases eq_or_ne γ 0 with rfl | hγ · simp at H · convert isClosed_univ.sdiff (isOpen_sphere (hat K) hγ) using 1 ext x simp · exact ⟨_, by simpa using ha⟩ · exact ⟨a, by simp [ha]⟩
lemma
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
valuedCompletion_surjective_iff
null
@[reducible] integer : Subring K := (vK.v).integer @[inherit_doc] scoped notation "𝒪[" K "]" => Valued.integer K
def
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
integer
A `Valued` version of `Valuation.integer`, enabling the notation `𝒪[K]` for the valuation integers of a valued field `K`.
@[reducible] maximalIdeal : Ideal 𝒪[K] := IsLocalRing.maximalIdeal 𝒪[K] @[inherit_doc] scoped notation "𝓂[" K "]" => maximalIdeal K
def
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
maximalIdeal
An abbreviation for `IsLocalRing.maximalIdeal 𝒪[K]` of a valued field `K`, enabling the notation `𝓂[K]` for the maximal ideal in `𝒪[K]` of a valued field `K`.
@[reducible] ResidueField := IsLocalRing.ResidueField (𝒪[K]) @[inherit_doc] scoped notation "𝓀[" K "]" => ResidueField K
def
Topology
[ "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.Topology.Algebra.WithZeroTopology", "Mathlib.Topology.Algebra.UniformField" ]
Mathlib/Topology/Algebra/Valued/ValuedField.lean
ResidueField
An abbreviation for `IsLocalRing.ResidueField 𝒪[K]` of a `Valued` instance, enabling the notation `𝓀[K]` for the residue field of a valued field `K`.
@[nolint unusedArguments] WithVal [Ring R] : Valuation R Γ₀ → Type _ := fun _ => R
def
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.NumberTheory.NumberField.Basic" ]
Mathlib/Topology/Algebra/Valued/WithVal.lean
WithVal
Type synonym for a ring equipped with the topology coming from a valuation.
equiv : WithVal v ≃+* R := RingEquiv.refl _
def
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.NumberTheory.NumberField.Basic" ]
Mathlib/Topology/Algebra/Valued/WithVal.lean
equiv
Canonical ring equivalence between `WithVal v` and `R`.
apply_equiv (r : WithVal v) : v (equiv v r) = Valued.v r := rfl @[simp] theorem apply_symm_equiv (r : R) : Valued.v ((equiv v).symm r) = v r := rfl
theorem
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.NumberTheory.NumberField.Basic" ]
Mathlib/Topology/Algebra/Valued/WithVal.lean
apply_equiv
null
Completion := UniformSpace.Completion (WithVal v)
abbrev
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.NumberTheory.NumberField.Basic" ]
Mathlib/Topology/Algebra/Valued/WithVal.lean
Completion
The completion of a field with respect to a valuation.
@[simps!] withValEquiv (R : Type*) [CommRing R] [Algebra R K] [IsIntegralClosure R ℤ K] : 𝓞 (WithVal v) ≃+* R := NumberField.RingOfIntegers.equiv R
def
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.NumberTheory.NumberField.Basic" ]
Mathlib/Topology/Algebra/Valued/WithVal.lean
withValEquiv
The ring equivalence between `𝓞 (WithVal v)` and an integral closure of `ℤ` in `K`.
@[simps! apply] Rat.ringOfIntegersWithValEquiv (v : Valuation ℚ Γ₀) : 𝓞 (WithVal v) ≃+* ℤ := NumberField.RingOfIntegers.withValEquiv v ℤ
def
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.Algebra.Valued.ValuationTopology", "Mathlib.NumberTheory.NumberField.Basic" ]
Mathlib/Topology/Algebra/Valued/WithVal.lean
Rat.ringOfIntegersWithValEquiv
The ring of integers of `WithVal v`, when `v` is a valuation on `ℚ`, is equivalent to `ℤ`.
tendsto_zero_pow_of_v_lt_one [MulArchimedean Γ₀] [Valued R Γ₀] {x : R} (hx : v x < 1) : Tendsto (fun n : ℕ ↦ x ^ n) atTop (𝓝 0) := by simp only [(hasBasis_nhds_zero _ _).tendsto_right_iff, mem_setOf_eq, map_pow, eventually_atTop, forall_const] intro y obtain ⟨n, hn⟩ := exists_pow_lt₀ hx y refine ⟨n, fun m hm ↦ ?_⟩ refine hn.trans_le' ?_ exact pow_le_pow_right_of_le_one' hx.le hm
lemma
Topology
[ "Mathlib.GroupTheory.ArchimedeanDensely", "Mathlib.Topology.Algebra.Valued.ValuationTopology" ]
Mathlib/Topology/Algebra/Valued/WithZeroMulInt.lean
tendsto_zero_pow_of_v_lt_one
null
tendsto_zero_pow_of_le_exp_neg_one [Valued R ℤᵐ⁰] {x : R} (hx : v x ≤ exp (-1)) : Tendsto (fun n : ℕ ↦ x ^ n) atTop (𝓝 0) := by refine tendsto_zero_pow_of_v_lt_one (hx.trans_lt ?_) rw [← exp_zero, exp_lt_exp] simp
lemma
Topology
[ "Mathlib.GroupTheory.ArchimedeanDensely", "Mathlib.Topology.Algebra.Valued.ValuationTopology" ]
Mathlib/Topology/Algebra/Valued/WithZeroMulInt.lean
tendsto_zero_pow_of_le_exp_neg_one
In a `ℤᵐ⁰`-valued ring, powers of `x` tend to zero if `v x ≤ exp (-1)`.
exists_pow_lt_of_le_exp_neg_one [Valued R ℤᵐ⁰] {x : R} (hx : v x ≤ exp (-1)) (γ : ℤᵐ⁰ˣ) : ∃ n, v x ^ n < γ := by refine exists_pow_lt₀ (hx.trans_lt ?_) _ rw [← exp_zero, exp_lt_exp] simp
lemma
Topology
[ "Mathlib.GroupTheory.ArchimedeanDensely", "Mathlib.Topology.Algebra.Valued.ValuationTopology" ]
Mathlib/Topology/Algebra/Valued/WithZeroMulInt.lean
exists_pow_lt_of_le_exp_neg_one
null
@[pp_with_univ] ProfiniteGrp where /-- The underlying profinite topological space. -/ toProfinite : Profinite /-- The group structure. -/ [group : Group toProfinite] /-- The above data together form a topological group. -/ [topologicalGroup : IsTopologicalGroup toProfinite]
structure
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteGrp
The category of profinite groups. A term of this type consists of a profinite set with a topological group structure.
@[pp_with_univ] ProfiniteAddGrp where /-- The underlying profinite topological space. -/ toProfinite : Profinite /-- The additive group structure. -/ [addGroup : AddGroup toProfinite] /-- The above data together form a topological additive group. -/ [topologicalAddGroup : IsTopologicalAddGroup toProfinite] attribute [to_additive] ProfiniteGrp @[to_additive]
structure
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteAddGrp
The category of profinite additive groups. A term of this type consists of a profinite set with a topological additive group structure.
@[to_additive /-- Construct a term of `ProfiniteAddGrp` from a type endowed with the structure of a compact and totally disconnected topological additive group. (The condition of being Hausdorff can be omitted here because totally disconnected implies that {0} is a closed set, thus implying Hausdorff in a topological additive group.) -/] ProfiniteGrp.of (G : Type u) [Group G] [TopologicalSpace G] [IsTopologicalGroup G] [CompactSpace G] [TotallyDisconnectedSpace G] : ProfiniteGrp.{u} where toProfinite := .of G group := ‹_› topologicalGroup := ‹_› @[to_additive]
abbrev
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteGrp.of
Construct a term of `ProfiniteGrp` from a type endowed with the structure of a compact and totally disconnected topological group. (The condition of being Hausdorff can be omitted here because totally disconnected implies that {1} is a closed set, thus implying Hausdorff in a topological group.)
ProfiniteGrp.coe_of (G : Type u) [Group G] [TopologicalSpace G] [IsTopologicalGroup G] [CompactSpace G] [TotallyDisconnectedSpace G] : (ProfiniteGrp.of G : Type u) = G := rfl
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteGrp.coe_of
null
@[ext] ProfiniteAddGrp.Hom (A B : ProfiniteAddGrp.{u}) where private mk :: /-- The underlying `ContinuousAddMonoidHom`. -/ hom' : A →ₜ+ B
structure
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteAddGrp.Hom
The type of morphisms in `ProfiniteAddGrp`.
@[to_additive existing (attr := ext)] ProfiniteGrp.Hom (A B : ProfiniteGrp.{u}) where private mk :: /-- The underlying `ContinuousMonoidHom`. -/ hom' : A →ₜ* B @[to_additive]
structure
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteGrp.Hom
The type of morphisms in `ProfiniteGrp`.
@[to_additive /-- The underlying `ContinuousAddMonoidHom`. -/] ProfiniteGrp.Hom.hom {M N : ProfiniteGrp.{u}} (f : ProfiniteGrp.Hom M N) : M →ₜ* N := ConcreteCategory.hom (C := ProfiniteGrp) f
abbrev
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteGrp.Hom.hom
The underlying `ContinuousMonoidHom`.
@[to_additive /-- Typecheck a `ContinuousAddMonoidHom` as a morphism in `ProfiniteAddGrp`. -/] ProfiniteGrp.ofHom {X Y : Type u} [Group X] [TopologicalSpace X] [IsTopologicalGroup X] [CompactSpace X] [TotallyDisconnectedSpace X] [Group Y] [TopologicalSpace Y] [IsTopologicalGroup Y] [CompactSpace Y] [TotallyDisconnectedSpace Y] (f : X →ₜ* Y) : ProfiniteGrp.of X ⟶ ProfiniteGrp.of Y := ConcreteCategory.ofHom f
abbrev
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ProfiniteGrp.ofHom
Typecheck a `ContinuousMonoidHom` as a morphism in `ProfiniteGrp`.
@[to_additive (attr := simp)] hom_id {A : ProfiniteGrp.{u}} : (𝟙 A : A ⟶ A).hom = ContinuousMonoidHom.id A := rfl /- Provided for rewriting. -/ @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
hom_id
null
id_apply (A : ProfiniteGrp.{u}) (a : A) : (𝟙 A : A ⟶ A) a = a := by simp @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
id_apply
null
hom_comp {A B C : ProfiniteGrp.{u}} (f : A ⟶ B) (g : B ⟶ C) : (f ≫ g).hom = g.hom.comp f.hom := rfl /- Provided for rewriting. -/ @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
hom_comp
null
comp_apply {A B C : ProfiniteGrp.{u}} (f : A ⟶ B) (g : B ⟶ C) (a : A) : (f ≫ g) a = g (f a) := by simp only [hom_comp, ContinuousMonoidHom.comp_toFun] @[to_additive (attr := ext)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
comp_apply
null
hom_ext {A B : ProfiniteGrp.{u}} {f g : A ⟶ B} (hf : f.hom = g.hom) : f = g := Hom.ext hf variable {X Y Z : Type u} [Group X] [TopologicalSpace X] [IsTopologicalGroup X] [CompactSpace X] [TotallyDisconnectedSpace X] [Group Y] [TopologicalSpace Y] [IsTopologicalGroup Y] [CompactSpace Y] [TotallyDisconnectedSpace Y] [Group Z] [TopologicalSpace Z] [IsTopologicalGroup Z] [CompactSpace Z] [TotallyDisconnectedSpace Z] @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
hom_ext
null
hom_ofHom (f : X →ₜ* Y) : (ofHom f).hom = f := rfl @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
hom_ofHom
null
ofHom_hom {A B : ProfiniteGrp.{u}} (f : A ⟶ B) : ofHom (Hom.hom f) = f := rfl @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofHom_hom
null
ofHom_id : ofHom (ContinuousMonoidHom.id X) = 𝟙 (of X) := rfl @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofHom_id
null
ofHom_comp (f : X →ₜ* Y) (g : Y →ₜ* Z) : ofHom (g.comp f) = ofHom f ≫ ofHom g := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofHom_comp
null
ofHom_apply (f : X →ₜ* Y) (x : X) : ofHom f x = f x := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofHom_apply
null
inv_hom_apply {A B : ProfiniteGrp.{u}} (e : A ≅ B) (x : A) : e.inv (e.hom x) = x := by simp @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
inv_hom_apply
null
hom_inv_apply {A B : ProfiniteGrp.{u}} (e : A ≅ B) (x : B) : e.hom (e.inv x) = x := by simp @[to_additive (attr := simp)]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
hom_inv_apply
null
coe_id (X : ProfiniteGrp) : (𝟙 X : X → X) = id := rfl @[to_additive (attr := simp)]
theorem
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
coe_id
null
coe_comp {X Y Z : ProfiniteGrp} (f : X ⟶ Y) (g : Y ⟶ Z) : (f ≫ g : X → Z) = g ∘ f := rfl
theorem
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
coe_comp
null
@[to_additive /-- Construct a term of `ProfiniteAddGrp` from a type endowed with the structure of a profinite topological additive group. -/] ofProfinite (G : Profinite) [Group G] [IsTopologicalGroup G] : ProfiniteGrp := of G
abbrev
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofProfinite
Construct a term of `ProfiniteGrp` from a type endowed with the structure of a profinite topological group.
@[to_additive /-- The pi-type of profinite additive groups is a profinite additive group. -/] pi {α : Type u} (β : α → ProfiniteGrp) : ProfiniteGrp := let pitype := Profinite.pi fun (a : α) => (β a).toProfinite letI (a : α): Group (β a).toProfinite := (β a).group letI : Group pitype := Pi.group letI : IsTopologicalGroup pitype := Pi.topologicalGroup ofProfinite pitype
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
pi
The pi-type of profinite groups is a profinite group.
@[to_additive /-- A `FiniteAddGrp` when given the discrete topology can be considered as a profinite additive group. -/] ofFiniteGrp (G : FiniteGrp) : ProfiniteGrp := letI : TopologicalSpace G := ⊥ letI : DiscreteTopology G := ⟨rfl⟩ letI : IsTopologicalGroup G := {} of G @[to_additive]
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofFiniteGrp
A `FiniteGrp` when given the discrete topology can be considered as a profinite group.
@[to_additive /-- A closed additive subgroup of a profinite additive group is profinite. -/] ofClosedSubgroup {G : ProfiniteGrp} (H : ClosedSubgroup G) : ProfiniteGrp := letI : CompactSpace H := inferInstance of H.1
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofClosedSubgroup
A closed subgroup of a profinite group is profinite.
@[to_additive /-- A topological additive group that has a `ContinuousAddEquiv` to a profinite additive group is profinite. -/] ofContinuousMulEquiv {G : ProfiniteGrp.{u}} {H : Type v} [TopologicalSpace H] [Group H] [IsTopologicalGroup H] (e : G ≃ₜ* H) : ProfiniteGrp.{v} := let _ : CompactSpace H := Homeomorph.compactSpace e.toHomeomorph let _ : TotallyDisconnectedSpace H := Homeomorph.totallyDisconnectedSpace e.toHomeomorph .of H
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ofContinuousMulEquiv
A topological group that has a `ContinuousMulEquiv` to a profinite group is profinite.
ContinuousMulEquiv.toProfiniteGrpIso {X Y : ProfiniteGrp} (e : X ≃ₜ* Y) : X ≅ Y where hom := ofHom e inv := ofHom e.symm
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
ContinuousMulEquiv.toProfiniteGrpIso
Build an isomorphism in the category `ProfiniteGrp` from a `ContinuousMulEquiv` between `ProfiniteGrp`s.
@[to_additive /-- Auxiliary construction to obtain the additive group structure on the limit of profinite additive groups. -/] limitConePtAux : Subgroup (Π j : J, F.obj j) where carrier := {x | ∀ ⦃i j : J⦄ (π : i ⟶ j), F.map π (x i) = x j} mul_mem' hx hy _ _ π := by simp only [Pi.mul_apply, map_mul, hx π, hy π] one_mem' := by simp only [Set.mem_setOf_eq, Pi.one_apply, map_one, implies_true] inv_mem' h _ _ π := by simp only [Pi.inv_apply, map_inv, h π]
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limitConePtAux
The functor mapping a profinite group to its underlying profinite space. -/ @[to_additive] instance : HasForget₂ ProfiniteGrp Profinite where forget₂ := { obj G := G.toProfinite map f := CompHausLike.ofHom _ ⟨f, by continuity⟩} @[to_additive] instance : (forget₂ ProfiniteGrp Profinite).Faithful := { map_injective := fun {_ _} _ _ h => ConcreteCategory.hom_ext _ _ (CategoryTheory.congr_fun h) } instance : (forget₂ ProfiniteGrp Profinite).ReflectsIsomorphisms where reflects {X Y} f _ := by let i := asIso ((forget₂ ProfiniteGrp Profinite).map f) let e : X ≃ₜ* Y := { CompHausLike.homeoOfIso i with map_mul' := map_mul f.hom } exact (ContinuousMulEquiv.toProfiniteGrpIso e).isIso_hom instance : (forget ProfiniteGrp.{u}).ReflectsIsomorphisms := CategoryTheory.reflectsIsomorphisms_comp (forget₂ ProfiniteGrp Profinite) (forget Profinite) end ProfiniteGrp /-! # Limits in the category of profinite groups In this section, we construct limits in the category of profinite groups. * `ProfiniteGrp.limitCone` : The explicit limit cone in `ProfiniteGrp`. * `ProfiniteGrp.limitConeIsLimit`: `ProfiniteGrp.limitCone` is a limit cone. ## TODO * Figure out the reason that is causing `to_additive` to fail in most part of this section and generate the additive version correctly. -/ section Limits namespace ProfiniteGrp variable {J : Type v} [SmallCategory J] (F : J ⥤ ProfiniteGrp.{max v u}) /-- Auxiliary construction to obtain the group structure on the limit of profinite groups.
limitCone : Limits.Cone F where pt := ofProfinite (Profinite.limitCone (F ⋙ (forget₂ ProfiniteGrp Profinite))).pt π := { app := fun j => ⟨{ toFun := fun x => x.1 j map_one' := rfl map_mul' := fun x y => rfl continuous_toFun := by exact (continuous_apply j).comp (continuous_iff_le_induced.mpr fun U a => a) }⟩ naturality := fun i j f => by simp only [Functor.const_obj_obj, Functor.comp_obj, Functor.const_obj_map, Category.id_comp, Functor.comp_map] congr exact funext fun x => (x.2 f).symm }
abbrev
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limitCone
The explicit limit cone in `ProfiniteGrp`.
limitConeIsLimit : Limits.IsLimit (limitCone F) where lift cone := ofHom { ((Profinite.limitConeIsLimit (F ⋙ (forget₂ ProfiniteGrp Profinite))).lift ((forget₂ ProfiniteGrp Profinite).mapCone cone)).hom with map_one' := Subtype.ext (funext fun j ↦ map_one (cone.π.app j).hom) map_mul' := fun _ _ ↦ Subtype.ext (funext fun j ↦ map_mul (cone.π.app j).hom _ _) } uniq cone m h := by apply (forget₂ ProfiniteGrp Profinite).map_injective simpa using (Profinite.limitConeIsLimit (F ⋙ (forget₂ ProfiniteGrp Profinite))).uniq ((forget₂ ProfiniteGrp Profinite).mapCone cone) ((forget₂ ProfiniteGrp Profinite).map m) (fun j ↦ congrArg (forget₂ ProfiniteGrp Profinite).map (h j))
def
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limitConeIsLimit
`ProfiniteGrp.limitCone` is a limit cone.
limit : ProfiniteGrp := ProfiniteGrp.of (ProfiniteGrp.limitConePtAux F) @[ext]
abbrev
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limit
The abbreviation for the limit of `ProfiniteGrp`s.
limit_ext (x y : limit F) (hxy : ∀ j, x.val j = y.val j) : x = y := Subtype.ext (funext hxy) @[simp]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limit_ext
null
limit_one_val (j : J) : (1 : limit F).val j = 1 := rfl @[simp]
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limit_one_val
null
limit_mul_val (x y : limit F) (j : J) : (x * y).val j = x.val j * y.val j := rfl
lemma
Topology
[ "Mathlib.Algebra.Category.Grp.FiniteGrp", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Category.Profinite.Basic", "Mathlib.Topology.Separation.Connected" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean
limit_mul_val
null
toFiniteQuotientFunctor (P : ProfiniteGrp) : OpenNormalSubgroup P ⥤ FiniteGrp where obj := fun H => FiniteGrp.of (P ⧸ H.toSubgroup) map := fun fHK => FiniteGrp.ofHom (QuotientGroup.map _ _ (.id _) (leOfHom fHK)) map_id _ := ConcreteCategory.ext <| QuotientGroup.map_id _ map_comp f g := ConcreteCategory.ext <| (QuotientGroup.map_comp_map _ _ _ (.id _) (.id _) (leOfHom f) (leOfHom g)).symm
def
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
toFiniteQuotientFunctor
The functor from `OpenNormalSubgroup P` to `FiniteGrp` sending `U` to `P ⧸ U`, where `P : ProfiniteGrp`.
toLimit_fun (P : ProfiniteGrp.{u}) : P →* limit (toFiniteQuotientFunctor P ⋙ forget₂ FiniteGrp ProfiniteGrp) where toFun p := ⟨fun _ => QuotientGroup.mk p, fun _ ↦ fun _ _ ↦ rfl⟩ map_one' := Subtype.val_inj.mp rfl map_mul' _ _ := Subtype.val_inj.mp rfl
def
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
toLimit_fun
The `MonoidHom` from a profinite group `P` to the projective limit of its quotients by open normal subgroups ordered by inclusion
toLimit_fun_continuous (P : ProfiniteGrp.{u}) : Continuous (toLimit_fun P) := by apply continuous_induced_rng.mpr (continuous_pi _) intro H dsimp only [Functor.comp_obj, CompHausLike.coe_of, Functor.comp_map, CompHausLike.toCompHausLike_map, CompHausLike.compHausLikeToTop_map, Set.mem_setOf_eq, toLimit_fun, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply] apply Continuous.mk intro s _ rw [← (Set.biUnion_preimage_singleton QuotientGroup.mk s)] refine isOpen_iUnion (fun i ↦ isOpen_iUnion (fun _ ↦ ?_)) convert IsOpen.leftCoset H.toOpenSubgroup.isOpen' (Quotient.out i) ext x simp only [Set.mem_preimage, Set.mem_singleton_iff] nth_rw 1 [← QuotientGroup.out_eq' i, eq_comm, QuotientGroup.eq] exact Iff.symm (Set.mem_smul_set_iff_inv_smul_mem)
lemma
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
toLimit_fun_continuous
null
toLimit (P : ProfiniteGrp.{u}) : P ⟶ limit (toFiniteQuotientFunctor P ⋙ forget₂ FiniteGrp ProfiniteGrp) := ofHom { toLimit_fun P with continuous_toFun := toLimit_fun_continuous P }
def
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
toLimit
The morphism in the category of `ProfiniteGrp` from a profinite group `P` to the projective limit of its quotients by open normal subgroups ordered by inclusion
denseRange_toLimit (P : ProfiniteGrp.{u}) : DenseRange (toLimit P) := by apply dense_iff_inter_open.mpr rintro U ⟨s, hsO, hsv⟩ ⟨⟨spc, hspc⟩, uDefaultSpec⟩ simp_rw [← hsv, Set.mem_preimage] at uDefaultSpec rcases (isOpen_pi_iff.mp hsO) _ uDefaultSpec with ⟨J, fJ, hJ1, hJ2⟩ let M := iInf (fun (j : J) => j.1.1.1) have hM : M.Normal := Subgroup.normal_iInf_normal fun j => j.1.isNormal' have hMOpen : IsOpen (M : Set P) := by rw [Subgroup.coe_iInf] exact isOpen_iInter_of_finite fun i => i.1.1.isOpen' let m : OpenNormalSubgroup P := { M with isOpen' := hMOpen } rcases QuotientGroup.mk'_surjective M (spc m) with ⟨origin, horigin⟩ use (toLimit P) origin refine ⟨?_, origin, rfl⟩ rw [← hsv] apply hJ2 intro a a_in_J let M_to_Na : m ⟶ a := (iInf_le (fun (j : J) => j.1.1.1) ⟨a, a_in_J⟩).hom rw [← (P.toLimit origin).property M_to_Na] change (P.toFiniteQuotientFunctor.map M_to_Na) (QuotientGroup.mk' M origin) ∈ _ rw [horigin] exact Set.mem_of_eq_of_mem (hspc M_to_Na) (hJ1 a a_in_J).2
theorem
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
denseRange_toLimit
An auxiliary result, superseded by `toLimit_surjective`
toLimit_surjective (P : ProfiniteGrp.{u}) : Function.Surjective (toLimit P) := by have : IsClosed (Set.range P.toLimit) := P.toLimit.hom.continuous_toFun.isClosedMap.isClosed_range rw [← Set.range_eq_univ, ← closure_eq_iff_isClosed.mpr this, Dense.closure_eq (denseRange_toLimit P)]
theorem
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
toLimit_surjective
null
toLimit_injective (P : ProfiniteGrp.{u}) : Function.Injective (toLimit P) := by change Function.Injective (toLimit P).hom.toMonoidHom rw [← MonoidHom.ker_eq_bot_iff, Subgroup.eq_bot_iff_forall] intro x h by_contra xne1 rcases exist_openNormalSubgroup_sub_open_nhds_of_one (isOpen_compl_singleton) (Set.mem_compl_singleton_iff.mpr fun a => xne1 a.symm) with ⟨H, hH⟩ exact hH ((QuotientGroup.eq_one_iff x).mp (congrFun (Subtype.val_inj.mpr h) H)) rfl
theorem
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
toLimit_injective
null
noncomputable continuousMulEquivLimittoFiniteQuotientFunctor (P : ProfiniteGrp.{u}) : P ≃ₜ* (limit (toFiniteQuotientFunctor P ⋙ forget₂ FiniteGrp ProfiniteGrp)) := { (Continuous.homeoOfEquivCompactToT2 (f := Equiv.ofBijective _ ⟨toLimit_injective P, toLimit_surjective P⟩) P.toLimit.hom.continuous_toFun) with map_mul' := (toLimit P).hom.map_mul' }
def
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
continuousMulEquivLimittoFiniteQuotientFunctor
The topological group isomorphism between a profinite group and the projective limit of its quotients by open normal subgroups
isIso_toLimit (P : ProfiniteGrp.{u}) : IsIso (toLimit P) := by rw [CategoryTheory.ConcreteCategory.isIso_iff_bijective] exact ⟨toLimit_injective P, toLimit_surjective P⟩
instance
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
isIso_toLimit
null
noncomputable isoLimittoFiniteQuotientFunctor (P : ProfiniteGrp.{u}) : P ≅ (limit (toFiniteQuotientFunctor P ⋙ forget₂ FiniteGrp ProfiniteGrp)) := ContinuousMulEquiv.toProfiniteGrpIso (continuousMulEquivLimittoFiniteQuotientFunctor P)
def
Topology
[ "Mathlib.CategoryTheory.ConcreteCategory.EpiMono", "Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic", "Mathlib.Topology.Algebra.ClopenNhdofOne" ]
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
isoLimittoFiniteQuotientFunctor
The isomorphism in the category of profinite group between a profinite group and the projective limit of its quotients by open normal subgroups
ContinuousAlternatingMap (R M N ι : Type*) [Semiring R] [AddCommMonoid M] [Module R M] [TopologicalSpace M] [AddCommMonoid N] [Module R N] [TopologicalSpace N] extends ContinuousMultilinearMap R (fun _ : ι => M) N, M [⋀^ι]→ₗ[R] N where
structure
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
ContinuousAlternatingMap
A continuous alternating map from `ι → M` to `N`, denoted `M [⋀^ι]→L[R] N`, is a continuous map that is - multilinear : `f (update m i (c • x)) = c • f (update m i x)` and `f (update m i (x + y)) = f (update m i x) + f (update m i y)`; - alternating : `f v = 0` whenever `v` has two equal coordinates.
@[simps!] codRestrict (f : M [⋀^ι]→L[R] N) (p : Submodule R N) (h : ∀ v, f v ∈ p) : M [⋀^ι]→L[R] p := { f.toAlternatingMap.codRestrict p h with toContinuousMultilinearMap := f.1.codRestrict p h }
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
codRestrict
Projection to `ContinuousMultilinearMap`s. -/ add_decl_doc ContinuousAlternatingMap.toContinuousMultilinearMap /-- Projection to `AlternatingMap`s. -/ add_decl_doc ContinuousAlternatingMap.toAlternatingMap @[inherit_doc] notation M " [⋀^" ι "]→L[" R "] " N:100 => ContinuousAlternatingMap R M N ι namespace ContinuousAlternatingMap section Semiring variable {R M M' N N' ι : Type*} [Semiring R] [AddCommMonoid M] [Module R M] [TopologicalSpace M] [AddCommMonoid M'] [Module R M'] [TopologicalSpace M'] [AddCommMonoid N] [Module R N] [TopologicalSpace N] [AddCommMonoid N'] [Module R N'] [TopologicalSpace N'] {n : ℕ} (f g : M [⋀^ι]→L[R] N) theorem toContinuousMultilinearMap_injective : Injective (ContinuousAlternatingMap.toContinuousMultilinearMap : M [⋀^ι]→L[R] N → ContinuousMultilinearMap R (fun _ : ι => M) N) | ⟨_, _⟩, ⟨_, _⟩, rfl => rfl theorem range_toContinuousMultilinearMap : Set.range (toContinuousMultilinearMap : M [⋀^ι]→L[R] N → ContinuousMultilinearMap R (fun _ : ι => M) N) = {f | ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → f v = 0} := Set.ext fun f => ⟨fun ⟨g, hg⟩ => hg ▸ g.2, fun h => ⟨⟨f, h⟩, rfl⟩⟩ instance funLike : FunLike (M [⋀^ι]→L[R] N) (ι → M) N where coe f := f.toFun coe_injective' _ _ h := toContinuousMultilinearMap_injective <| DFunLike.ext' h instance continuousMapClass : ContinuousMapClass (M [⋀^ι]→L[R] N) (ι → M) N where map_continuous f := f.cont initialize_simps_projections ContinuousAlternatingMap (toFun → apply) @[continuity] theorem coe_continuous : Continuous f := f.cont @[simp] theorem coe_toContinuousMultilinearMap : ⇑f.toContinuousMultilinearMap = f := rfl @[simp] theorem coe_mk (f : ContinuousMultilinearMap R (fun _ : ι => M) N) (h) : ⇑(mk f h) = f := rfl -- not a `simp` lemma because this projection is a reducible call to `mk`, so `simp` can prove -- this lemma theorem coe_toAlternatingMap : ⇑f.toAlternatingMap = f := rfl @[ext] theorem ext {f g : M [⋀^ι]→L[R] N} (H : ∀ x, f x = g x) : f = g := DFunLike.ext _ _ H theorem toAlternatingMap_injective : Injective (toAlternatingMap : (M [⋀^ι]→L[R] N) → (M [⋀^ι]→ₗ[R] N)) := fun f g h => DFunLike.ext' <| by convert DFunLike.ext'_iff.1 h @[simp] theorem range_toAlternatingMap : Set.range (toAlternatingMap : M [⋀^ι]→L[R] N → (M [⋀^ι]→ₗ[R] N)) = {f : M [⋀^ι]→ₗ[R] N | Continuous f} := Set.ext fun f => ⟨fun ⟨g, hg⟩ => hg ▸ g.cont, fun h => ⟨{ f with cont := h }, DFunLike.ext' rfl⟩⟩ @[simp] theorem map_update_add [DecidableEq ι] (m : ι → M) (i : ι) (x y : M) : f (update m i (x + y)) = f (update m i x) + f (update m i y) := f.map_update_add' m i x y @[simp] theorem map_update_smul [DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M) : f (update m i (c • x)) = c • f (update m i x) := f.map_update_smul' m i c x theorem map_coord_zero {m : ι → M} (i : ι) (h : m i = 0) : f m = 0 := f.toMultilinearMap.map_coord_zero i h @[simp] theorem map_update_zero [DecidableEq ι] (m : ι → M) (i : ι) : f (update m i 0) = 0 := f.toMultilinearMap.map_update_zero m i @[simp] theorem map_zero [Nonempty ι] : f 0 = 0 := f.toMultilinearMap.map_zero theorem map_eq_zero_of_eq (v : ι → M) {i j : ι} (h : v i = v j) (hij : i ≠ j) : f v = 0 := f.map_eq_zero_of_eq' v i j h hij theorem map_eq_zero_of_not_injective (v : ι → M) (hv : ¬Function.Injective v) : f v = 0 := f.toAlternatingMap.map_eq_zero_of_not_injective v hv /-- Restrict the codomain of a continuous alternating map to a submodule.
@[simp] coe_zero : ⇑(0 : M [⋀^ι]→L[R] N) = 0 := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_zero
null
toContinuousMultilinearMap_zero : (0 : M [⋀^ι]→L[R] N).toContinuousMultilinearMap = 0 := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toContinuousMultilinearMap_zero
null
toAlternatingMap_zero : (0 : M [⋀^ι]→L[R] N).toAlternatingMap = 0 := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toAlternatingMap_zero
null
@[simp] coe_smul (f : M [⋀^ι]→L[A] N) (c : R') : ⇑(c • f) = c • ⇑f := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_smul
null
smul_apply (f : M [⋀^ι]→L[A] N) (c : R') (v : ι → M) : (c • f) v = c • f v := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
smul_apply
null
toContinuousMultilinearMap_smul (c : R') (f : M [⋀^ι]→L[A] N) : (c • f).toContinuousMultilinearMap = c • f.toContinuousMultilinearMap := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toContinuousMultilinearMap_smul
null
toAlternatingMap_smul (c : R') (f : M [⋀^ι]→L[A] N) : (c • f).toAlternatingMap = c • f.toAlternatingMap := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toAlternatingMap_smul
null
@[simp] coe_add : ⇑(f + g) = ⇑f + ⇑g := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_add
null
add_apply (v : ι → M) : (f + g) v = f v + g v := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
add_apply
null
toContinuousMultilinearMap_add (f g : M [⋀^ι]→L[R] N) : (f + g).1 = f.1 + g.1 := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toContinuousMultilinearMap_add
null
toAlternatingMap_add (f g : M [⋀^ι]→L[R] N) : (f + g).toAlternatingMap = f.toAlternatingMap + g.toAlternatingMap := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toAlternatingMap_add
null
addCommMonoid : AddCommMonoid (M [⋀^ι]→L[R] N) := toContinuousMultilinearMap_injective.addCommMonoid _ rfl (fun _ _ => rfl) fun _ _ => rfl
instance
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
addCommMonoid
null
applyAddHom (v : ι → M) : M [⋀^ι]→L[R] N →+ N := ⟨⟨fun f => f v, rfl⟩, fun _ _ => rfl⟩ @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
applyAddHom
Evaluation of a `ContinuousAlternatingMap` at a vector as an `AddMonoidHom`.
sum_apply {α : Type*} (f : α → M [⋀^ι]→L[R] N) (m : ι → M) {s : Finset α} : (∑ a ∈ s, f a) m = ∑ a ∈ s, f a m := map_sum (applyAddHom m) f s
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
sum_apply
null
@[simps] toMultilinearAddHom : M [⋀^ι]→L[R] N →+ ContinuousMultilinearMap R (fun _ : ι => M) N := ⟨⟨fun f => f.1, rfl⟩, fun _ _ => rfl⟩
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toMultilinearAddHom
Projection to `ContinuousMultilinearMap`s as a bundled `AddMonoidHom`.
@[simps! apply] toContinuousLinearMap [DecidableEq ι] (m : ι → M) (i : ι) : M →L[R] N := f.1.toContinuousLinearMap m i
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
toContinuousLinearMap
If `f` is a continuous alternating map, then `f.toContinuousLinearMap m i` is the continuous linear map obtained by fixing all coordinates but `i` equal to those of `m`, and varying the `i`-th coordinate.
@[simps!] prod (f : M [⋀^ι]→L[R] N) (g : M [⋀^ι]→L[R] N') : M [⋀^ι]→L[R] (N × N') := ⟨f.1.prod g.1, (f.toAlternatingMap.prod g.toAlternatingMap).map_eq_zero_of_eq⟩
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
prod
The Cartesian product of two continuous alternating maps, as a continuous alternating map.
pi {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] (f : ∀ i, M [⋀^ι]→L[R] M' i) : M [⋀^ι]→L[R] ∀ i, M' i := ⟨ContinuousMultilinearMap.pi fun i => (f i).1, (AlternatingMap.pi fun i => (f i).toAlternatingMap).map_eq_zero_of_eq⟩ @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
pi
Combine a family of continuous alternating maps with the same domain and codomains `M' i` into a continuous alternating map taking values in the space of functions `Π i, M' i`.
coe_pi {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] (f : ∀ i, M [⋀^ι]→L[R] M' i) : ⇑(pi f) = fun m j => f j m := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
coe_pi
null
pi_apply {ι' : Type*} {M' : ι' → Type*} [∀ i, AddCommMonoid (M' i)] [∀ i, TopologicalSpace (M' i)] [∀ i, Module R (M' i)] (f : ∀ i, M [⋀^ι]→L[R] M' i) (m : ι → M) (j : ι') : pi f m j = f j m := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
pi_apply
null
@[simps! apply_apply symm_apply_apply apply_toContinuousMultilinearMap] ofSubsingleton [Subsingleton ι] (i : ι) : (M →L[R] N) ≃ M [⋀^ι]→L[R] N where toFun f := { AlternatingMap.ofSubsingleton R M N i f with toContinuousMultilinearMap := ContinuousMultilinearMap.ofSubsingleton R M N i f } invFun f := (ContinuousMultilinearMap.ofSubsingleton R M N i).symm f.1 right_inv _ := toContinuousMultilinearMap_injective <| (ContinuousMultilinearMap.ofSubsingleton R M N i).apply_symm_apply _ @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
ofSubsingleton
The natural equivalence between continuous linear maps from `M` to `N` and continuous 1-multilinear alternating maps from `M` to `N`.
ofSubsingleton_toAlternatingMap [Subsingleton ι] (i : ι) (f : M →L[R] N) : (ofSubsingleton R M N i f).toAlternatingMap = AlternatingMap.ofSubsingleton R M N i f := rfl variable (ι) {N}
theorem
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
ofSubsingleton_toAlternatingMap
null
@[simps! toContinuousMultilinearMap apply] constOfIsEmpty [IsEmpty ι] (m : N) : M [⋀^ι]→L[R] N := { AlternatingMap.constOfIsEmpty R M ι m with toContinuousMultilinearMap := ContinuousMultilinearMap.constOfIsEmpty R (fun _ => M) m } @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.Alternating.Basic", "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.Multilinear.Basic" ]
Mathlib/Topology/Algebra/Module/Alternating/Basic.lean
constOfIsEmpty
The constant map is alternating when `ι` is empty.