fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
toAddGroupTopology (t : RingTopology R) : AddGroupTopology R where toTopologicalSpace := t.toTopologicalSpace toIsTopologicalAddGroup := @IsTopologicalRing.to_topologicalAddGroup _ _ t.toTopologicalSpace t.toIsTopologicalRing
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
toAddGroupTopology
The forgetful functor from ring topologies on `a` to additive group topologies on `a`.
toAddGroupTopology.orderEmbedding : OrderEmbedding (RingTopology R) (AddGroupTopology R) := OrderEmbedding.ofMapLEIff toAddGroupTopology fun _ _ => Iff.rfl
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
toAddGroupTopology.orderEmbedding
The order embedding from ring topologies on `a` to additive group topologies on `a`.
AbsoluteValue.comp {R S T : Type*} [Semiring T] [Semiring R] [Semiring S] [PartialOrder S] (v : AbsoluteValue R S) {f : T →+* R} (hf : Function.Injective f) : AbsoluteValue T S where toMulHom := v.1.comp f nonneg' _ := v.nonneg _ eq_zero' _ := v.eq_zero.trans (map_eq_zero_iff f hf) add_le' _ _ := (congr_arg v (map_add f _ _)).trans_le (v.add_le _ _)
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
AbsoluteValue.comp
Construct an absolute value on a semiring `T` from an absolute value on a semiring `R` and an injective ring homomorphism `f : T →+* R`
finite_of_compactSpace_of_t2Space [IsArtinianRing R] : Finite R := by obtain ⟨n, hn⟩ := IsArtinianRing.isNilpotent_jacobson_bot (R := R) have H : (∏ p : PrimeSpectrum R, p.asIdeal) ^ n = ⊥ := by rw [← le_bot_iff, ← Ideal.zero_eq_bot, ← hn] gcongr rw [Ideal.jacobson_bot, Ring.jacobson_eq_sInf_isMaximal, le_sInf_iff] exact fun I hI ↦ Ideal.prod_le_inf.trans (Finset.inf_le (b := PrimeSpectrum.mk I hI.isPrime) (by simp)) have := Ideal.finite_quotient_prod (R := R) PrimeSpectrum.asIdeal Finset.univ (fun _ _ ↦ IsNoetherian.noetherian _) (fun _ _ ↦ inferInstance) have := Ideal.finite_quotient_pow (IsNoetherian.noetherian (∏ p : PrimeSpectrum R, p.asIdeal)) n rw [H] at this exact .of_equiv _ (RingEquiv.quotientBot R).toEquiv
theorem
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
finite_of_compactSpace_of_t2Space
Compact Hausdorff Artinian (commutative) rings are finite. This is not an instance, as it would apply to every `Finite` goal, causing slowly failing typeclass search in some cases.
Ideal.isOpen_of_isMaximal (I : Ideal R) [I.IsMaximal] : IsOpen (X := R) I := have : I.toAddSubgroup.FiniteIndex := @AddSubgroup.finiteIndex_of_finite_quotient _ _ _ (inferInstanceAs (Finite (R ⧸ I))) I.toAddSubgroup.isOpen_of_isClosed_of_finiteIndex (inferInstanceAs (IsClosed (X := R) I))
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
Ideal.isOpen_of_isMaximal
null
Ideal.isOpen_pow_of_isMaximal (I : Ideal R) [I.IsMaximal] (n : ℕ) : IsOpen (X := R) ↑(I ^ n) := have : (I ^ n).toAddSubgroup.FiniteIndex := @AddSubgroup.finiteIndex_of_finite_quotient _ _ _ (Ideal.finite_quotient_pow (IsNoetherian.noetherian _) _) (I ^ n).toAddSubgroup.isOpen_of_isClosed_of_finiteIndex (Ideal.isCompact_of_fg (IsNoetherian.noetherian _)).isClosed
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
Ideal.isOpen_pow_of_isMaximal
null
isOpen_maximalIdeal_pow (n : ℕ) : IsOpen (X := R) ↑(maximalIdeal R ^ n) := Ideal.isOpen_pow_of_isMaximal _ _ variable (R) in
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
isOpen_maximalIdeal_pow
null
isOpen_maximalIdeal : IsOpen (X := R) ↑(maximalIdeal R) := Ideal.isOpen_of_isMaximal _
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
isOpen_maximalIdeal
null
finite_residueField_of_compactSpace : Finite (ResidueField R) := inferInstanceAs (Finite (R ⧸ _))
instance
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
finite_residueField_of_compactSpace
null
isOpen_iff_finite_quotient {I : Ideal R} : IsOpen (X := R) I ↔ Finite (R ⧸ I) := by refine ⟨AddSubgroup.quotient_finite_of_isOpen I.toAddSubgroup, fun H ↦ ?_⟩ obtain ⟨n, hn⟩ := exists_maximalIdeal_pow_le_of_isArtinianRing_quotient I exact AddSubgroup.isOpen_mono (H₁ := (maximalIdeal R ^ n).toAddSubgroup) (H₂ := I.toAddSubgroup) hn (isOpen_maximalIdeal_pow R n)
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
isOpen_iff_finite_quotient
null
IsDedekindDomain.isOpen_of_ne_bot [IsDedekindDomain R] {I : Ideal R} (hI : I ≠ ⊥) : IsOpen (X := R) I := by rw [← Ideal.finprod_heightOneSpectrum_factorization hI, finprod_eq_finset_prod_of_mulSupport_subset _ (s := (Ideal.finite_mulSupport hI).toFinset) (by simp)] refine @AddSubgroup.isOpen_of_isClosed_of_finiteIndex _ _ _ _ (Submodule.toAddSubgroup _) ?_ (IsNoetherianRing.isClosed_ideal _) refine @AddSubgroup.finiteIndex_of_finite_quotient _ _ _ ?_ refine Ideal.finite_quotient_prod _ _ (fun _ _ ↦ IsNoetherian.noetherian _) fun _ _ ↦ ?_ exact Ideal.finite_quotient_pow (IsNoetherian.noetherian _) _
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
IsDedekindDomain.isOpen_of_ne_bot
null
IsDedekindDomain.isOpen_iff [IsDedekindDomain R] (hR : ¬ IsField R) {I : Ideal R} : IsOpen (X := R) I ↔ I ≠ ⊥ := by refine ⟨?_, IsDedekindDomain.isOpen_of_ne_bot⟩ rintro H rfl have := discreteTopology_iff_isOpen_singleton_zero.mpr H exact hR (Finite.isField_of_domain R)
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
IsDedekindDomain.isOpen_iff
null
IsDiscreteValuationRing.isOpen_iff [IsDomain R] [IsDiscreteValuationRing R] {I : Ideal R} : IsOpen (X := R) I ↔ I ≠ ⊥ := IsDedekindDomain.isOpen_iff (not_isField R)
lemma
Topology
[ "Mathlib.RingTheory.DedekindDomain.Factorization", "Mathlib.RingTheory.DiscreteValuationRing.Basic", "Mathlib.RingTheory.HopkinsLevitzki", "Mathlib.RingTheory.IntegralDomain", "Mathlib.RingTheory.LocalRing.Quotient", "Mathlib.Topology.Algebra.Group.ClosedSubgroup", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Compact", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Ideal" ]
Mathlib/Topology/Algebra/Ring/Compact.lean
IsDiscreteValuationRing.isOpen_iff
null
protected Ideal.closure (I : Ideal R) : Ideal R := { AddSubmonoid.topologicalClosure I.toAddSubmonoid with carrier := closure I smul_mem' := fun c _ hx => map_mem_closure (mulLeft_continuous _) hx fun _ => I.mul_mem_left c } @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
Ideal.closure
The closure of an ideal in a topological ring as an ideal.
Ideal.coe_closure (I : Ideal R) : (I.closure : Set R) = closure I := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
Ideal.coe_closure
null
Ideal.closure_eq_of_isClosed (I : Ideal R) (hI : IsClosed (I : Set R)) : I.closure = I := SetLike.ext' hI.closure_eq
theorem
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
Ideal.closure_eq_of_isClosed
This is not `@[simp]` since otherwise it causes timeouts downstream as `simp` tries and fails to generate an `IsClosed` instance. https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/!4.234852.20heartbeats.20of.20the.20linter
topologicalRingQuotientTopology : TopologicalSpace (R ⧸ N) := instTopologicalSpaceQuotient variable [IsTopologicalRing R]
instance
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
topologicalRingQuotientTopology
null
QuotientRing.isOpenMap_coe : IsOpenMap (mk N) := QuotientAddGroup.isOpenMap_coe
theorem
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
QuotientRing.isOpenMap_coe
null
QuotientRing.isOpenQuotientMap_mk : IsOpenQuotientMap (mk N) := QuotientAddGroup.isOpenQuotientMap_mk
theorem
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
QuotientRing.isOpenQuotientMap_mk
null
QuotientRing.isQuotientMap_coe_coe : IsQuotientMap fun p : R × R => (mk N p.1, mk N p.2) := ((isOpenQuotientMap_mk N).prodMap (isOpenQuotientMap_mk N)).isQuotientMap
theorem
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
QuotientRing.isQuotientMap_coe_coe
null
topologicalRing_quotient : IsTopologicalRing (R ⧸ N) where __ := QuotientAddGroup.instIsTopologicalAddGroup _ continuous_mul := (QuotientRing.isQuotientMap_coe_coe N).continuous_iff.2 <| continuous_quot_mk.comp continuous_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Ring.Basic", "Mathlib.Topology.Algebra.Group.Quotient", "Mathlib.RingTheory.Ideal.Quotient.Defs" ]
Mathlib/Topology/Algebra/Ring/Ideal.lean
topologicalRing_quotient
null
Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 := Metric.uniformContinuous_iff.2 fun _ε ε0 => let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0 ⟨δ, δ0, fun _ _ h => let ⟨h₁, h₂⟩ := max_lt_iff.1 h Hδ h₁ h₂⟩
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
Real.uniformContinuous_add
null
Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) := Metric.uniformContinuous_iff.2 fun ε ε0 => ⟨_, ε0, fun _ _ h => by simpa only [abs_sub_comm, Real.dist_eq, neg_sub_neg] using h⟩
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
Real.uniformContinuous_neg
null
Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) := uniformContinuous_of_continuousAt_zero (DistribMulAction.toAddMonoidHom ℝ x) (continuous_const_smul x).continuousAt
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
Real.uniformContinuous_const_mul
null
isEmbedding_coe : IsEmbedding ((↑) : ℝ≥0 → ℝ≥0∞) := coe_strictMono.isEmbedding_of_ordConnected <| by rw [range_coe']; exact ordConnected_Iio @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
isEmbedding_coe
null
tendsto_coe {f : Filter α} {m : α → ℝ≥0} {a : ℝ≥0} : Tendsto (fun a => (m a : ℝ≥0∞)) f (𝓝 ↑a) ↔ Tendsto m f (𝓝 a) := isEmbedding_coe.tendsto_nhds_iff.symm
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
tendsto_coe
null
isOpenEmbedding_coe : IsOpenEmbedding ((↑) : ℝ≥0 → ℝ≥0∞) := ⟨isEmbedding_coe, by rw [range_coe']; exact isOpen_Iio⟩
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
isOpenEmbedding_coe
null
nhds_coe_coe {r p : ℝ≥0} : 𝓝 ((r : ℝ≥0∞), (p : ℝ≥0∞)) = (𝓝 (r, p)).map fun p : ℝ≥0 × ℝ≥0 => (↑p.1, ↑p.2) := ((isOpenEmbedding_coe.prodMap isOpenEmbedding_coe).map_nhds_eq (r, p)).symm
theorem
Topology
[ "Mathlib.Data.EReal.Operations", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Bornology.Real", "Mathlib.Topology.Instances.Int", "Mathlib.Topology.Order.MonotoneContinuity", "Mathlib.Topology.Order.Real", "Mathlib.Topology.UniformSpace.Real" ]
Mathlib/Topology/Algebra/Ring/Real.lean
nhds_coe_coe
null
@[to_additive] instSMul : SMul M (SeparationQuotient X) where smul c := Quotient.map' (c • ·) fun _ _ h ↦ h.const_smul c @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instSMul
null
mk_smul (c : M) (x : X) : mk (c • x) = c • mk x := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_smul
null
instContinuousConstSMul : ContinuousConstSMul M (SeparationQuotient X) where continuous_const_smul c := isQuotientMap_mk.continuous_iff.2 <| continuous_mk.comp <| continuous_const_smul c @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instContinuousConstSMul
null
instIsPretransitiveSMul [MulAction.IsPretransitive M X] : MulAction.IsPretransitive M (SeparationQuotient X) where exists_smul_eq := surjective_mk.forall₂.2 fun x y ↦ (MulAction.exists_smul_eq M x y).imp fun _ ↦ congr_arg mk @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instIsPretransitiveSMul
null
instIsCentralScalar [SMul Mᵐᵒᵖ X] [IsCentralScalar M X] : IsCentralScalar M (SeparationQuotient X) where op_smul_eq_smul a := surjective_mk.forall.2 (congr_arg mk <| op_smul_eq_smul a ·) variable {N : Type*} [SMul N X] @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instIsCentralScalar
null
instSMulCommClass [ContinuousConstSMul N X] [SMulCommClass M N X] : SMulCommClass M N (SeparationQuotient X) := surjective_mk.smulCommClass mk_smul mk_smul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instSMulCommClass
null
instIsScalarTower [SMul M N] [ContinuousConstSMul N X] [IsScalarTower M N X] : IsScalarTower M N (SeparationQuotient X) where smul_assoc a b := surjective_mk.forall.2 fun x ↦ congr_arg mk <| smul_assoc a b x
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instIsScalarTower
null
instContinuousSMul {M X : Type*} [SMul M X] [TopologicalSpace M] [TopologicalSpace X] [ContinuousSMul M X] : ContinuousSMul M (SeparationQuotient X) where continuous_smul := by rw [(IsOpenQuotientMap.id.prodMap isOpenQuotientMap_mk).isQuotientMap.continuous_iff] exact continuous_mk.comp continuous_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instContinuousSMul
null
instSMulZeroClass {M X : Type*} [Zero X] [SMulZeroClass M X] [TopologicalSpace X] [ContinuousConstSMul M X] : SMulZeroClass M (SeparationQuotient X) := ZeroHom.smulZeroClass ⟨mk, mk_zero⟩ mk_smul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instSMulZeroClass
null
instMulAction {M X : Type*} [Monoid M] [MulAction M X] [TopologicalSpace X] [ContinuousConstSMul M X] : MulAction M (SeparationQuotient X) := surjective_mk.mulAction mk mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMulAction
null
@[to_additive] instMul [Mul M] [ContinuousMul M] : Mul (SeparationQuotient M) where mul := Quotient.map₂ (· * ·) fun _ _ h₁ _ _ h₂ ↦ Inseparable.mul h₁ h₂ @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMul
null
mk_mul [Mul M] [ContinuousMul M] (a b : M) : mk (a * b) = mk a * mk b := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_mul
null
instContinuousMul [Mul M] [ContinuousMul M] : ContinuousMul (SeparationQuotient M) where continuous_mul := isQuotientMap_prodMap_mk.continuous_iff.2 <| continuous_mk.comp continuous_mul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instContinuousMul
null
instCommMagma [CommMagma M] [ContinuousMul M] : CommMagma (SeparationQuotient M) := surjective_mk.commMagma mk mk_mul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommMagma
null
instSemigroup [Semigroup M] [ContinuousMul M] : Semigroup (SeparationQuotient M) := surjective_mk.semigroup mk mk_mul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instSemigroup
null
instCommSemigroup [CommSemigroup M] [ContinuousMul M] : CommSemigroup (SeparationQuotient M) := surjective_mk.commSemigroup mk mk_mul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommSemigroup
null
instMulOneClass [MulOneClass M] [ContinuousMul M] : MulOneClass (SeparationQuotient M) := surjective_mk.mulOneClass mk mk_one mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMulOneClass
null
@[to_additive (attr := simps) /-- `SeparationQuotient.mk` as an `AddMonoidHom`. -/] mkMonoidHom [MulOneClass M] [ContinuousMul M] : M →* SeparationQuotient M where toFun := mk map_mul' := mk_mul map_one' := mk_one
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mkMonoidHom
`SeparationQuotient.mk` as a `MonoidHom`.
@[to_additive existing instNSmul] instPow [Monoid M] [ContinuousMul M] : Pow (SeparationQuotient M) ℕ where pow x n := Quotient.map' (s₁ := inseparableSetoid M) (· ^ n) (fun _ _ h ↦ Inseparable.pow h n) x @[to_additive, simp] -- `mk_nsmul` is not a `simp` lemma because we have `mk_smul`
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instPow
null
mk_pow [Monoid M] [ContinuousMul M] (x : M) (n : ℕ) : mk (x ^ n) = (mk x) ^ n := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_pow
null
instMonoid [Monoid M] [ContinuousMul M] : Monoid (SeparationQuotient M) := surjective_mk.monoid mk mk_one mk_mul mk_pow @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMonoid
null
instCommMonoid [CommMonoid M] [ContinuousMul M] : CommMonoid (SeparationQuotient M) := surjective_mk.commMonoid mk mk_one mk_mul mk_pow
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommMonoid
null
@[to_additive] instInv [Inv G] [ContinuousInv G] : Inv (SeparationQuotient G) where inv := Quotient.map' (·⁻¹) fun _ _ ↦ Inseparable.inv @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instInv
null
mk_inv [Inv G] [ContinuousInv G] (x : G) : mk x⁻¹ = (mk x)⁻¹ := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_inv
null
instContinuousInv [Inv G] [ContinuousInv G] : ContinuousInv (SeparationQuotient G) where continuous_inv := isQuotientMap_mk.continuous_iff.2 <| continuous_mk.comp continuous_inv @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instContinuousInv
null
instInvolutiveInv [InvolutiveInv G] [ContinuousInv G] : InvolutiveInv (SeparationQuotient G) := surjective_mk.involutiveInv mk mk_inv @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instInvolutiveInv
null
instInvOneClass [InvOneClass G] [ContinuousInv G] : InvOneClass (SeparationQuotient G) where inv_one := congr_arg mk inv_one @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instInvOneClass
null
instDiv [Div G] [ContinuousDiv G] : Div (SeparationQuotient G) where div := Quotient.map₂ (· / ·) fun _ _ h₁ _ _ h₂ ↦ (Inseparable.prod h₁ h₂).map continuous_div' @[to_additive (attr := simp)]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instDiv
null
mk_div [Div G] [ContinuousDiv G] (x y : G) : mk (x / y) = mk x / mk y := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_div
null
instContinuousDiv [Div G] [ContinuousDiv G] : ContinuousDiv (SeparationQuotient G) where continuous_div' := isQuotientMap_prodMap_mk.continuous_iff.2 <| continuous_mk.comp continuous_div'
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instContinuousDiv
null
instZSMul [AddGroup G] [IsTopologicalAddGroup G] : SMul ℤ (SeparationQuotient G) := inferInstance @[to_additive existing]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instZSMul
null
instZPow [Group G] [IsTopologicalGroup G] : Pow (SeparationQuotient G) ℤ where pow x n := Quotient.map' (s₁ := inseparableSetoid G) (· ^ n) (fun _ _ h ↦ Inseparable.zpow h n) x @[to_additive, simp] -- `mk_zsmul` is not a `simp` lemma because we have `mk_smul`
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instZPow
null
mk_zpow [Group G] [IsTopologicalGroup G] (x : G) (n : ℤ) : mk (x ^ n) = (mk x) ^ n := rfl @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_zpow
null
instGroup [Group G] [IsTopologicalGroup G] : Group (SeparationQuotient G) := surjective_mk.group mk mk_one mk_mul mk_inv mk_div mk_pow mk_zpow @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instGroup
null
instCommGroup [CommGroup G] [IsTopologicalGroup G] : CommGroup (SeparationQuotient G) := surjective_mk.commGroup mk mk_one mk_mul mk_inv mk_div mk_pow mk_zpow @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommGroup
null
instIsTopologicalGroup [Group G] [IsTopologicalGroup G] : IsTopologicalGroup (SeparationQuotient G) where
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instIsTopologicalGroup
null
@[to_additive] instIsUniformGroup {G : Type*} [Group G] [UniformSpace G] [IsUniformGroup G] : IsUniformGroup (SeparationQuotient G) where uniformContinuous_div := by rw [uniformContinuous_dom₂] exact uniformContinuous_mk.comp uniformContinuous_div @[deprecated (since := "2025-03-31")] alias instUniformAddGroup := SeparationQuotient.instIsUniformAddGroup @[to_additive existing, deprecated (since := "2025-03-31")] alias instUniformGroup := SeparationQuotient.instIsUniformGroup
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instIsUniformGroup
null
instMulZeroClass [MulZeroClass M₀] [ContinuousMul M₀] : MulZeroClass (SeparationQuotient M₀) := surjective_mk.mulZeroClass mk mk_zero mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMulZeroClass
null
instSemigroupWithZero [SemigroupWithZero M₀] [ContinuousMul M₀] : SemigroupWithZero (SeparationQuotient M₀) := surjective_mk.semigroupWithZero mk mk_zero mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instSemigroupWithZero
null
instMulZeroOneClass [MulZeroOneClass M₀] [ContinuousMul M₀] : MulZeroOneClass (SeparationQuotient M₀) := surjective_mk.mulZeroOneClass mk mk_zero mk_one mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMulZeroOneClass
null
instMonoidWithZero [MonoidWithZero M₀] [ContinuousMul M₀] : MonoidWithZero (SeparationQuotient M₀) := surjective_mk.monoidWithZero mk mk_zero mk_one mk_mul mk_pow
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMonoidWithZero
null
instCommMonoidWithZero [CommMonoidWithZero M₀] [ContinuousMul M₀] : CommMonoidWithZero (SeparationQuotient M₀) := surjective_mk.commMonoidWithZero mk mk_zero mk_one mk_mul mk_pow
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommMonoidWithZero
null
instDistrib [Distrib R] [ContinuousMul R] [ContinuousAdd R] : Distrib (SeparationQuotient R) := surjective_mk.distrib mk mk_add mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instDistrib
null
instLeftDistribClass [Mul R] [Add R] [LeftDistribClass R] [ContinuousMul R] [ContinuousAdd R] : LeftDistribClass (SeparationQuotient R) := surjective_mk.leftDistribClass mk mk_add mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instLeftDistribClass
null
instRightDistribClass [Mul R] [Add R] [RightDistribClass R] [ContinuousMul R] [ContinuousAdd R] : RightDistribClass (SeparationQuotient R) := surjective_mk.rightDistribClass mk mk_add mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instRightDistribClass
null
instNonUnitalnonAssocSemiring [NonUnitalNonAssocSemiring R] [IsTopologicalSemiring R] : NonUnitalNonAssocSemiring (SeparationQuotient R) := surjective_mk.nonUnitalNonAssocSemiring mk mk_zero mk_add mk_mul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalnonAssocSemiring
null
instNonUnitalSemiring [NonUnitalSemiring R] [IsTopologicalSemiring R] : NonUnitalSemiring (SeparationQuotient R) := surjective_mk.nonUnitalSemiring mk mk_zero mk_add mk_mul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalSemiring
null
instNatCast [NatCast R] : NatCast (SeparationQuotient R) where natCast n := mk n @[simp, norm_cast]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNatCast
null
mk_natCast [NatCast R] (n : ℕ) : mk (n : R) = n := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_natCast
null
mk_ofNat [NatCast R] (n : ℕ) [n.AtLeastTwo] : mk (ofNat(n) : R) = OfNat.ofNat n := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_ofNat
null
instIntCast [IntCast R] : IntCast (SeparationQuotient R) where intCast n := mk n @[simp, norm_cast]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instIntCast
null
mk_intCast [IntCast R] (n : ℤ) : mk (n : R) = n := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mk_intCast
null
instNonAssocSemiring [NonAssocSemiring R] [IsTopologicalSemiring R] : NonAssocSemiring (SeparationQuotient R) := surjective_mk.nonAssocSemiring mk mk_zero mk_one mk_add mk_mul mk_smul mk_natCast
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonAssocSemiring
null
instNonUnitalNonAssocRing [NonUnitalNonAssocRing R] [IsTopologicalRing R] : NonUnitalNonAssocRing (SeparationQuotient R) := surjective_mk.nonUnitalNonAssocRing mk mk_zero mk_add mk_mul mk_neg mk_sub mk_smul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalNonAssocRing
null
instNonUnitalRing [NonUnitalRing R] [IsTopologicalRing R] : NonUnitalRing (SeparationQuotient R) := surjective_mk.nonUnitalRing mk mk_zero mk_add mk_mul mk_neg mk_sub mk_smul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalRing
null
instNonAssocRing [NonAssocRing R] [IsTopologicalRing R] : NonAssocRing (SeparationQuotient R) := surjective_mk.nonAssocRing mk mk_zero mk_one mk_add mk_mul mk_neg mk_sub mk_smul mk_smul mk_natCast mk_intCast
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonAssocRing
null
instSemiring [Semiring R] [IsTopologicalSemiring R] : Semiring (SeparationQuotient R) := surjective_mk.semiring mk mk_zero mk_one mk_add mk_mul mk_smul mk_pow mk_natCast
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instSemiring
null
instRing [Ring R] [IsTopologicalRing R] : Ring (SeparationQuotient R) := surjective_mk.ring mk mk_zero mk_one mk_add mk_mul mk_neg mk_sub mk_smul mk_smul mk_pow mk_natCast mk_intCast
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instRing
null
instNonUnitalNonAssocCommSemiring [NonUnitalNonAssocCommSemiring R] [IsTopologicalSemiring R] : NonUnitalNonAssocCommSemiring (SeparationQuotient R) := surjective_mk.nonUnitalNonAssocCommSemiring mk mk_zero mk_add mk_mul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalNonAssocCommSemiring
null
instNonUnitalCommSemiring [NonUnitalCommSemiring R] [IsTopologicalSemiring R] : NonUnitalCommSemiring (SeparationQuotient R) := surjective_mk.nonUnitalCommSemiring mk mk_zero mk_add mk_mul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalCommSemiring
null
instCommSemiring [CommSemiring R] [IsTopologicalSemiring R] : CommSemiring (SeparationQuotient R) := surjective_mk.commSemiring mk mk_zero mk_one mk_add mk_mul mk_smul mk_pow mk_natCast
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommSemiring
null
instHasDistribNeg [Mul R] [HasDistribNeg R] [ContinuousMul R] [ContinuousNeg R] : HasDistribNeg (SeparationQuotient R) := surjective_mk.hasDistribNeg mk mk_neg mk_mul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instHasDistribNeg
null
instNonUnitalNonAssocCommRing [NonUnitalNonAssocCommRing R] [IsTopologicalRing R] : NonUnitalNonAssocCommRing (SeparationQuotient R) := surjective_mk.nonUnitalNonAssocCommRing mk mk_zero mk_add mk_mul mk_neg mk_sub mk_smul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalNonAssocCommRing
null
instNonUnitalCommRing [NonUnitalCommRing R] [IsTopologicalRing R] : NonUnitalCommRing (SeparationQuotient R) := surjective_mk.nonUnitalCommRing mk mk_zero mk_add mk_mul mk_neg mk_sub mk_smul mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instNonUnitalCommRing
null
instCommRing [CommRing R] [IsTopologicalRing R] : CommRing (SeparationQuotient R) := surjective_mk.commRing mk mk_zero mk_one mk_add mk_mul mk_neg mk_sub mk_smul mk_smul mk_pow mk_natCast mk_intCast
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instCommRing
null
@[simps] mkRingHom [NonAssocSemiring R] [IsTopologicalSemiring R] : R →+* SeparationQuotient R where toFun := mk map_one' := mk_one; map_zero' := mk_zero; map_add' := mk_add; map_mul' := mk_mul
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mkRingHom
`SeparationQuotient.mk` as a `RingHom`.
instDistribSMul [AddZeroClass A] [DistribSMul M A] [ContinuousAdd A] [ContinuousConstSMul M A] : DistribSMul M (SeparationQuotient A) := surjective_mk.distribSMul mkAddMonoidHom mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instDistribSMul
null
instDistribMulAction [Monoid M] [AddMonoid A] [DistribMulAction M A] [ContinuousAdd A] [ContinuousConstSMul M A] : DistribMulAction M (SeparationQuotient A) := surjective_mk.distribMulAction mkAddMonoidHom mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instDistribMulAction
null
instMulDistribMulAction [Monoid M] [Monoid A] [MulDistribMulAction M A] [ContinuousMul A] [ContinuousConstSMul M A] : MulDistribMulAction M (SeparationQuotient A) := surjective_mk.mulDistribMulAction mkMonoidHom mk_smul
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instMulDistribMulAction
null
instModule : Module R (SeparationQuotient M) := surjective_mk.module R mkAddMonoidHom mk_smul variable (R M)
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
instModule
null
@[simps] mkCLM : M →L[R] SeparationQuotient M where toFun := mk map_add' := mk_add map_smul' := mk_smul variable {R M}
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
mkCLM
`SeparationQuotient.mk` as a continuous linear map.
@[simps] noncomputable liftCLM {σ : R →+* S} (f : M →SL[σ] N) (hf : ∀ x y, Inseparable x y → f x = f y) : SeparationQuotient M →SL[σ] N where toFun := SeparationQuotient.lift f hf map_add' := Quotient.ind₂ <| map_add f map_smul' {r} := Quotient.ind <| map_smulₛₗ f r @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean
liftCLM
The lift (as a continuous linear map) of `f` with `f x = f y` for `Inseparable x y`.