fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
@[to_additive (attr := simp)] one_apply [Π i, One (R i)] [∀ i, OneMemClass (S i) (R i)] (i : ι) : (1 : Πʳ i, [R i, B i]_[𝓕]) i = 1 := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
one_apply
null
@[to_additive (attr := simp)] inv_apply [Π i, Inv (R i)] [∀ i, InvMemClass (S i) (R i)] (x : Πʳ i, [R i, B i]_[𝓕]) (i : ι) : (x⁻¹) i = (x i)⁻¹ := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
inv_apply
null
@[to_additive (attr := simp)] mul_apply [Π i, Mul (R i)] [∀ i, MulMemClass (S i) (R i)] (x y : Πʳ i, [R i, B i]_[𝓕]) (i : ι) : (x * y) i = x i * y i := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mul_apply
null
@[to_additive (attr := simp)] smul_apply {G : Type*} [Π i, SMul G (R i)] [∀ i, SMulMemClass (S i) G (R i)] (g : G) (x : Πʳ i, [R i, B i]_[𝓕]) (i : ι) : (g • x) i = g • x i := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
smul_apply
null
@[to_additive (attr := simp)] div_apply [Π i, DivInvMonoid (R i)] [∀ i, SubgroupClass (S i) (R i)] (x y : Πʳ i, [R i, B i]_[𝓕]) (i : ι) : (x / y) i = x i / y i := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
div_apply
null
instNSMul [Π i, AddMonoid (R i)] [∀ i, AddSubmonoidClass (S i) (R i)] : SMul ℕ (Πʳ i, [R i, B i]_[𝓕]) where smul n x := ⟨fun i ↦ n • (x i), x.2.mono fun _ hi ↦ nsmul_mem hi n⟩ @[to_additive existing instNSMul]
instance
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
instNSMul
null
@[to_additive] pow_apply [Π i, Monoid (R i)] [∀ i, SubmonoidClass (S i) (R i)] (x : Πʳ i, [R i, B i]_[𝓕]) (n : ℕ) (i : ι) : (x ^ n) i = x i ^ n := rfl @[to_additive]
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
pow_apply
null
instZSMul [Π i, SubNegMonoid (R i)] [∀ i, AddSubgroupClass (S i) (R i)] : SMul ℤ (Πʳ i, [R i, B i]_[𝓕]) where smul n x := ⟨fun i ↦ n • x i, x.2.mono fun _ hi ↦ zsmul_mem hi n⟩ @[to_additive existing instZSMul]
instance
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
instZSMul
null
@[to_additive] zpow_apply [Π i, DivInvMonoid (R i)] [∀ i, SubgroupClass (S i) (R i)] (x : Πʳ i, [R i, B i]_[𝓕]) (n : ℤ) (i : ι) : (x ^ n) i = x i ^ n := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
zpow_apply
null
@[to_additive /-- The coercion from the restricted product of additive monoids `A i` to the (normal) product is an additive monoid homomorphism. -/] coeMonoidHom [∀ i, Monoid (R i)] [∀ i, SubmonoidClass (S i) (R i)] : Πʳ i, [R i, B i]_[𝓕] →* Π i, R i where toFun := (↑) map_one' := rfl map_mul' _ _ := rfl
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
coeMonoidHom
The coercion from the restricted product of monoids `A i` to the (normal) product is a monoid homomorphism.
evalRingHom (j : ι) [Π i, Ring (R i)] [∀ i, SubringClass (S i) (R i)] : (Πʳ i, [R i, B i]_[𝓕]) →+* R j where __ := evalMonoidHom R j __ := evalAddMonoidHom R j @[simp]
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
evalRingHom
`RestrictedProduct.evalMonoidHom j` is the monoid homomorphism from the restricted product `Πʳ i, [R i, B i]_[𝓕]` to the component `R j`. -/ @[to_additive /-- `RestrictedProduct.evalAddMonoidHom j` is the monoid homomorphism from the restricted product `Πʳ i, [R i, B i]_[𝓕]` to the component `R j`. -/] def evalMonoidHom (j : ι) [Π i, Monoid (R i)] [∀ i, SubmonoidClass (S i) (R i)] : (Πʳ i, [R i, B i]_[𝓕]) →* R j where toFun x := x j map_one' := rfl map_mul' _ _ := rfl @[simp] lemma evalMonoidHom_apply [Π i, Monoid (R i)] [∀ i, SubmonoidClass (S i) (R i)] (x : Πʳ i, [R i, B i]_[𝓕]) (j : ι) : evalMonoidHom R j x = x j := rfl /-- `RestrictedProduct.evalRingHom j` is the ring homomorphism from the restricted product `Πʳ i, [R i, B i]_[𝓕]` to the component `R j`.
evalRingHom_apply [Π i, Ring (R i)] [∀ i, SubringClass (S i) (R i)] (x : Πʳ i, [R i, B i]_[𝓕]) (j : ι) : evalRingHom R j x = x j := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
evalRingHom_apply
null
mapAlong (x : Πʳ i, [R₁ i, A₁ i]_[𝓕₁]) : Πʳ j, [R₂ j, A₂ j]_[𝓕₂] := ⟨fun j ↦ φ j (x (f j)), by filter_upwards [hf.eventually x.2, hφ] using fun _ h1 h2 ↦ h2 h1⟩ @[simp]
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mapAlong
Given two restricted products `Πʳ (i : ι₁), [R₁ i, A₁ i]_[𝓕₁]` and `Πʳ (j : ι₂), [R₂ j, A₂ j]_[𝓕₂]`, `RestrictedProduct.mapAlong` gives a function between them. The data needed is a function `f : ι₂ → ι₁` such that `𝓕₂` tends to `𝓕₁` along `f`, and functions `φ j : R₁ (f j) → R₂ j` sending `A₁ (f j)` into `A₂ j` for an `𝓕₂`-large set of `j`'s. See also `mapAlongMonoidHom`, `mapAlongAddMonoidHom` and `mapAlongRingHom` for variants.
mapAlong_apply (x : Πʳ i, [R₁ i, A₁ i]_[𝓕₁]) (j : ι₂) : x.mapAlong R₁ R₂ f hf φ hφ j = φ j (x (f j)) := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mapAlong_apply
null
map {G H : ι → Type*} {C : (i : ι) → Set (G i)} {D : (i : ι) → Set (H i)} (φ : (i : ι) → G i → H i) (hφ : ∀ᶠ i in 𝓕, MapsTo (φ i) (C i) (D i)) (x : Πʳ i, [G i, C i]_[𝓕]) : (Πʳ i, [H i, D i]_[𝓕]) := mapAlong G H id Filter.tendsto_id φ hφ x @[simp]
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
map
The maps between restricted products over a fixed index type, given maps on the factors.
map_apply {G H : ι → Type*} {C : (i : ι) → Set (G i)} {D : (i : ι) → Set (H i)} (φ : (i : ι) → G i → H i) (hφ : ∀ᶠ i in 𝓕, MapsTo (φ i) (C i) (D i)) (x : Πʳ i, [G i, C i]_[𝓕]) (j : ι) : x.map φ hφ j = φ j (x j) := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
map_apply
null
mapAlongRingHom : Πʳ i, [R₁ i, B₁ i]_[𝓕₁] →+* Πʳ j, [R₂ j, B₂ j]_[𝓕₂] where __ := mapAlongMonoidHom R₁ R₂ f hf (fun j ↦ φ j) hφ __ := mapAlongAddMonoidHom R₁ R₂ f hf (fun j ↦ φ j) hφ @[simp]
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mapAlongRingHom
Given two restricted products `Πʳ (i : ι₁), [R₁ i, B₁ i]_[𝓕₁]` and `Πʳ (j : ι₂), [R₂ j, B₂ j]_[𝓕₂]` of monoids, `RestrictedProduct.mapAlongMonoidHom` gives a monoid homomorphism between them. The data needed is a function `f : ι₂ → ι₁` such that `𝓕₂` tends to `𝓕₁` along `f`, and monoid homomorphisms `φ j : R₁ (f j) → R₂ j` sending `B₁ (f j)` into `B₂ j` for an `𝓕₂`-large set of `j`'s. -/ @[to_additive /-- Given two restricted products `Πʳ (i : ι₁), [R₁ i, B₁ i]_[𝓕₁]` and `Πʳ (j : ι₂), [R₂ j, B₂ j]_[𝓕₂]` of additive monoids, `RestrictedProduct.mapAlongAddMonoidHom` gives a additive monoid homomorphism between them. The data needed is a function `f : ι₂ → ι₁` such that `𝓕₂` tends to `𝓕₁` along `f`, and additive monoid homomorphisms `φ j : R₁ (f j) → R₂ j` sending `B₁ (f j)` into `B₂ j` for an `𝓕₂`-large set of `j`'s. -/] def mapAlongMonoidHom : Πʳ i, [R₁ i, B₁ i]_[𝓕₁] →* Πʳ j, [R₂ j, B₂ j]_[𝓕₂] where toFun := mapAlong R₁ R₂ f hf (fun j r ↦ φ j r) hφ map_one' := by ext i exact map_one (φ i) map_mul' x y := by ext i exact map_mul (φ i) _ _ @[to_additive (attr := simp)] lemma mapAlongMonoidHom_apply (x : Πʳ i, [R₁ i, B₁ i]_[𝓕₁]) (j : ι₂) : x.mapAlongMonoidHom R₁ R₂ f hf φ hφ j = φ j (x (f j)) := rfl end monoid section ring variable [Π i, Ring (R₁ i)] [Π i, Ring (R₂ i)] [∀ i, SubringClass (S₁ i) (R₁ i)] [∀ i, SubringClass (S₂ i) (R₂ i)] (φ : ∀ j, R₁ (f j) →+* R₂ j) (hφ : ∀ᶠ j in 𝓕₂, MapsTo (φ j) (B₁ (f j)) (B₂ j)) /-- Given two restricted products of rings `Πʳ (i : ι₁), [R₁ i, B₁ i]_[𝓕₁]` and `Πʳ (j : ι₂), [R₂ j, B₂ j]_[𝓕₂]`, `RestrictedProduct.mapAlongRingHom` gives a ring homomorphism between them. The data needed is a function `f : ι₂ → ι₁` such that `𝓕₂` tends to `𝓕₁` along `f`, and ring homomorphisms `φ j : R₁ (f j) → R₂ j` sending `B₁ (f j)` into `B₂ j` for an `𝓕₂`-large set of `j`'s.
mapAlongRingHom_apply (x : Πʳ i, [R₁ i, B₁ i]_[𝓕₁]) (j : ι₂) : x.mapAlongRingHom R₁ R₂ f hf φ hφ j = φ j (x (f j)) := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mapAlongRingHom_apply
null
topologicalSpace : TopologicalSpace (Πʳ i, [R i, A i]_[𝓕]) := ⨆ (S : Set ι) (hS : 𝓕 ≤ 𝓟 S), .coinduced (inclusion R A hS) (.induced ((↑) : Πʳ i, [R i, A i]_[𝓟 S] → Π i, R i) inferInstance) @[fun_prop]
instance
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
topologicalSpace
null
continuous_coe : Continuous ((↑) : Πʳ i, [R i, A i]_[𝓕] → Π i, R i) := continuous_iSup_dom.mpr fun _ ↦ continuous_iSup_dom.mpr fun _ ↦ continuous_coinduced_dom.mpr continuous_induced_dom @[fun_prop]
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_coe
null
continuous_eval (i : ι) : Continuous (fun (x : Πʳ i, [R i, A i]_[𝓕]) ↦ x i) := continuous_apply _ |>.comp continuous_coe @[fun_prop]
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_eval
null
continuous_inclusion {𝓖 : Filter ι} (h : 𝓕 ≤ 𝓖) : Continuous (inclusion R A h) := by simp_rw [continuous_iff_coinduced_le, topologicalSpace, coinduced_iSup, coinduced_compose] exact iSup₂_le fun S hS ↦ le_iSup₂_of_le S (le_trans h hS) le_rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_inclusion
null
topologicalSpace_eq_of_principal : topologicalSpace R A (𝓟 S) = .induced ((↑) : Πʳ i, [R i, A i]_[𝓟 S] → Π i, R i) inferInstance := le_antisymm (continuous_iff_le_induced.mp continuous_coe) <| (le_iSup₂_of_le S le_rfl <| by rw [inclusion_eq_id R A (𝓟 S), @coinduced_id])
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
topologicalSpace_eq_of_principal
null
topologicalSpace_eq_of_top : topologicalSpace R A ⊤ = .induced ((↑) : Πʳ i, [R i, A i]_[⊤] → Π i, R i) inferInstance := principal_univ ▸ topologicalSpace_eq_of_principal
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
topologicalSpace_eq_of_top
null
topologicalSpace_eq_of_bot : topologicalSpace R A ⊥ = .induced ((↑) : Πʳ i, [R i, A i]_[⊥] → Π i, R i) inferInstance := principal_empty ▸ topologicalSpace_eq_of_principal
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
topologicalSpace_eq_of_bot
null
isEmbedding_coe_of_principal : IsEmbedding ((↑) : Πʳ i, [R i, A i]_[𝓟 S] → Π i, R i) where eq_induced := topologicalSpace_eq_of_principal injective := DFunLike.coe_injective
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isEmbedding_coe_of_principal
null
isEmbedding_coe_of_top : IsEmbedding ((↑) : Πʳ i, [R i, A i]_[⊤] → Π i, R i) := principal_univ ▸ isEmbedding_coe_of_principal
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isEmbedding_coe_of_top
null
isEmbedding_coe_of_bot : IsEmbedding ((↑) : Πʳ i, [R i, A i]_[⊥] → Π i, R i) := principal_empty ▸ isEmbedding_coe_of_principal
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isEmbedding_coe_of_bot
null
continuous_rng_of_principal {X : Type*} [TopologicalSpace X] {f : X → Πʳ i, [R i, A i]_[𝓟 S]} : Continuous f ↔ Continuous ((↑) ∘ f : X → Π i, R i) := isEmbedding_coe_of_principal.continuous_iff
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_rng_of_principal
null
continuous_rng_of_top {X : Type*} [TopologicalSpace X] {f : X → Πʳ i, [R i, A i]_[⊤]} : Continuous f ↔ Continuous ((↑) ∘ f : X → Π i, R i) := isEmbedding_coe_of_top.continuous_iff
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_rng_of_top
null
continuous_rng_of_bot {X : Type*} [TopologicalSpace X] {f : X → Πʳ i, [R i, A i]_[⊥]} : Continuous f ↔ Continuous ((↑) ∘ f : X → Π i, R i) := isEmbedding_coe_of_bot.continuous_iff
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_rng_of_bot
null
continuous_rng_of_principal_iff_forall {X : Type*} [TopologicalSpace X] {f : X → Πʳ (i : ι), [R i, A i]_[𝓟 S]} : Continuous f ↔ ∀ i : ι, Continuous ((fun x ↦ x i) ∘ f) := continuous_rng_of_principal.trans continuous_pi_iff
lemma
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_rng_of_principal_iff_forall
null
homeoTop : (Π i, A i) ≃ₜ (Πʳ i, [R i, A i]_[⊤]) where toFun f := ⟨fun i ↦ f i, fun i ↦ (f i).2⟩ invFun f i := ⟨f i, f.2 i⟩ continuous_toFun := continuous_rng_of_top.mpr <| continuous_pi fun i ↦ continuous_subtype_val.comp <| continuous_apply i continuous_invFun := continuous_pi fun i ↦ continuous_induced_rng.mpr <| continuous_eval i
def
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
homeoTop
The obvious bijection between `Πʳ i, [R i, A i]_[⊤]` and `Π i, A i` is a homeomorphism.
homeoBot : (Π i, R i) ≃ₜ (Πʳ i, [R i, A i]_[⊥]) where toFun f := ⟨fun i ↦ f i, eventually_bot⟩ invFun f i := f i continuous_toFun := continuous_rng_of_bot.mpr <| continuous_pi fun i ↦ continuous_apply i continuous_invFun := continuous_pi continuous_eval
def
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
homeoBot
The obvious bijection between `Πʳ i, [R i, A i]_[⊥]` and `Π i, R i` is a homeomorphism.
weaklyLocallyCompactSpace_of_principal [∀ i, WeaklyLocallyCompactSpace (R i)] (hS : cofinite ≤ 𝓟 S) (hAcompact : ∀ i ∈ S, IsCompact (A i)) : WeaklyLocallyCompactSpace (Πʳ i, [R i, A i]_[𝓟 S]) where exists_compact_mem_nhds := fun x ↦ by rw [le_principal_iff, mem_cofinite] at hS classical have : ∀ i, ∃ K, IsCompact K ∧ K ∈ 𝓝 (x i) := fun i ↦ exists_compact_mem_nhds (x i) choose K K_compact hK using this set Q : Set (Π i, R i) := univ.pi (fun i ↦ if i ∈ S then A i else K i) with Q_def have Q_compact : IsCompact Q := isCompact_univ_pi fun i ↦ by split_ifs with his · exact hAcompact i his · exact K_compact i set U : Set (Π i, R i) := Sᶜ.pi K have U_nhds : U ∈ 𝓝 (x : Π i, R i) := set_pi_mem_nhds hS fun i _ ↦ hK i have QU : (↑) ⁻¹' U ⊆ ((↑) ⁻¹' Q : Set (Πʳ i, [R i, A i]_[𝓟 S])) := fun y H i _ ↦ by dsimp only split_ifs with hi · exact y.2 hi · exact H i hi refine ⟨((↑) ⁻¹' Q), ?_, mem_of_superset ?_ QU⟩ · refine isEmbedding_coe_of_principal.isCompact_preimage_iff ?_ |>.mpr Q_compact simp_rw [range_coe_principal, Q_def, pi_if, mem_univ, true_and] exact inter_subset_left · simpa only [isEmbedding_coe_of_principal.nhds_eq_comap] using preimage_mem_comap U_nhds
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
weaklyLocallyCompactSpace_of_principal
Assume that `S` is a subset of `ι` with finite complement, that each `R i` is weakly locally compact, and that `A i` is *compact* for all `i ∈ S`. Then the restricted product `Πʳ i, [R i, A i]_[𝓟 S]` is locally compact. Note: we spell "`S` has finite complement" as `cofinite ≤ 𝓟 S`.
topologicalSpace_eq_iSup : topologicalSpace R A 𝓕 = ⨆ (S : Set ι) (hS : 𝓕 ≤ 𝓟 S), .coinduced (inclusion R A hS) (topologicalSpace R A (𝓟 S)) := by simp_rw [topologicalSpace_eq_of_principal, topologicalSpace]
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
topologicalSpace_eq_iSup
null
continuous_dom {X : Type*} [TopologicalSpace X] {f : Πʳ i, [R i, A i]_[𝓕] → X} : Continuous f ↔ ∀ (S : Set ι) (hS : 𝓕 ≤ 𝓟 S), Continuous (f ∘ inclusion R A hS) := by simp_rw [topologicalSpace_eq_of_principal, continuous_iSup_dom, continuous_coinduced_dom]
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_dom
The **universal property** of the topology on the restricted product: a map from `Πʳ i, [R i, A i]_[𝓕]` is continuous *iff* its restriction to each `Πʳ i, [R i, A i]_[𝓟 s]` (with `𝓕 ≤ 𝓟 s`) is continuous. See also `RestrictedProduct.continuous_dom_prod_left`.
isEmbedding_inclusion_principal {S : Set ι} (hS : 𝓕 ≤ 𝓟 S) : IsEmbedding (inclusion R A hS) := .of_comp (continuous_inclusion hS) continuous_coe isEmbedding_coe_of_principal
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isEmbedding_inclusion_principal
null
isEmbedding_inclusion_top : IsEmbedding (inclusion R A (le_top : 𝓕 ≤ ⊤)) := .of_comp (continuous_inclusion _) continuous_coe isEmbedding_coe_of_top
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isEmbedding_inclusion_top
null
isEmbedding_structureMap : IsEmbedding (structureMap R A 𝓕) := isEmbedding_inclusion_top.comp homeoTop.isEmbedding
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isEmbedding_structureMap
`Π i, A i` has the subset topology from the restricted product.
isOpen_forall_imp_mem_of_principal {S : Set ι} (hS : cofinite ≤ 𝓟 S) {p : ι → Prop} : IsOpen {f : Πʳ i, [R i, A i]_[𝓟 S] | ∀ i, p i → f.1 i ∈ A i} := by rw [le_principal_iff] at hS convert isOpen_set_pi (hS.inter_of_left {i | p i}) (fun i _ ↦ hAopen i) |>.preimage continuous_coe ext f refine ⟨fun H i hi ↦ H i hi.2, fun H i hiT ↦ ?_⟩ by_cases hiS : i ∈ S · exact f.2 hiS · exact H i ⟨hiS, hiT⟩ include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isOpen_forall_imp_mem_of_principal
null
isOpen_forall_mem_of_principal {S : Set ι} (hS : cofinite ≤ 𝓟 S) : IsOpen {f : Πʳ i, [R i, A i]_[𝓟 S] | ∀ i, f.1 i ∈ A i} := by convert isOpen_forall_imp_mem_of_principal hAopen hS (p := fun _ ↦ True) simp include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isOpen_forall_mem_of_principal
null
isOpen_forall_imp_mem {p : ι → Prop} : IsOpen {f : Πʳ i, [R i, A i] | ∀ i, p i → f.1 i ∈ A i} := by simp_rw [topologicalSpace_eq_iSup cofinite, isOpen_iSup_iff, isOpen_coinduced] exact fun S hS ↦ isOpen_forall_imp_mem_of_principal hAopen hS include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isOpen_forall_imp_mem
null
isOpen_forall_mem : IsOpen {f : Πʳ i, [R i, A i] | ∀ i, f.1 i ∈ A i} := by simp_rw [topologicalSpace_eq_iSup cofinite, isOpen_iSup_iff, isOpen_coinduced] exact fun S hS ↦ isOpen_forall_mem_of_principal hAopen hS include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isOpen_forall_mem
null
isOpenEmbedding_inclusion_principal {S : Set ι} (hS : cofinite ≤ 𝓟 S) : IsOpenEmbedding (inclusion R A hS) where toIsEmbedding := isEmbedding_inclusion_principal hS isOpen_range := by rw [range_inclusion] exact isOpen_forall_imp_mem hAopen include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isOpenEmbedding_inclusion_principal
null
isOpenEmbedding_structureMap : IsOpenEmbedding (structureMap R A cofinite) where toIsEmbedding := isEmbedding_structureMap isOpen_range := by rw [range_structureMap] exact isOpen_forall_mem hAopen include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isOpenEmbedding_structureMap
`Π i, A i` is homeomorphic to an open subset of the restricted product.
nhds_eq_map_inclusion {S : Set ι} (hS : cofinite ≤ 𝓟 S) (x : Πʳ i, [R i, A i]_[𝓟 S]) : (𝓝 (inclusion R A hS x)) = .map (inclusion R A hS) (𝓝 x) := by rw [isOpenEmbedding_inclusion_principal hAopen hS |>.map_nhds_eq x] include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
nhds_eq_map_inclusion
null
nhds_eq_map_structureMap (x : Π i, A i) : (𝓝 (structureMap R A cofinite x)) = .map (structureMap R A cofinite) (𝓝 x) := by rw [isOpenEmbedding_structureMap hAopen |>.map_nhds_eq x] include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
nhds_eq_map_structureMap
null
weaklyLocallyCompactSpace_of_cofinite [∀ i, WeaklyLocallyCompactSpace (R i)] (hAcompact : ∀ᶠ i in cofinite, IsCompact (A i)) : WeaklyLocallyCompactSpace (Πʳ i, [R i, A i]) where exists_compact_mem_nhds := fun x ↦ by set S := {i | IsCompact (A i) ∧ x i ∈ A i} have hS : cofinite ≤ 𝓟 S := le_principal_iff.mpr (hAcompact.and x.2) have hSx : ∀ i ∈ S, x i ∈ A i := fun i hi ↦ hi.2 have hSA : ∀ i ∈ S, IsCompact (A i) := fun i hi ↦ hi.1 haveI := weaklyLocallyCompactSpace_of_principal hS hSA rcases exists_inclusion_eq_of_eventually R A hS hSx with ⟨x', hxx'⟩ rw [← hxx', nhds_eq_map_inclusion hAopen] rcases exists_compact_mem_nhds x' with ⟨K, K_compact, hK⟩ exact ⟨inclusion R A hS '' K, K_compact.image (continuous_inclusion hS), image_mem_map hK⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
weaklyLocallyCompactSpace_of_cofinite
If each `R i` is weakly locally compact, each `A i` is open, and all but finitely many `A i`s are also compact, then the restricted product `Πʳ i, [R i, A i]` is weakly locally compact.
continuous_dom_prod_right {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] {f : Πʳ i, [R i, A i] × Y → X} : Continuous f ↔ ∀ (S : Set ι) (hS : cofinite ≤ 𝓟 S), Continuous (f ∘ (Prod.map (inclusion R A hS) id)) := by refine ⟨fun H S hS ↦ H.comp ((continuous_inclusion hS).prodMap continuous_id), fun H ↦ ?_⟩ simp_rw [continuous_iff_continuousAt, ContinuousAt] rintro ⟨x, y⟩ set S : Set ι := {i | x i ∈ A i} have hS : cofinite ≤ 𝓟 S := le_principal_iff.mpr x.2 have hxS : ∀ i ∈ S, x i ∈ A i := fun i hi ↦ hi rcases exists_inclusion_eq_of_eventually R A hS hxS with ⟨x', hxx'⟩ rw [← hxx', nhds_prod_eq, nhds_eq_map_inclusion hAopen hS x', ← Filter.map_id (f := 𝓝 y), prod_map_map_eq, ← nhds_prod_eq, tendsto_map'_iff] exact H S hS |>.tendsto ⟨x', y⟩ include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_dom_prod_right
The **universal property with parameters** of the topology on the restricted product: for any topological space `Y` of "parameters", a map from `(Πʳ i, [R i, A i]) × Y` is continuous *iff* its restriction to each `(Πʳ i, [R i, A i]_[𝓟 S]) × Y` (with `S` cofinite) is continuous.
continuous_dom_prod_left {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] {f : Y × Πʳ i, [R i, A i] → X} : Continuous f ↔ ∀ (S : Set ι) (hS : cofinite ≤ 𝓟 S), Continuous (f ∘ (Prod.map id (inclusion R A hS))) := by refine ⟨fun H S hS ↦ H.comp (continuous_id.prodMap (continuous_inclusion hS)), fun H ↦ ?_⟩ simp_rw [continuous_iff_continuousAt, ContinuousAt] rintro ⟨y, x⟩ set S : Set ι := {i | x i ∈ A i} have hS : cofinite ≤ 𝓟 S := le_principal_iff.mpr x.2 have hxS : ∀ i ∈ S, x i ∈ A i := fun i hi ↦ hi rcases exists_inclusion_eq_of_eventually R A hS hxS with ⟨x', hxx'⟩ rw [← hxx', nhds_prod_eq, nhds_eq_map_inclusion hAopen hS x', ← Filter.map_id (f := 𝓝 y), prod_map_map_eq, ← nhds_prod_eq, tendsto_map'_iff] exact H S hS |>.tendsto ⟨y, x'⟩ include hAopen in
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_dom_prod_left
The **universal property with parameters** of the topology on the restricted product: for any topological space `Y` of "parameters", a map from `Y × Πʳ i, [R i, A i]` is continuous *iff* its restriction to each `Y × Πʳ i, [R i, A i]_[𝓟 S]` (with `S` cofinite) is continuous.
continuous_dom_prod {R' : ι → Type*} {A' : (i : ι) → Set (R' i)} [∀ i, TopologicalSpace (R' i)] (hAopen' : ∀ i, IsOpen (A' i)) {X : Type*} [TopologicalSpace X] {f : Πʳ i, [R i, A i] × Πʳ i, [R' i, A' i] → X} : Continuous f ↔ ∀ (S : Set ι) (hS : cofinite ≤ 𝓟 S), Continuous (f ∘ (Prod.map (inclusion R A hS) (inclusion R' A' hS))) := by simp_rw [continuous_dom_prod_right hAopen, continuous_dom_prod_left hAopen'] refine ⟨fun H S hS ↦ H S hS S hS, fun H S hS T hT ↦ ?_⟩ set U := S ∩ T have hU : cofinite ≤ 𝓟 (S ∩ T) := inf_principal ▸ le_inf hS hT have hSU : 𝓟 U ≤ 𝓟 S := principal_mono.mpr inter_subset_left have hTU : 𝓟 U ≤ 𝓟 T := principal_mono.mpr inter_subset_right exact (H U hU).comp ((continuous_inclusion hSU).prodMap (continuous_inclusion hTU))
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_dom_prod
A map from `Πʳ i, [R i, A i] × Πʳ i, [R' i, A' i]` is continuous *iff* its restriction to each `Πʳ i, [R i, A i]_[𝓟 S] × Πʳ i, [R' i, A' i]_[𝓟 S]` (with `S` cofinite) is continuous. This is the key result for continuity of multiplication and addition.
continuous_dom_pi {n : Type*} [Finite n] {X : Type*} [TopologicalSpace X] {A : n → ι → Type*} [∀ j i, TopologicalSpace (A j i)] {C : (j : n) → (i : ι) → Set (A j i)} (hCopen : ∀ j i, IsOpen (C j i)) {f : (Π j : n, Πʳ i : ι, [A j i, C j i]) → X} : Continuous f ↔ ∀ (S : Set ι) (hS : cofinite ≤ 𝓟 S), Continuous (f ∘ Pi.map fun _ ↦ inclusion _ _ hS) := by refine ⟨by fun_prop, fun H ↦ ?_⟩ simp_rw [continuous_iff_continuousAt, ContinuousAt] intro x set S : Set ι := {i | ∀ j, x j i ∈ C j i} have hS : cofinite ≤ 𝓟 S := by rw [le_principal_iff] change ∀ᶠ i in cofinite, ∀ j : n, x j i ∈ C j i simp [-eventually_cofinite] let x' (j : n) : Πʳ i : ι, [A j i, C j i]_[𝓟 S] := .mk (fun i ↦ x j i) (fun i hi ↦ hi _) have hxx' : Pi.map (fun j ↦ inclusion _ _ hS) x' = x := rfl simp_rw [← hxx', nhds_pi, Pi.map_apply, nhds_eq_map_inclusion (hCopen _), ← map_piMap_pi_finite, tendsto_map'_iff, ← nhds_pi] exact (H _ _).tendsto _
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuous_dom_pi
A finitary (instead of binary) version of `continuous_dom_prod`.
nhds_zero_eq_map_ofPre [Π i, Zero (R i)] [∀ i, ZeroMemClass (S i) (R i)] (hBopen : ∀ i, IsOpen (B i : Set (R i))) (hT : cofinite ≤ 𝓟 T) : (𝓝 (inclusion R (fun i ↦ B i) hT 0)) = .map (inclusion R (fun i ↦ B i) hT) (𝓝 0) := nhds_eq_map_inclusion hBopen hT 0
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
nhds_zero_eq_map_ofPre
null
nhds_zero_eq_map_structureMap [Π i, Zero (R i)] [∀ i, ZeroMemClass (S i) (R i)] (hBopen : ∀ i, IsOpen (B i : Set (R i))) : (𝓝 (structureMap R (fun i ↦ B i) cofinite 0)) = .map (structureMap R (fun i ↦ B i) cofinite) (𝓝 0) := nhds_eq_map_structureMap hBopen 0 variable [hBopen : Fact (∀ i, IsOpen (B i : Set (R i)))] @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
nhds_zero_eq_map_structureMap
null
@[to_additive] continuousSMul {G : Type*} [TopologicalSpace G] [Π i, SMul G (R i)] [∀ i, SMulMemClass (S i) G (R i)] [∀ i, ContinuousSMul G (R i)] : ContinuousSMul G (Πʳ i, [R i, B i]) where continuous_smul := by rw [continuous_dom_prod_left hBopen.out] exact fun S hS ↦ (continuous_inclusion hS).comp continuous_smul @[to_additive]
instance
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
continuousSMul
null
isTopologicalGroup [Π i, Group (R i)] [∀ i, SubgroupClass (S i) (R i)] [∀ i, IsTopologicalGroup (R i)] : IsTopologicalGroup (Πʳ i, [R i, B i]) where
instance
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isTopologicalGroup
null
isTopologicalRing [Π i, Ring (R i)] [∀ i, SubringClass (S i) (R i)] [∀ i, IsTopologicalRing (R i)] : IsTopologicalRing (Πʳ i, [R i, B i]) where
instance
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
isTopologicalRing
null
locallyCompactSpace_of_group [Π i, Group (R i)] [∀ i, SubgroupClass (S i) (R i)] [∀ i, IsTopologicalGroup (R i)] [∀ i, LocallyCompactSpace (R i)] (hBcompact : ∀ᶠ i in cofinite, IsCompact (B i : Set (R i))) : LocallyCompactSpace (Πʳ i, [R i, B i]) := haveI : WeaklyLocallyCompactSpace (Πʳ i, [R i, B i]) := weaklyLocallyCompactSpace_of_cofinite hBopen.out hBcompact inferInstance open Pointwise in @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
locallyCompactSpace_of_group
null
mapAlong_continuous (φ_cont : ∀ j, Continuous (φ j)) : Continuous (mapAlong R₁ R₂ f hf φ hφ) := by rw [continuous_dom] intro S hS set T := f ⁻¹' S ∩ {j | MapsTo (φ j) (A₁ (f j)) (A₂ j)} have hT : 𝓕₂ ≤ 𝓟 T := by rw [le_principal_iff] at hS ⊢ exact inter_mem (hf hS) hφ have hf' : Tendsto f (𝓟 T) (𝓟 S) := by aesop have hφ' : ∀ᶠ j in 𝓟 T, MapsTo (φ j) (A₁ (f j)) (A₂ j) := by aesop have key : mapAlong R₁ R₂ f hf φ hφ ∘ inclusion R₁ A₁ hS = inclusion R₂ A₂ hT ∘ mapAlong R₁ R₂ f hf' φ hφ' := rfl rw [key] exact continuous_inclusion _ |>.comp <| continuous_rng_of_principal.mpr <| continuous_pi fun j ↦ φ_cont j |>.comp <| continuous_eval (f j)
theorem
Topology
[ "Mathlib.Topology.Algebra.Group.Pointwise", "Mathlib.Topology.Algebra.RestrictedProduct.Basic", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/RestrictedProduct/TopologicalSpace.lean
mapAlong_continuous
null
IsTopologicalSemiring [TopologicalSpace R] [NonUnitalNonAssocSemiring R] : Prop extends ContinuousAdd R, ContinuousMul R
class
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
IsTopologicalSemiring
a topological semiring is a semiring `R` where addition and multiplication are continuous. We allow for non-unital and non-associative semirings as well. The `IsTopologicalSemiring` class should *only* be instantiated in the presence of a `NonUnitalNonAssocSemiring` instance; if there is an instance of `NonUnitalNonAssocRing`, then `IsTopologicalRing` should be used. Note: in the presence of `NonAssocRing`, these classes are mathematically equivalent (see `IsTopologicalSemiring.continuousNeg_of_mul` or `IsTopologicalSemiring.toIsTopologicalRing`).
IsTopologicalRing [TopologicalSpace R] [NonUnitalNonAssocRing R] : Prop extends IsTopologicalSemiring R, ContinuousNeg R variable {R}
class
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
IsTopologicalRing
A topological ring is a ring `R` where addition, multiplication and negation are continuous. If `R` is a (unital) ring, then continuity of negation can be derived from continuity of multiplication as it is multiplication with `-1`. (See `IsTopologicalSemiring.continuousNeg_of_mul` and `topological_semiring.to_topological_add_group`)
IsTopologicalSemiring.continuousNeg_of_mul [TopologicalSpace R] [NonAssocRing R] [ContinuousMul R] : ContinuousNeg R where continuous_neg := by simpa using (continuous_const.mul continuous_id : Continuous fun x : R => -1 * x)
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
IsTopologicalSemiring.continuousNeg_of_mul
If `R` is a ring with a continuous multiplication, then negation is continuous as well since it is just multiplication with `-1`.
IsTopologicalSemiring.toIsTopologicalRing [TopologicalSpace R] [NonAssocRing R] (_ : IsTopologicalSemiring R) : IsTopologicalRing R where toContinuousNeg := IsTopologicalSemiring.continuousNeg_of_mul
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
IsTopologicalSemiring.toIsTopologicalRing
If `R` is a ring which is a topological semiring, then it is automatically a topological ring. This exists so that one can place a topological ring structure on `R` without explicitly proving `continuous_neg`.
instIsTopologicalSemiring (S : NonUnitalSubsemiring R) : IsTopologicalSemiring S := { S.toSubsemigroup.continuousMul, S.toAddSubmonoid.continuousAdd with }
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
instIsTopologicalSemiring
null
topologicalClosure (s : NonUnitalSubsemiring R) : NonUnitalSubsemiring R := { s.toSubsemigroup.topologicalClosure, s.toAddSubmonoid.topologicalClosure with carrier := _root_.closure (s : Set R) } @[simp]
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
topologicalClosure
The (topological) closure of a non-unital subsemiring of a non-unital topological semiring is itself a non-unital subsemiring.
topologicalClosure_coe (s : NonUnitalSubsemiring R) : (s.topologicalClosure : Set R) = _root_.closure (s : Set R) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
topologicalClosure_coe
null
le_topologicalClosure (s : NonUnitalSubsemiring R) : s ≤ s.topologicalClosure := _root_.subset_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
le_topologicalClosure
null
isClosed_topologicalClosure (s : NonUnitalSubsemiring R) : IsClosed (s.topologicalClosure : Set R) := isClosed_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
isClosed_topologicalClosure
null
topologicalClosure_minimal (s : NonUnitalSubsemiring R) {t : NonUnitalSubsemiring R} (h : s ≤ t) (ht : IsClosed (t : Set R)) : s.topologicalClosure ≤ t := closure_minimal h ht
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
topologicalClosure_minimal
null
nonUnitalCommSemiringTopologicalClosure [T2Space R] (s : NonUnitalSubsemiring R) (hs : ∀ x y : s, x * y = y * x) : NonUnitalCommSemiring s.topologicalClosure := { NonUnitalSubsemiringClass.toNonUnitalSemiring s.topologicalClosure, s.toSubsemigroup.commSemigroupTopologicalClosure hs with }
abbrev
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
nonUnitalCommSemiringTopologicalClosure
If a non-unital subsemiring of a non-unital topological semiring is commutative, then so is its topological closure. See note [reducible non-instances]
topologicalSemiring (S : Subsemiring R) : IsTopologicalSemiring S := { S.toSubmonoid.continuousMul, S.toAddSubmonoid.continuousAdd with }
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
topologicalSemiring
null
continuousSMul (s : Subsemiring R) (X) [TopologicalSpace X] [MulAction R X] [ContinuousSMul R X] : ContinuousSMul s X := Submonoid.continuousSMul
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
continuousSMul
null
Subsemiring.topologicalClosure (s : Subsemiring R) : Subsemiring R := { s.toSubmonoid.topologicalClosure, s.toAddSubmonoid.topologicalClosure with carrier := _root_.closure (s : Set R) } @[simp]
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subsemiring.topologicalClosure
The (topological-space) closure of a subsemiring of a topological semiring is itself a subsemiring.
Subsemiring.topologicalClosure_coe (s : Subsemiring R) : (s.topologicalClosure : Set R) = _root_.closure (s : Set R) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subsemiring.topologicalClosure_coe
null
Subsemiring.le_topologicalClosure (s : Subsemiring R) : s ≤ s.topologicalClosure := _root_.subset_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subsemiring.le_topologicalClosure
null
Subsemiring.isClosed_topologicalClosure (s : Subsemiring R) : IsClosed (s.topologicalClosure : Set R) := isClosed_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subsemiring.isClosed_topologicalClosure
null
Subsemiring.topologicalClosure_minimal (s : Subsemiring R) {t : Subsemiring R} (h : s ≤ t) (ht : IsClosed (t : Set R)) : s.topologicalClosure ≤ t := closure_minimal h ht
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subsemiring.topologicalClosure_minimal
null
Subsemiring.commSemiringTopologicalClosure [T2Space R] (s : Subsemiring R) (hs : ∀ x y : s, x * y = y * x) : CommSemiring s.topologicalClosure := { s.topologicalClosure.toSemiring, s.toSubmonoid.commMonoidTopologicalClosure hs with }
abbrev
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subsemiring.commSemiringTopologicalClosure
If a subsemiring of a topological semiring is commutative, then so is its topological closure. See note [reducible non-instances].
mulLeft_continuous (x : R) : Continuous (AddMonoidHom.mulLeft x) := continuous_const.mul continuous_id
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
mulLeft_continuous
The product topology on the Cartesian product of two topological semirings makes the product into a topological semiring. -/ instance [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] [IsTopologicalSemiring R] [IsTopologicalSemiring S] : IsTopologicalSemiring (R × S) where /-- The product topology on the Cartesian product of two topological rings makes the product into a topological ring. -/ instance [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [IsTopologicalRing R] [IsTopologicalRing S] : IsTopologicalRing (R × S) where end #adaptation_note /-- nightly-2024-04-08 needed to help `Pi.instIsTopologicalSemiring` -/ instance {ι : Type*} {R : ι → Type*} [∀ i, TopologicalSpace (R i)] [∀ i, NonUnitalNonAssocSemiring (R i)] [∀ i, IsTopologicalSemiring (R i)] : ContinuousAdd ((i : ι) → R i) := inferInstance instance Pi.instIsTopologicalSemiring {ι : Type*} {R : ι → Type*} [∀ i, TopologicalSpace (R i)] [∀ i, NonUnitalNonAssocSemiring (R i)] [∀ i, IsTopologicalSemiring (R i)] : IsTopologicalSemiring (∀ i, R i) where instance Pi.instIsTopologicalRing {ι : Type*} {R : ι → Type*} [∀ i, TopologicalSpace (R i)] [∀ i, NonUnitalNonAssocRing (R i)] [∀ i, IsTopologicalRing (R i)] : IsTopologicalRing (∀ i, R i) := ⟨⟩ section MulOpposite open MulOpposite instance [NonUnitalNonAssocSemiring R] [TopologicalSpace R] [ContinuousAdd R] : ContinuousAdd Rᵐᵒᵖ := continuousAdd_induced opAddEquiv.symm instance [NonUnitalNonAssocSemiring R] [TopologicalSpace R] [IsTopologicalSemiring R] : IsTopologicalSemiring Rᵐᵒᵖ := ⟨⟩ instance [NonUnitalNonAssocRing R] [TopologicalSpace R] [ContinuousNeg R] : ContinuousNeg Rᵐᵒᵖ := opHomeomorph.symm.isInducing.continuousNeg fun _ => rfl instance [NonUnitalNonAssocRing R] [TopologicalSpace R] [IsTopologicalRing R] : IsTopologicalRing Rᵐᵒᵖ := ⟨⟩ end MulOpposite section AddOpposite open AddOpposite instance [NonUnitalNonAssocSemiring R] [TopologicalSpace R] [ContinuousMul R] : ContinuousMul Rᵃᵒᵖ := continuousMul_induced opMulEquiv.symm instance [NonUnitalNonAssocSemiring R] [TopologicalSpace R] [IsTopologicalSemiring R] : IsTopologicalSemiring Rᵃᵒᵖ := ⟨⟩ instance [NonUnitalNonAssocRing R] [TopologicalSpace R] [IsTopologicalRing R] : IsTopologicalRing Rᵃᵒᵖ := ⟨⟩ end AddOpposite section variable {R : Type*} [NonUnitalNonAssocRing R] [TopologicalSpace R] theorem IsTopologicalRing.of_addGroup_of_nhds_zero [IsTopologicalAddGroup R] (hmul : Tendsto (uncurry ((· * ·) : R → R → R)) (𝓝 0 ×ˢ 𝓝 0) <| 𝓝 0) (hmul_left : ∀ x₀ : R, Tendsto (fun x : R => x₀ * x) (𝓝 0) <| 𝓝 0) (hmul_right : ∀ x₀ : R, Tendsto (fun x : R => x * x₀) (𝓝 0) <| 𝓝 0) : IsTopologicalRing R where continuous_mul := by refine continuous_of_continuousAt_zero₂ (AddMonoidHom.mul (R := R)) ?_ ?_ ?_ <;> simpa only [ContinuousAt, mul_zero, zero_mul, nhds_prod_eq, AddMonoidHom.mul_apply] theorem IsTopologicalRing.of_nhds_zero (hadd : Tendsto (uncurry ((· + ·) : R → R → R)) (𝓝 0 ×ˢ 𝓝 0) <| 𝓝 0) (hneg : Tendsto (fun x => -x : R → R) (𝓝 0) (𝓝 0)) (hmul : Tendsto (uncurry ((· * ·) : R → R → R)) (𝓝 0 ×ˢ 𝓝 0) <| 𝓝 0) (hmul_left : ∀ x₀ : R, Tendsto (fun x : R => x₀ * x) (𝓝 0) <| 𝓝 0) (hmul_right : ∀ x₀ : R, Tendsto (fun x : R => x * x₀) (𝓝 0) <| 𝓝 0) (hleft : ∀ x₀ : R, 𝓝 x₀ = map (fun x => x₀ + x) (𝓝 0)) : IsTopologicalRing R := have := IsTopologicalAddGroup.of_comm_of_nhds_zero hadd hneg hleft IsTopologicalRing.of_addGroup_of_nhds_zero hmul hmul_left hmul_right end variable [TopologicalSpace R] section variable [NonUnitalNonAssocRing R] [IsTopologicalRing R] instance : IsTopologicalRing (ULift R) where /-- In a topological semiring, the left-multiplication `AddMonoidHom` is continuous.
mulRight_continuous (x : R) : Continuous (AddMonoidHom.mulRight x) := continuous_id.mul continuous_const
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
mulRight_continuous
In a topological semiring, the right-multiplication `AddMonoidHom` is continuous.
instIsTopologicalRing (S : NonUnitalSubring R) : IsTopologicalRing S := { S.toSubsemigroup.continuousMul, inferInstanceAs (IsTopologicalAddGroup S.toAddSubgroup) with }
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
instIsTopologicalRing
null
topologicalClosure (S : NonUnitalSubring R) : NonUnitalSubring R := { S.toSubsemigroup.topologicalClosure, S.toAddSubgroup.topologicalClosure with carrier := _root_.closure (S : Set R) }
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
topologicalClosure
The (topological) closure of a non-unital subring of a non-unital topological ring is itself a non-unital subring.
le_topologicalClosure (s : NonUnitalSubring R) : s ≤ s.topologicalClosure := _root_.subset_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
le_topologicalClosure
null
isClosed_topologicalClosure (s : NonUnitalSubring R) : IsClosed (s.topologicalClosure : Set R) := isClosed_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
isClosed_topologicalClosure
null
topologicalClosure_minimal (s : NonUnitalSubring R) {t : NonUnitalSubring R} (h : s ≤ t) (ht : IsClosed (t : Set R)) : s.topologicalClosure ≤ t := closure_minimal h ht
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
topologicalClosure_minimal
null
nonUnitalCommRingTopologicalClosure [T2Space R] (s : NonUnitalSubring R) (hs : ∀ x y : s, x * y = y * x) : NonUnitalCommRing s.topologicalClosure := { s.topologicalClosure.toNonUnitalRing, s.toSubsemigroup.commSemigroupTopologicalClosure hs with }
abbrev
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
nonUnitalCommRingTopologicalClosure
If a non-unital subring of a non-unital topological ring is commutative, then so is its topological closure. See note [reducible non-instances]
Subring.instIsTopologicalRing (S : Subring R) : IsTopologicalRing S := { S.toSubmonoid.continuousMul, inferInstanceAs (IsTopologicalAddGroup S.toAddSubgroup) with }
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.instIsTopologicalRing
null
Subring.continuousSMul (s : Subring R) (X) [TopologicalSpace X] [MulAction R X] [ContinuousSMul R X] : ContinuousSMul s X := Subsemiring.continuousSMul s.toSubsemiring X
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.continuousSMul
null
Subring.topologicalClosure (S : Subring R) : Subring R := { S.toSubmonoid.topologicalClosure, S.toAddSubgroup.topologicalClosure with carrier := _root_.closure (S : Set R) }
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.topologicalClosure
The (topological-space) closure of a subring of a topological ring is itself a subring.
Subring.le_topologicalClosure (s : Subring R) : s ≤ s.topologicalClosure := _root_.subset_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.le_topologicalClosure
null
Subring.isClosed_topologicalClosure (s : Subring R) : IsClosed (s.topologicalClosure : Set R) := isClosed_closure
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.isClosed_topologicalClosure
null
Subring.topologicalClosure_minimal (s : Subring R) {t : Subring R} (h : s ≤ t) (ht : IsClosed (t : Set R)) : s.topologicalClosure ≤ t := closure_minimal h ht
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.topologicalClosure_minimal
null
Subring.commRingTopologicalClosure [T2Space R] (s : Subring R) (hs : ∀ x y : s, x * y = y * x) : CommRing s.topologicalClosure := { s.topologicalClosure.toRing, s.toSubmonoid.commMonoidTopologicalClosure hs with }
abbrev
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.commRingTopologicalClosure
If a subring of a topological ring is commutative, then so is its topological closure. See note [reducible non-instances].
RingTopology (R : Type u) [Ring R] : Type u extends TopologicalSpace R, IsTopologicalRing R
structure
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
RingTopology
A ring topology on a ring `R` is a topology for which addition, negation and multiplication are continuous.
inhabited {R : Type u} [Ring R] : Inhabited (RingTopology R) := ⟨let _ : TopologicalSpace R := ⊤; { continuous_add := continuous_top continuous_mul := continuous_top continuous_neg := continuous_top }⟩
instance
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
inhabited
null
toTopologicalSpace_injective : Injective (toTopologicalSpace : RingTopology R → TopologicalSpace R) := by intro f g _; cases f; cases g; congr @[ext]
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
toTopologicalSpace_injective
null
ext {f g : RingTopology R} (h : f.IsOpen = g.IsOpen) : f = g := toTopologicalSpace_injective <| TopologicalSpace.ext h
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
ext
null
coinduced {R S : Type*} [t : TopologicalSpace R] [Ring S] (f : R → S) : RingTopology S := sInf { b : RingTopology S | t.coinduced f ≤ b.toTopologicalSpace }
def
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
coinduced
The ordering on ring topologies on the ring `R`. `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ instance : PartialOrder (RingTopology R) := PartialOrder.lift RingTopology.toTopologicalSpace toTopologicalSpace_injective private def def_sInf (S : Set (RingTopology R)) : RingTopology R := let _ := sInf (toTopologicalSpace '' S) { toContinuousAdd := continuousAdd_sInf <| forall_mem_image.2 fun t _ => let _ := t.1; t.toContinuousAdd toContinuousMul := continuousMul_sInf <| forall_mem_image.2 fun t _ => let _ := t.1; t.toContinuousMul toContinuousNeg := continuousNeg_sInf <| forall_mem_image.2 fun t _ => let _ := t.1; t.toContinuousNeg } /-- Ring topologies on `R` form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. The infimum of a collection of ring topologies is the topology generated by all their open sets (which is a ring topology). The supremum of two ring topologies `s` and `t` is the infimum of the family of all ring topologies contained in the intersection of `s` and `t`. -/ instance : CompleteSemilatticeInf (RingTopology R) where sInf := def_sInf sInf_le := fun _ a haS => sInf_le (α := TopologicalSpace R) ⟨a, ⟨haS, rfl⟩⟩ le_sInf := fun _ _ h => le_sInf (α := TopologicalSpace R) <| forall_mem_image.2 h instance : CompleteLattice (RingTopology R) := completeLatticeOfCompleteSemilatticeInf _ /-- Given `f : R → S` and a topology on `R`, the coinduced ring topology on `S` is the finest topology such that `f` is continuous and `S` is a topological ring.
coinduced_continuous {R S : Type*} [t : TopologicalSpace R] [Ring S] (f : R → S) : Continuous[t, (coinduced f).toTopologicalSpace] f := continuous_sInf_rng.2 <| forall_mem_image.2 fun _ => continuous_iff_coinduced_le.2
theorem
Topology
[ "Mathlib.Algebra.Order.AbsoluteValue.Basic", "Mathlib.Algebra.Ring.Opposite", "Mathlib.Algebra.Ring.Prod", "Mathlib.Algebra.Ring.Subring.Basic", "Mathlib.Topology.Algebra.Group.GroupTopology" ]
Mathlib/Topology/Algebra/Ring/Basic.lean
coinduced_continuous
null