fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
isOpenMap_toWeakSpace_symm : IsOpenMap (toWeakSpace 𝕜 E).symm := IsOpenMap.of_inverse (toWeakSpaceCLM 𝕜 E).cont (toWeakSpace 𝕜 E).left_inv (toWeakSpace 𝕜 E).right_inv
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
isOpenMap_toWeakSpace_symm
The canonical map from `WeakSpace 𝕜 E` to `E` is an open map.
WeakSpace.isOpen_of_isOpen (V : Set E) (hV : IsOpen ((toWeakSpaceCLM 𝕜 E) '' V : Set (WeakSpace 𝕜 E))) : IsOpen V := by simpa [Set.image_image] using isOpenMap_toWeakSpace_symm _ hV
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
WeakSpace.isOpen_of_isOpen
A set in `E` which is open in the weak topology is open.
tendsto_iff_forall_eval_tendsto_topDualPairing {l : Filter α} {f : α → WeakDual 𝕜 E} {x : WeakDual 𝕜 E} : Tendsto f l (𝓝 x) ↔ ∀ y, Tendsto (fun i => topDualPairing 𝕜 E (f i) y) l (𝓝 (topDualPairing 𝕜 E x y)) := WeakBilin.tendsto_iff_forall_eval_tendsto _ ContinuousLinearMap.coe_injective
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
tendsto_iff_forall_eval_tendsto_topDualPairing
null
instAddCommGroup : AddCommGroup (WeakSpace 𝕜 E) := WeakBilin.instAddCommGroup (topDualPairing 𝕜 E).flip
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instAddCommGroup
null
instIsTopologicalAddGroup : IsTopologicalAddGroup (WeakSpace 𝕜 E) := WeakBilin.instIsTopologicalAddGroup (topDualPairing 𝕜 E).flip
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instIsTopologicalAddGroup
null
DenseRange.addChar_eq_of_eval_one_eq {A M : Type*} [TopologicalSpace A] [AddMonoidWithOne A] [Monoid M] [TopologicalSpace M] [T2Space M] (hdr : DenseRange ((↑) : ℕ → A)) {κ₁ κ₂ : AddChar A M} (hκ₁ : Continuous κ₁) (hκ₂ : Continuous κ₂) (h : κ₁ 1 = κ₂ 1) : κ₁ = κ₂ := by refine DFunLike.coe_injective <| hdr.equalizer hκ₁ hκ₂ (funext fun n ↦ ?_) simp only [Function.comp_apply, ← nsmul_one, h, AddChar.map_nsmul_eq_pow]
lemma
Topology
[ "Mathlib.Algebra.Group.AddChar", "Mathlib.Topology.DenseEmbedding" ]
Mathlib/Topology/Algebra/Monoid/AddChar.lean
DenseRange.addChar_eq_of_eval_one_eq
null
ContinuousAdd (M : Type*) [TopologicalSpace M] [Add M] : Prop where continuous_add : Continuous fun p : M × M => p.1 + p.2
class
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
ContinuousAdd
Basic hypothesis to talk about a topological additive monoid or a topological additive semigroup. A topological additive monoid over `M`, for example, is obtained by requiring both the instances `AddMonoid M` and `ContinuousAdd M`. Continuity in only the left/right argument can be stated using `ContinuousConstVAdd α α`/`ContinuousConstVAdd αᵐᵒᵖ α`.
@[to_additive] ContinuousMul (M : Type*) [TopologicalSpace M] [Mul M] : Prop where continuous_mul : Continuous fun p : M × M => p.1 * p.2
class
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
ContinuousMul
Basic hypothesis to talk about a topological monoid or a topological semigroup. A topological monoid over `M`, for example, is obtained by requiring both the instances `Monoid M` and `ContinuousMul M`. Continuity in only the left/right argument can be stated using `ContinuousConstSMul α α`/`ContinuousConstSMul αᵐᵒᵖ α`.
@[to_additive (attr := continuity, fun_prop)] continuous_mul : Continuous fun p : M × M => p.1 * p.2 := ContinuousMul.continuous_mul @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
continuous_mul
null
Filter.Tendsto.mul {α : Type*} {f g : α → M} {x : Filter α} {a b : M} (hf : Tendsto f x (𝓝 a)) (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x ↦ f x * g x) x (𝓝 (a * b)) := (continuous_mul.tendsto _).comp (hf.prodMk_nhds hg) variable {X : Type*} [TopologicalSpace X] {f g : X → M} {s : Set X} {x : X} @[to_additive (attr := continuity, fun_prop)]
theorem
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
Filter.Tendsto.mul
null
Continuous.mul (hf : Continuous f) (hg : Continuous g) : Continuous fun x => f x * g x := continuous_mul.comp₂ hf hg @[to_additive]
theorem
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
Continuous.mul
null
ContinuousWithinAt.mul (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) : ContinuousWithinAt (fun x => f x * g x) s x := Filter.Tendsto.mul hf hg @[to_additive (attr := fun_prop)]
theorem
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
ContinuousWithinAt.mul
null
ContinuousAt.mul (hf : ContinuousAt f x) (hg : ContinuousAt g x) : ContinuousAt (fun x => f x * g x) x := Filter.Tendsto.mul hf hg @[to_additive (attr := fun_prop)]
theorem
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
ContinuousAt.mul
null
ContinuousOn.mul (hf : ContinuousOn f s) (hg : ContinuousOn g s) : ContinuousOn (fun x => f x * g x) s := fun x hx ↦ (hf x hx).mul (hg x hx)
theorem
Topology
[ "Mathlib.Topology.Constructions.SumProd" ]
Mathlib/Topology/Algebra/Monoid/Defs.lean
ContinuousOn.mul
null
continuous_map (M : Type*) [AddCommMonoid M] [TopologicalSpace M] [ContinuousAdd M] {X Y : Type*} [Finite X] [Finite Y] (f : X → Y) : Continuous (FunOnFinite.map (M := M) f) := by classical have := Fintype.ofFinite X refine continuous_pi (fun y ↦ ?_) simp only [FunOnFinite.map_apply_apply] exact continuous_finset_sum _ (fun _ _ ↦ continuous_apply _)
lemma
Topology
[ "Mathlib.Topology.Algebra.Monoid", "Mathlib.LinearAlgebra.Finsupp.Pi" ]
Mathlib/Topology/Algebra/Monoid/FunOnFinite.lean
continuous_map
null
continuous_linearMap (R M : Type*) [Semiring R] [AddCommMonoid M] [Module R M] [TopologicalSpace M] [ContinuousAdd M] {X Y : Type*} [Finite X] [Finite Y] (f : X → Y) : Continuous (FunOnFinite.linearMap R M f) := FunOnFinite.continuous_map _ _
lemma
Topology
[ "Mathlib.Topology.Algebra.Monoid", "Mathlib.LinearAlgebra.Finsupp.Pi" ]
Mathlib/Topology/Algebra/Monoid/FunOnFinite.lean
continuous_linearMap
null
adic_basis (I : Ideal R) : SubmodulesRingBasis fun n : ℕ => (I ^ n • ⊤ : Ideal R) := { inter := by suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by simpa only [smul_eq_mul, mul_top, Algebra.algebraMap_self, map_id, le_inf_iff] using this intro i j exact ⟨max i j, pow_le_pow_right (le_max_left i j), pow_le_pow_right (le_max_right i j)⟩ leftMul := by suffices ∀ (a : R) (i : ℕ), ∃ j : ℕ, a • I ^ j ≤ I ^ i by simpa only [smul_top_eq_map, Algebra.algebraMap_self, map_id] using this intro r n use n rintro a ⟨x, hx, rfl⟩ exact (I ^ n).smul_mem r hx mul := by suffices ∀ i : ℕ, ∃ j : ℕ, (↑(I ^ j) * ↑(I ^ j) : Set R) ⊆ (↑(I ^ i) : Set R) by simpa only [smul_top_eq_map, Algebra.algebraMap_self, map_id] using this intro n use n rintro a ⟨x, _hx, b, hb, rfl⟩ exact (I ^ n).smul_mem x hb }
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
adic_basis
null
ringFilterBasis (I : Ideal R) := I.adic_basis.toRing_subgroups_basis.toRingFilterBasis
def
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
ringFilterBasis
The adic ring filter basis associated to an ideal `I` is made of powers of `I`.
adicTopology (I : Ideal R) : TopologicalSpace R := (adic_basis I).topology
def
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
adicTopology
The adic topology associated to an ideal `I`. This topology admits powers of `I` as a basis of neighborhoods of zero. It is compatible with the ring structure and is non-archimedean.
nonarchimedean (I : Ideal R) : @NonarchimedeanRing R _ I.adicTopology := I.adic_basis.toRing_subgroups_basis.nonarchimedean
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
nonarchimedean
null
hasBasis_nhds_zero_adic (I : Ideal R) : HasBasis (@nhds R I.adicTopology (0 : R)) (fun _n : ℕ => True) fun n => ((I ^ n : Ideal R) : Set R) := ⟨by intro U rw [I.ringFilterBasis.toAddGroupFilterBasis.nhds_zero_hasBasis.mem_iff] constructor · rintro ⟨-, ⟨i, rfl⟩, h⟩ replace h : ↑(I ^ i) ⊆ U := by simpa using h exact ⟨i, trivial, h⟩ · rintro ⟨i, -, h⟩ exact ⟨(I ^ i : Ideal R), ⟨i, by simp⟩, h⟩⟩
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
hasBasis_nhds_zero_adic
For the `I`-adic topology, the neighborhoods of zero has basis given by the powers of `I`.
hasBasis_nhds_adic (I : Ideal R) (x : R) : HasBasis (@nhds R I.adicTopology x) (fun _n : ℕ => True) fun n => (fun y => x + y) '' (I ^ n : Ideal R) := by letI := I.adicTopology have := I.hasBasis_nhds_zero_adic.map fun y => x + y rwa [map_add_left_nhds_zero x] at this variable (I : Ideal R) (M : Type*) [AddCommGroup M] [Module R M]
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
hasBasis_nhds_adic
null
adic_module_basis : I.ringFilterBasis.SubmodulesBasis fun n : ℕ => I ^ n • (⊤ : Submodule R M) := { inter := fun i j => ⟨max i j, le_inf_iff.mpr ⟨smul_mono_left <| pow_le_pow_right (le_max_left i j), smul_mono_left <| pow_le_pow_right (le_max_right i j)⟩⟩ smul := fun m i => ⟨(I ^ i • ⊤ : Ideal R), ⟨i, by simp⟩, fun a a_in => by replace a_in : a ∈ I ^ i := by simpa [(I ^ i).mul_top] using a_in exact smul_mem_smul a_in mem_top⟩ }
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
adic_module_basis
null
adicModuleTopology : TopologicalSpace M := @ModuleFilterBasis.topology R M _ I.adic_basis.topology _ _ (I.ringFilterBasis.moduleFilterBasis (I.adic_module_basis M))
def
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
adicModuleTopology
The topology on an `R`-module `M` associated to an ideal `M`. Submodules $I^n M$, written `I^n • ⊤` form a basis of neighborhoods of zero.
openAddSubgroup (n : ℕ) : @OpenAddSubgroup R _ I.adicTopology := by letI := I.adicTopology refine ⟨(I ^ n).toAddSubgroup, ?_⟩ convert (I.adic_basis.toRing_subgroups_basis.openAddSubgroup n).isOpen change (↑(I ^ n) : Set R) = ↑(I ^ n • (⊤ : Ideal R)) simp
def
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
openAddSubgroup
The elements of the basis of neighborhoods of zero for the `I`-adic topology on an `R`-module `M`, seen as open additive subgroups of `M`.
IsAdic [H : TopologicalSpace R] (J : Ideal R) : Prop := H = J.adicTopology
def
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
IsAdic
Given a topology on a ring `R` and an ideal `J`, `IsAdic J` means the topology is the `J`-adic one.
isAdic_iff [top : TopologicalSpace R] [IsTopologicalRing R] {J : Ideal R} : IsAdic J ↔ (∀ n : ℕ, IsOpen ((J ^ n : Ideal R) : Set R)) ∧ ∀ s ∈ 𝓝 (0 : R), ∃ n : ℕ, ((J ^ n : Ideal R) : Set R) ⊆ s := by constructor · intro H change _ = _ at H rw [H] letI := J.adicTopology constructor · intro n exact (J.openAddSubgroup n).isOpen' · intro s hs simpa using J.hasBasis_nhds_zero_adic.mem_iff.mp hs · rintro ⟨H₁, H₂⟩ apply IsTopologicalAddGroup.ext · apply @IsTopologicalRing.to_topologicalAddGroup · apply (RingSubgroupsBasis.toRingFilterBasis _).toAddGroupFilterBasis.isTopologicalAddGroup · ext s letI := Ideal.adic_basis J rw [J.hasBasis_nhds_zero_adic.mem_iff] constructor <;> intro H · rcases H₂ s H with ⟨n, h⟩ exact ⟨n, trivial, h⟩ · rcases H with ⟨n, -, hn⟩ rw [mem_nhds_iff] exact ⟨_, hn, H₁ n, (J ^ n).zero_mem⟩ variable [TopologicalSpace R] [IsTopologicalRing R]
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
isAdic_iff
A topological ring is `J`-adic if and only if it admits the powers of `J` as a basis of open neighborhoods of zero.
is_ideal_adic_pow {J : Ideal R} (h : IsAdic J) {n : ℕ} (hn : 0 < n) : IsAdic (J ^ n) := by rw [isAdic_iff] at h ⊢ constructor · intro m rw [← pow_mul] apply h.left · intro V hV obtain ⟨m, hm⟩ := h.right V hV use m refine Set.Subset.trans ?_ hm cases n · exfalso exact Nat.not_succ_le_zero 0 hn rw [← pow_mul, Nat.succ_mul] apply Ideal.pow_le_pow_right apply Nat.le_add_left
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
is_ideal_adic_pow
null
is_bot_adic_iff {A : Type*} [CommRing A] [TopologicalSpace A] [IsTopologicalRing A] : IsAdic (⊥ : Ideal A) ↔ DiscreteTopology A := by rw [isAdic_iff] constructor · rintro ⟨h, _h'⟩ rw [discreteTopology_iff_isOpen_singleton_zero] simpa using h 1 · intros constructor · simp · intro U U_nhds use 1 simp [mem_of_mem_nhds U_nhds] omit [IsTopologicalRing R] in
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
is_bot_adic_iff
null
IsAdic.hasBasis_nhds_zero {I : Ideal R} (hI : IsAdic I) : (𝓝 (0 : R)).HasBasis (fun _ ↦ True) fun n ↦ ↑(I ^ n) := hI ▸ Ideal.hasBasis_nhds_zero_adic I omit [IsTopologicalRing R] in
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
IsAdic.hasBasis_nhds_zero
null
IsAdic.hasBasis_nhds {I : Ideal R} (hI : IsAdic I) (x : R) : (𝓝 x).HasBasis (fun _ ↦ True) fun n ↦ (x + ·) '' ↑(I ^ n) := hI ▸ Ideal.hasBasis_nhds_adic I x
theorem
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
IsAdic.hasBasis_nhds
null
WithIdeal (R : Type*) [CommRing R] where i : Ideal R
class
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
WithIdeal
The ring `R` is equipped with a preferred ideal.
topologicalSpaceModule (M : Type*) [AddCommGroup M] [Module R M] : TopologicalSpace M := (i : Ideal R).adicModuleTopology M /- The next examples are kept to make sure potential future refactors won't break the instance chaining. -/
def
Topology
[ "Mathlib.RingTheory.Ideal.Maps", "Mathlib.Topology.Algebra.Nonarchimedean.Bases", "Mathlib.Topology.Algebra.UniformRing" ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
topologicalSpaceModule
The adic topology on an `R` module coming from the ideal `WithIdeal.I`. This cannot be an instance because `R` cannot be inferred from `M`.
RingSubgroupsBasis {A ι : Type*} [Ring A] (B : ι → AddSubgroup A) : Prop where /-- Condition for `B` to be a filter basis on `A`. -/ inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j /-- For each set `B` in the submodule basis on `A`, there is another basis element `B'` such that the set-theoretic product `B' * B'` is in `B`. -/ mul : ∀ i, ∃ j, (B j : Set A) * B j ⊆ B i /-- For any element `x : A` and any set `B` in the submodule basis on `A`, there is another basis element `B'` such that `B' * x` is in `B`. -/ leftMul : ∀ x : A, ∀ i, ∃ j, (B j : Set A) ⊆ (x * ·) ⁻¹' B i /-- For any element `x : A` and any set `B` in the submodule basis on `A`, there is another basis element `B'` such that `x * B'` is in `B`. -/ rightMul : ∀ x : A, ∀ i, ∃ j, (B j : Set A) ⊆ (· * x) ⁻¹' B i
structure
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
RingSubgroupsBasis
A family of additive subgroups on a ring `A` is a subgroups basis if it satisfies some axioms ensuring there is a topology on `A` which is compatible with the ring structure and admits this family as a basis of neighborhoods of zero.
of_comm {A ι : Type*} [CommRing A] (B : ι → AddSubgroup A) (inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j) (mul : ∀ i, ∃ j, (B j : Set A) * B j ⊆ B i) (leftMul : ∀ x : A, ∀ i, ∃ j, (B j : Set A) ⊆ (fun y : A => x * y) ⁻¹' B i) : RingSubgroupsBasis B := { inter mul leftMul rightMul := fun x i ↦ (leftMul x i).imp fun j hj ↦ by simpa only [mul_comm] using hj }
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
of_comm
null
toRingFilterBasis [Nonempty ι] {B : ι → AddSubgroup A} (hB : RingSubgroupsBasis B) : RingFilterBasis A where sets := { U | ∃ i, U = B i } nonempty := by inhabit ι exact ⟨B default, default, rfl⟩ inter_sets := by rintro _ _ ⟨i, rfl⟩ ⟨j, rfl⟩ obtain ⟨k, hk⟩ := hB.inter i j use B k constructor · use k · exact hk zero' := by rintro _ ⟨i, rfl⟩ exact (B i).zero_mem add' := by rintro _ ⟨i, rfl⟩ use B i constructor · use i · rintro x ⟨y, y_in, z, z_in, rfl⟩ exact (B i).add_mem y_in z_in neg' := by rintro _ ⟨i, rfl⟩ use B i constructor · use i · intro x x_in exact (B i).neg_mem x_in conj' := by rintro x₀ _ ⟨i, rfl⟩ use B i constructor · use i · simp mul' := by rintro _ ⟨i, rfl⟩ obtain ⟨k, hk⟩ := hB.mul i use B k constructor · use k · exact hk mul_left' := by rintro x₀ _ ⟨i, rfl⟩ obtain ⟨k, hk⟩ := hB.leftMul x₀ i use B k constructor · use k · exact hk mul_right' := by ...
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
toRingFilterBasis
Every subgroups basis on a ring leads to a ring filter basis.
mem_addGroupFilterBasis_iff {V : Set A} : V ∈ hB.toRingFilterBasis.toAddGroupFilterBasis ↔ ∃ i, V = B i := Iff.rfl
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
mem_addGroupFilterBasis_iff
null
mem_addGroupFilterBasis (i) : (B i : Set A) ∈ hB.toRingFilterBasis.toAddGroupFilterBasis := ⟨i, rfl⟩
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
mem_addGroupFilterBasis
null
topology : TopologicalSpace A := hB.toRingFilterBasis.toAddGroupFilterBasis.topology
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
topology
The topology defined from a subgroups basis, admitting the given subgroups as a basis of neighborhoods of zero.
hasBasis_nhds_zero : HasBasis (@nhds A hB.topology 0) (fun _ => True) fun i => B i := ⟨by intro s rw [hB.toRingFilterBasis.toAddGroupFilterBasis.nhds_zero_hasBasis.mem_iff] constructor · rintro ⟨-, ⟨i, rfl⟩, hi⟩ exact ⟨i, trivial, hi⟩ · rintro ⟨i, -, hi⟩ exact ⟨B i, ⟨i, rfl⟩, hi⟩⟩
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
hasBasis_nhds_zero
null
hasBasis_nhds (a : A) : HasBasis (@nhds A hB.topology a) (fun _ => True) fun i => { b | b - a ∈ B i } := ⟨by intro s rw [(hB.toRingFilterBasis.toAddGroupFilterBasis.nhds_hasBasis a).mem_iff] simp only [true_and] constructor · rintro ⟨-, ⟨i, rfl⟩, hi⟩ use i suffices h : { b : A | b - a ∈ B i } = (fun y => a + y) '' ↑(B i) by rw [h] assumption simp only [image_add_left, neg_add_eq_sub] ext b simp · rintro ⟨i, hi⟩ use B i constructor · use i · rw [image_subset_iff] rintro b b_in apply hi simpa using b_in⟩
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
hasBasis_nhds
null
openAddSubgroup (i : ι) : @OpenAddSubgroup A _ hB.topology := let _ := hB.topology { B i with isOpen' := by rw [isOpen_iff_mem_nhds] intro a a_in rw [(hB.hasBasis_nhds a).mem_iff] use i, trivial rintro b b_in simpa using (B i).add_mem a_in b_in }
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
openAddSubgroup
Given a subgroups basis, the basis elements as open additive subgroups in the associated topology.
nonarchimedean : @NonarchimedeanRing A _ hB.topology := by letI := hB.topology constructor intro U hU obtain ⟨i, -, hi : (B i : Set A) ⊆ U⟩ := hB.hasBasis_nhds_zero.mem_iff.mp hU exact ⟨hB.openAddSubgroup i, hi⟩
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
nonarchimedean
null
SubmodulesRingBasis (B : ι → Submodule R A) : Prop where /-- Condition for `B` to be a filter basis on `A`. -/ inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j /-- For any element `a : A` and any set `B` in the submodule basis on `A`, there is another basis element `B'` such that `a • B'` is in `B`. -/ leftMul : ∀ (a : A) (i), ∃ j, a • B j ≤ B i /-- For each set `B` in the submodule basis on `A`, there is another basis element `B'` such that the set-theoretic product `B' * B'` is in `B`. -/ mul : ∀ i, ∃ j, (B j : Set A) * B j ⊆ B i
structure
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
SubmodulesRingBasis
A family of submodules in a commutative `R`-algebra `A` is a submodules basis if it satisfies some axioms ensuring there is a topology on `A` which is compatible with the ring structure and admits this family as a basis of neighborhoods of zero.
toRing_subgroups_basis (hB : SubmodulesRingBasis B) : RingSubgroupsBasis fun i => (B i).toAddSubgroup := by apply RingSubgroupsBasis.of_comm (fun i => (B i).toAddSubgroup) hB.inter hB.mul intro a i rcases hB.leftMul a i with ⟨j, hj⟩ use j rintro b (b_in : b ∈ B j) exact hj ⟨b, b_in, rfl⟩
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
toRing_subgroups_basis
null
topology [Nonempty ι] (hB : SubmodulesRingBasis B) : TopologicalSpace A := hB.toRing_subgroups_basis.topology
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
topology
The topology associated to a basis of submodules in an algebra.
SubmodulesBasis [TopologicalSpace R] (B : ι → Submodule R M) : Prop where /-- Condition for `B` to be a filter basis on `M`. -/ inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j /-- For any element `m : M` and any set `B` in the basis, `a • m` lies in `B` for all `a` sufficiently close to `0`. -/ smul : ∀ (m : M) (i : ι), ∀ᶠ a in 𝓝 (0 : R), a • m ∈ B i
structure
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
SubmodulesBasis
A family of submodules in an `R`-module `M` is a submodules basis if it satisfies some axioms ensuring there is a topology on `M` which is compatible with the module structure and admits this family as a basis of neighborhoods of zero.
toModuleFilterBasis : ModuleFilterBasis R M where sets := { U | ∃ i, U = B i } nonempty := by inhabit ι exact ⟨B default, default, rfl⟩ inter_sets := by rintro _ _ ⟨i, rfl⟩ ⟨j, rfl⟩ obtain ⟨k, hk⟩ := hB.inter i j use B k constructor · use k · exact hk zero' := by rintro _ ⟨i, rfl⟩ exact (B i).zero_mem add' := by rintro _ ⟨i, rfl⟩ use B i constructor · use i · rintro x ⟨y, y_in, z, z_in, rfl⟩ exact (B i).add_mem y_in z_in neg' := by rintro _ ⟨i, rfl⟩ use B i constructor · use i · intro x x_in exact (B i).neg_mem x_in conj' := by rintro x₀ _ ⟨i, rfl⟩ use B i constructor · use i · simp smul' := by rintro _ ⟨i, rfl⟩ use univ constructor · exact univ_mem · use B i constructor · use i · rintro _ ⟨a, -, m, hm, rfl⟩ exact (B i).smul_mem _ hm smul_left' := by rintro x₀ _ ⟨i, rfl⟩ use B i constructor · use i · intro m ...
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
toModuleFilterBasis
The image of a submodules basis is a module filter basis.
topology : TopologicalSpace M := hB.toModuleFilterBasis.toAddGroupFilterBasis.topology
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
topology
The topology associated to a basis of submodules in a module.
openAddSubgroup (i : ι) : @OpenAddSubgroup M _ hB.topology := let _ := hB.topology { (B i).toAddSubgroup with isOpen' := by letI := hB.topology rw [isOpen_iff_mem_nhds] intro a a_in rw [(hB.toModuleFilterBasis.toAddGroupFilterBasis.nhds_hasBasis a).mem_iff] use B i constructor · use i · rintro - ⟨b, b_in, rfl⟩ exact (B i).add_mem a_in b_in }
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
openAddSubgroup
Given a submodules basis, the basis elements as open additive subgroups in the associated topology.
nonarchimedean (hB : SubmodulesBasis B) : @NonarchimedeanAddGroup M _ hB.topology := by letI := hB.topology constructor intro U hU obtain ⟨-, ⟨i, rfl⟩, hi : (B i : Set M) ⊆ U⟩ := hB.toModuleFilterBasis.toAddGroupFilterBasis.nhds_zero_hasBasis.mem_iff.mp hU exact ⟨hB.openAddSubgroup i, hi⟩ library_note "non-Archimedean non-instances"/-- The non-Archimedean subgroup basis lemmas cannot be instances because some instances (such as `MeasureTheory.AEEqFun.instAddMonoid` or `IsTopologicalAddGroup.toContinuousAdd`) cause the search for `@IsTopologicalAddGroup β ?m1 ?m2`, i.e. a search for a topological group where the topology/group structure are unknown. -/
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
nonarchimedean
null
SubmodulesRingBasis.toSubmodulesBasis : SubmodulesBasis B := { inter := hB.inter smul := hsmul }
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
SubmodulesRingBasis.toSubmodulesBasis
null
RingFilterBasis.SubmodulesBasis (BR : RingFilterBasis R) (B : ι → Submodule R M) : Prop where /-- Condition for `B` to be a filter basis on `M`. -/ inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j /-- For any element `m : M` and any set `B i` in the submodule basis on `M`, there is a `U` in the ring filter basis on `R` such that `U * m` is in `B i`. -/ smul : ∀ (m : M) (i : ι), ∃ U ∈ BR, U ⊆ (· • m) ⁻¹' B i
structure
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
RingFilterBasis.SubmodulesBasis
Given a ring filter basis on a commutative ring `R`, define a compatibility condition on a family of submodules of an `R`-module `M`. This compatibility condition allows to get a topological module structure.
RingFilterBasis.submodulesBasisIsBasis (BR : RingFilterBasis R) {B : ι → Submodule R M} (hB : BR.SubmodulesBasis B) : @_root_.SubmodulesBasis ι R _ M _ _ BR.topology B := let _ := BR.topology { inter := hB.inter smul := by letI := BR.topology intro m i rcases hB.smul m i with ⟨V, V_in, hV⟩ exact mem_of_superset (BR.toAddGroupFilterBasis.mem_nhds_zero V_in) hV }
theorem
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
RingFilterBasis.submodulesBasisIsBasis
null
RingFilterBasis.moduleFilterBasis [Nonempty ι] (BR : RingFilterBasis R) {B : ι → Submodule R M} (hB : BR.SubmodulesBasis B) : @ModuleFilterBasis R M _ BR.topology _ _ := @SubmodulesBasis.toModuleFilterBasis ι R _ M _ _ BR.topology _ _ (BR.submodulesBasisIsBasis hB)
def
Topology
[ "Mathlib.Algebra.Algebra.Basic", "Mathlib.Algebra.Module.Submodule.Pointwise", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Bases.lean
RingFilterBasis.moduleFilterBasis
The module filter basis associated to a ring filter basis and a compatible submodule basis. This allows to build a topological module structure compatible with the given module structure and the topology associated to the given ring filter basis.
NonarchimedeanAddGroup (G : Type*) [AddGroup G] [TopologicalSpace G] : Prop extends IsTopologicalAddGroup G where is_nonarchimedean : ∀ U ∈ 𝓝 (0 : G), ∃ V : OpenAddSubgroup G, (V : Set G) ⊆ U
class
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
NonarchimedeanAddGroup
A topological additive group is nonarchimedean if every neighborhood of 0 contains an open subgroup.
@[to_additive] NonarchimedeanGroup (G : Type*) [Group G] [TopologicalSpace G] : Prop extends IsTopologicalGroup G where is_nonarchimedean : ∀ U ∈ 𝓝 (1 : G), ∃ V : OpenSubgroup G, (V : Set G) ⊆ U
class
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
NonarchimedeanGroup
A topological group is nonarchimedean if every neighborhood of 1 contains an open subgroup.
NonarchimedeanRing (R : Type*) [Ring R] [TopologicalSpace R] : Prop extends IsTopologicalRing R where is_nonarchimedean : ∀ U ∈ 𝓝 (0 : R), ∃ V : OpenAddSubgroup R, (V : Set R) ⊆ U
class
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
NonarchimedeanRing
A topological ring is nonarchimedean if its underlying topological additive group is nonarchimedean.
@[to_additive] nonarchimedean_of_emb (f : G →* H) (emb : IsOpenEmbedding f) : NonarchimedeanGroup H := { is_nonarchimedean := fun U hU => have h₁ : f ⁻¹' U ∈ 𝓝 (1 : G) := by apply emb.continuous.tendsto rwa [f.map_one] let ⟨V, hV⟩ := is_nonarchimedean (f ⁻¹' U) h₁ ⟨{ Subgroup.map f V with isOpen' := emb.isOpenMap _ V.isOpen }, Set.image_subset_iff.2 hV⟩ }
theorem
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
nonarchimedean_of_emb
Every nonarchimedean ring is naturally a nonarchimedean additive group. -/ instance (priority := 100) NonarchimedeanRing.to_nonarchimedeanAddGroup (R : Type*) [Ring R] [TopologicalSpace R] [t : NonarchimedeanRing R] : NonarchimedeanAddGroup R := { t with } namespace NonarchimedeanGroup variable {G : Type*} [Group G] [TopologicalSpace G] [NonarchimedeanGroup G] variable {H : Type*} [Group H] [TopologicalSpace H] [IsTopologicalGroup H] variable {K : Type*} [Group K] [TopologicalSpace K] [NonarchimedeanGroup K] /-- If a topological group embeds into a nonarchimedean group, then it is nonarchimedean.
@[to_additive NonarchimedeanAddGroup.prod_subset /-- An open neighborhood of the identity in the Cartesian product of two nonarchimedean groups contains the Cartesian product of an open neighborhood in each group. -/] prod_subset {U} (hU : U ∈ 𝓝 (1 : G × K)) : ∃ (V : OpenSubgroup G) (W : OpenSubgroup K), (V : Set G) ×ˢ (W : Set K) ⊆ U := by rw [nhds_prod_eq, Filter.mem_prod_iff] at hU rcases hU with ⟨U₁, hU₁, U₂, hU₂, h⟩ obtain ⟨V, hV⟩ := is_nonarchimedean _ hU₁ obtain ⟨W, hW⟩ := is_nonarchimedean _ hU₂ use V grind
theorem
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
prod_subset
An open neighborhood of the identity in the Cartesian product of two nonarchimedean groups contains the Cartesian product of an open neighborhood in each group.
@[to_additive NonarchimedeanAddGroup.prod_self_subset /-- An open neighborhood of the identity in the Cartesian square of a nonarchimedean group contains the Cartesian square of an open neighborhood in the group. -/] prod_self_subset {U} (hU : U ∈ 𝓝 (1 : G × G)) : ∃ V : OpenSubgroup G, (V : Set G) ×ˢ (V : Set G) ⊆ U := let ⟨V, W, h⟩ := prod_subset hU ⟨V ⊓ W, by refine Set.Subset.trans (Set.prod_mono ?_ ?_) ‹_› <;> simp⟩
theorem
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
prod_self_subset
An open neighborhood of the identity in the Cartesian square of a nonarchimedean group contains the Cartesian square of an open neighborhood in the group.
@[to_additive /-- The Cartesian product of two nonarchimedean groups is nonarchimedean. -/] Prod.instNonarchimedeanGroup : NonarchimedeanGroup (G × K) where is_nonarchimedean _ hU := let ⟨V, W, h⟩ := prod_subset hU ⟨V.prod W, ‹_›⟩
instance
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
Prod.instNonarchimedeanGroup
The Cartesian product of two nonarchimedean groups is nonarchimedean.
left_mul_subset (U : OpenAddSubgroup R) (r : R) : ∃ V : OpenAddSubgroup R, r • (V : Set R) ⊆ U := ⟨U.comap (AddMonoidHom.mulLeft r) (continuous_mul_left r), (U : Set R).image_preimage_subset _⟩
theorem
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
left_mul_subset
The Cartesian product of two nonarchimedean rings is nonarchimedean. -/ instance : NonarchimedeanRing (R × S) where is_nonarchimedean := NonarchimedeanAddGroup.is_nonarchimedean /-- Given an open subgroup `U` and an element `r` of a nonarchimedean ring, there is an open subgroup `V` such that `r • V` is contained in `U`.
mul_subset (U : OpenAddSubgroup R) : ∃ V : OpenAddSubgroup R, (V : Set R) * V ⊆ U := by let ⟨V, H⟩ := prod_self_subset <| (U.isOpen.preimage continuous_mul).mem_nhds <| by simpa only [Set.mem_preimage, Prod.snd_zero, mul_zero] using U.zero_mem use V rintro v ⟨a, ha, b, hb, hv⟩ have hy := H (Set.mk_mem_prod ha hb) simp only [Set.mem_preimage, SetLike.mem_coe, hv] at hy rw [SetLike.mem_coe] exact hy
theorem
Topology
[ "Mathlib.Algebra.Group.Subgroup.Basic", "Mathlib.Topology.Algebra.OpenSubgroup", "Mathlib.Topology.Algebra.Ring.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/Basic.lean
mul_subset
An open subgroup of a nonarchimedean ring contains the square of another one.
@[to_additive] exists_openSubgroup_separating {a b : G} (h : a ≠ b) : ∃ V : OpenSubgroup G, Disjoint (a • (V : Set G)) (b • V) := by obtain ⟨u, v, _, open_v, mem_u, mem_v, dis⟩ := t2_separation (h ∘ inv_mul_eq_one.mp) obtain ⟨V, hV⟩ := is_nonarchimedean v (open_v.mem_nhds mem_v) use V simp only [Disjoint, Set.le_eq_subset, Set.bot_eq_empty, Set.subset_empty_iff] intro x mem_aV mem_bV by_contra! con obtain ⟨s, hs⟩ := con have hsa : s ∈ a • (V : Set G) := mem_aV hs have hsb : s ∈ b • (V : Set G) := mem_bV hs rw [mem_leftCoset_iff] at hsa hsb refine dis.subset_compl_right mem_u (hV ?_) simpa [mul_assoc] using mul_mem hsa (inv_mem hsb) @[to_additive]
lemma
Topology
[ "Mathlib.Topology.Algebra.Nonarchimedean.Basic" ]
Mathlib/Topology/Algebra/Nonarchimedean/TotallyDisconnected.lean
exists_openSubgroup_separating
null
Rat.denseRange_cast {𝕜} [Field 𝕜] [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [TopologicalSpace 𝕜] [OrderTopology 𝕜] [Archimedean 𝕜] : DenseRange ((↑) : ℚ → 𝕜) := dense_of_exists_between fun _ _ h => Set.exists_range_iff.2 <| exists_rat_btwn h
theorem
Topology
[ "Mathlib.GroupTheory.Archimedean", "Mathlib.Topology.Algebra.Order.Group", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic", "Mathlib.Topology.Order.Basic" ]
Mathlib/Topology/Algebra/Order/Archimedean.lean
Rat.denseRange_cast
Rational numbers are dense in a linear ordered archimedean field.
@[to_additive /-- An additive subgroup of an archimedean linear ordered additive commutative group with order topology is dense provided that for all positive `ε` there exists a positive element of the subgroup that is less than `ε`. -/] dense_of_not_isolated_one (S : Subgroup G) (hS : ∀ ε > 1, ∃ g ∈ S, g ∈ Ioo 1 ε) : Dense (S : Set G) := by cases subsingleton_or_nontrivial G · refine fun x => _root_.subset_closure ?_ rw [Subsingleton.elim x 1] exact one_mem S refine dense_of_exists_between fun a b hlt => ?_ rcases hS (b / a) (one_lt_div'.2 hlt) with ⟨g, hgS, hg0, hg⟩ rcases (existsUnique_add_zpow_mem_Ioc hg0 1 a).exists with ⟨m, hm⟩ rw [one_mul] at hm refine ⟨g ^ m, zpow_mem hgS _, hm.1, hm.2.trans_lt ?_⟩ rwa [lt_div_iff_mul_lt'] at hg
theorem
Topology
[ "Mathlib.GroupTheory.Archimedean", "Mathlib.Topology.Algebra.Order.Group", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic", "Mathlib.Topology.Order.Basic" ]
Mathlib/Topology/Algebra/Order/Archimedean.lean
dense_of_not_isolated_one
A subgroup of an archimedean linear ordered multiplicative commutative group with order topology is dense provided that for all `ε > 1` there exists an element of the subgroup that belongs to `(1, ε)`.
@[to_additive /-- Let `S` be a nontrivial additive subgroup in an archimedean linear ordered additive commutative group `G` with order topology. If the set of positive elements of `S` does not have a minimal element, then `S` is dense `G`. -/] dense_of_no_min (S : Subgroup G) (hbot : S ≠ ⊥) (H : ¬∃ a : G, IsLeast { g : G | g ∈ S ∧ 1 < g } a) : Dense (S : Set G) := by refine S.dense_of_not_isolated_one fun ε ε1 => ?_ contrapose! H exact exists_isLeast_one_lt hbot ε1 (disjoint_left.2 H)
theorem
Topology
[ "Mathlib.GroupTheory.Archimedean", "Mathlib.Topology.Algebra.Order.Group", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic", "Mathlib.Topology.Order.Basic" ]
Mathlib/Topology/Algebra/Order/Archimedean.lean
dense_of_no_min
Let `S` be a nontrivial subgroup in an archimedean linear ordered multiplicative commutative group `G` with order topology. If the set of elements of `S` that are greater than one does not have a minimal element, then `S` is dense `G`.
@[to_additive dense_or_cyclic /-- An additive subgroup of an archimedean linear ordered additive commutative group `G` with order topology either is dense in `G` or is a cyclic subgroup. -/] dense_or_cyclic (S : Subgroup G) : Dense (S : Set G) ∨ ∃ a : G, S = closure {a} := by refine (em _).imp (dense_of_not_isolated_one S) fun h => ?_ push_neg at h rcases h with ⟨ε, ε1, hε⟩ exact cyclic_of_isolated_one ε1 (disjoint_left.2 hε) variable [Nontrivial G] [DenselyOrdered G]
theorem
Topology
[ "Mathlib.GroupTheory.Archimedean", "Mathlib.Topology.Algebra.Order.Group", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic", "Mathlib.Topology.Order.Basic" ]
Mathlib/Topology/Algebra/Order/Archimedean.lean
dense_or_cyclic
A subgroup of an archimedean linear ordered multiplicative commutative group `G` with order topology either is dense in `G` or is a cyclic subgroup.
@[to_additive dense_xor'_cyclic /-- In a nontrivial densely linear ordered archimedean topological additive group, a subgroup is either dense or is cyclic, but not both. For a non-exclusive `Or` version with weaker assumptions, see `AddSubgroup.dense_or_cyclic` above. -/] dense_xor'_cyclic (s : Subgroup G) : Xor' (Dense (s : Set G)) (∃ a, s = .zpowers a) := by if hd : Dense (s : Set G) then simp only [hd, xor_true] rintro ⟨a, rfl⟩ exact not_denseRange_zpow hd else simp only [hd, xor_false, id, zpowers_eq_closure] exact s.dense_or_cyclic.resolve_left hd @[to_additive]
theorem
Topology
[ "Mathlib.GroupTheory.Archimedean", "Mathlib.Topology.Algebra.Order.Group", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic", "Mathlib.Topology.Order.Basic" ]
Mathlib/Topology/Algebra/Order/Archimedean.lean
dense_xor'_cyclic
In a nontrivial densely linear ordered archimedean topological multiplicative group, a subgroup is either dense or is cyclic, but not both. For a non-exclusive `Or` version with weaker assumptions, see `Subgroup.dense_or_cyclic` above.
dense_iff_ne_zpowers {s : Subgroup G} : Dense (s : Set G) ↔ ∀ a, s ≠ .zpowers a := by simp [xor_iff_iff_not.1 s.dense_xor'_cyclic]
theorem
Topology
[ "Mathlib.GroupTheory.Archimedean", "Mathlib.Topology.Algebra.Order.Group", "Mathlib.Algebra.Group.Subgroup.ZPowers.Basic", "Mathlib.Topology.Order.Basic" ]
Mathlib/Topology/Algebra/Order/Archimedean.lean
dense_iff_ne_zpowers
null
Filter.Tendsto.atTop_mul_pos {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l atTop) (hg : Tendsto g l (𝓝 C)) : Tendsto (fun x => f x * g x) l atTop := by refine tendsto_atTop_mono' _ ?_ (hf.atTop_mul_const (half_pos hC)) filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)), hf.eventually_ge_atTop 0] with x hg hf using mul_le_mul_of_nonneg_left hg.le hf @[deprecated (since := "2025-03-18")] alias Filter.Tendsto.atTop_mul := Filter.Tendsto.atTop_mul_pos
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.atTop_mul_pos
In a linearly ordered semifield with the order topology, if `f` tends to `Filter.atTop` and `g` tends to a positive constant `C` then `f * g` tends to `Filter.atTop`.
Filter.Tendsto.pos_mul_atTop {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l (𝓝 C)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop := by simpa only [mul_comm] using hg.atTop_mul_pos hC hf @[deprecated (since := "2025-03-18")] alias Filter.Tendsto.mul_atTop := Filter.Tendsto.pos_mul_atTop @[simp]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.pos_mul_atTop
In a linearly ordered semifield with the order topology, if `f` tends to a positive constant `C` and `g` tends to `Filter.atTop` then `f * g` tends to `Filter.atTop`.
inv_atTop₀ : (atTop : Filter 𝕜)⁻¹ = 𝓝[>] 0 := (((atTop_basis_Ioi' (0 : 𝕜)).map _).comp_surjective inv_surjective).eq_of_same_basis <| (nhdsGT_basis _).congr (by simp) fun a ha ↦ by simp [inv_Ioi₀ (inv_pos.2 ha)] @[simp]
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
inv_atTop₀
null
inv_nhdsGT_zero : (𝓝[>] (0 : 𝕜))⁻¹ = atTop := by rw [← inv_atTop₀, inv_inv]
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
inv_nhdsGT_zero
null
tendsto_inv_nhdsGT_zero : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[>] (0 : 𝕜)) atTop := inv_nhdsGT_zero.le
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_inv_nhdsGT_zero
The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`.
tendsto_inv_atTop_nhdsGT_zero : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝[>] (0 : 𝕜)) := inv_atTop₀.le
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_inv_atTop_nhdsGT_zero
The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`.
tendsto_inv_atTop_zero : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝 0) := tendsto_inv_atTop_nhdsGT_zero.mono_right inf_le_left
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_inv_atTop_zero
null
Filter.Tendsto.inv_tendsto_atTop (h : Tendsto f l atTop) : Tendsto f⁻¹ l (𝓝 0) := tendsto_inv_atTop_zero.comp h
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.inv_tendsto_atTop
null
Filter.Tendsto.inv_tendsto_nhdsGT_zero (h : Tendsto f l (𝓝[>] 0)) : Tendsto f⁻¹ l atTop := tendsto_inv_nhdsGT_zero.comp h
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.inv_tendsto_nhdsGT_zero
null
tendsto_pow_neg_atTop {n : ℕ} (hn : n ≠ 0) : Tendsto (fun x : 𝕜 => x ^ (-(n : ℤ))) atTop (𝓝 0) := by simpa only [zpow_neg, zpow_natCast] using (tendsto_pow_atTop (α := 𝕜) hn).inv_tendsto_atTop
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_pow_neg_atTop
The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`. A version for positive real powers exists as `tendsto_rpow_neg_atTop`.
tendsto_zpow_atTop_zero {n : ℤ} (hn : n < 0) : Tendsto (fun x : 𝕜 => x ^ n) atTop (𝓝 0) := by lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N h rw [← neg_pos, ← h, Nat.cast_pos] at hn simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_zpow_atTop_zero
null
IsTopologicalRing.of_norm {R 𝕜 : Type*} [NonUnitalNonAssocRing R] [Field 𝕜] [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [TopologicalSpace R] [IsTopologicalAddGroup R] (norm : R → 𝕜) (norm_nonneg : ∀ x, 0 ≤ norm x) (norm_mul_le : ∀ x y, norm (x * y) ≤ norm x * norm y) (nhds_basis : (𝓝 (0 : R)).HasBasis ((0 : 𝕜) < ·) (fun ε ↦ { x | norm x < ε })) : IsTopologicalRing R := by have h0 : ∀ f : R → R, ∀ c ≥ (0 : 𝕜), (∀ x, norm (f x) ≤ c * norm x) → Tendsto f (𝓝 0) (𝓝 0) := by refine fun f c c0 hf ↦ (nhds_basis.tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_ rcases exists_pos_mul_lt ε0 c with ⟨δ, δ0, hδ⟩ refine ⟨δ, δ0, fun x hx ↦ (hf _).trans_lt ?_⟩ exact (mul_le_mul_of_nonneg_left (le_of_lt hx) c0).trans_lt hδ apply IsTopologicalRing.of_addGroup_of_nhds_zero case hmul => refine ((nhds_basis.prod nhds_basis).tendsto_iff nhds_basis).2 fun ε ε0 ↦ ?_ refine ⟨(1, ε), ⟨one_pos, ε0⟩, fun (x, y) ⟨hx, hy⟩ => ?_⟩ simp only at * calc norm (x * y) ≤ norm x * norm y := norm_mul_le _ _ _ < ε := (mul_le_of_le_one_left (norm_nonneg _) hx.le).trans_lt hy case hmul_left => exact fun x => h0 _ (norm x) (norm_nonneg _) (norm_mul_le x) case hmul_right => exact fun y => h0 (· * y) (norm y) (norm_nonneg y) fun x => (norm_mul_le x y).trans_eq (mul_comm _ _) variable {𝕜 α : Type*} [Field 𝕜] [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [TopologicalSpace 𝕜] [OrderTopology 𝕜] {l : Filter α} {f g : α → 𝕜}
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
IsTopologicalRing.of_norm
If a (possibly non-unital and/or non-associative) ring `R` admits a submultiplicative nonnegative norm `norm : R → 𝕜`, where `𝕜` is a linear ordered field, and the open balls `{ x | norm x < ε }`, `ε > 0`, form a basis of neighborhoods of zero, then `R` is a topological ring.
Filter.Tendsto.atTop_mul_neg {C : 𝕜} (hC : C < 0) (hf : Tendsto f l atTop) (hg : Tendsto g l (𝓝 C)) : Tendsto (fun x => f x * g x) l atBot := by have := hf.atTop_mul_pos (neg_pos.2 hC) hg.neg simpa only [Function.comp_def, neg_mul_eq_mul_neg, neg_neg] using tendsto_neg_atTop_atBot.comp this
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.atTop_mul_neg
In a linearly ordered field with the order topology, if `f` tends to `Filter.atTop` and `g` tends to a negative constant `C` then `f * g` tends to `Filter.atBot`.
Filter.Tendsto.neg_mul_atTop {C : 𝕜} (hC : C < 0) (hf : Tendsto f l (𝓝 C)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atBot := by simpa only [mul_comm] using hg.atTop_mul_neg hC hf
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.neg_mul_atTop
In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `Filter.atTop` then `f * g` tends to `Filter.atBot`.
Filter.Tendsto.atBot_mul_pos {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l atBot) (hg : Tendsto g l (𝓝 C)) : Tendsto (fun x => f x * g x) l atBot := by have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_pos hC hg simpa [Function.comp_def] using tendsto_neg_atTop_atBot.comp this @[deprecated (since := "2025-03-18")] alias Filter.Tendsto.atBot_mul := Filter.Tendsto.atBot_mul_pos
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.atBot_mul_pos
In a linearly ordered field with the order topology, if `f` tends to `Filter.atBot` and `g` tends to a positive constant `C` then `f * g` tends to `Filter.atBot`.
Filter.Tendsto.atBot_mul_neg {C : 𝕜} (hC : C < 0) (hf : Tendsto f l atBot) (hg : Tendsto g l (𝓝 C)) : Tendsto (fun x => f x * g x) l atTop := by have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_neg hC hg simpa [Function.comp_def] using tendsto_neg_atBot_atTop.comp this
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.atBot_mul_neg
In a linearly ordered field with the order topology, if `f` tends to `Filter.atBot` and `g` tends to a negative constant `C` then `f * g` tends to `Filter.atTop`.
Filter.Tendsto.pos_mul_atBot {C : 𝕜} (hC : 0 < C) (hf : Tendsto f l (𝓝 C)) (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot := by simpa only [mul_comm] using hg.atBot_mul_pos hC hf @[deprecated (since := "2025-03-18")] alias Filter.Tendsto.mul_atBot := Filter.Tendsto.pos_mul_atBot
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.pos_mul_atBot
In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and `g` tends to `Filter.atBot` then `f * g` tends to `Filter.atBot`.
Filter.Tendsto.neg_mul_atBot {C : 𝕜} (hC : C < 0) (hf : Tendsto f l (𝓝 C)) (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atTop := by simpa only [mul_comm] using hg.atBot_mul_neg hC hf @[simp]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.neg_mul_atBot
In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `Filter.atBot` then `f * g` tends to `Filter.atTop`.
inv_atBot₀ : (atBot : Filter 𝕜)⁻¹ = 𝓝[<] 0 := (((atBot_basis_Iio' (0 : 𝕜)).map _).comp_surjective inv_surjective).eq_of_same_basis <| (nhdsLT_basis _).congr (by simp) fun a ha ↦ by simp [inv_Iio₀ (inv_neg''.2 ha)] @[simp]
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
inv_atBot₀
null
inv_nhdsLT_zero : (𝓝[<] (0 : 𝕜))⁻¹ = atBot := by rw [← inv_atBot₀, inv_inv]
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
inv_nhdsLT_zero
null
tendsto_inv_nhdsLT_zero : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[<] (0 : 𝕜)) atBot := inv_nhdsLT_zero.le @[deprecated (since := "2025-04-23")] alias tendsto_inv_zero_atBot := tendsto_inv_nhdsLT_zero
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_inv_nhdsLT_zero
The function `x ↦ x⁻¹` tends to `-∞` on the left of `0`.
tendsto_inv_atBot_nhdsLT_zero : Tendsto (fun r : 𝕜 => r⁻¹) atBot (𝓝[<] (0 : 𝕜)) := inv_atBot₀.le @[deprecated (since := "2025-04-23")] alias tendsto_inv_atBot_zero' := tendsto_inv_atBot_nhdsLT_zero
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_inv_atBot_nhdsLT_zero
The function `r ↦ r⁻¹` tends to `0` on the left as `r → -∞`.
tendsto_inv_atBot_zero : Tendsto (fun r : 𝕜 => r⁻¹) atBot (𝓝 0) := tendsto_inv_atBot_nhdsLT_zero.mono_right inf_le_left
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_inv_atBot_zero
null
Filter.Tendsto.div_atTop {a : 𝕜} (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) := by simp only [div_eq_mul_inv] exact mul_zero a ▸ h.mul (tendsto_inv_atTop_zero.comp hg)
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.div_atTop
null
Filter.Tendsto.div_atBot {a : 𝕜} (h : Tendsto f l (𝓝 a)) (hg : Tendsto g l atBot) : Tendsto (fun x => f x / g x) l (𝓝 0) := by simp only [div_eq_mul_inv] exact mul_zero a ▸ h.mul (tendsto_inv_atBot_zero.comp hg)
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.div_atBot
null
Filter.Tendsto.const_div_atTop (hg : Tendsto g l atTop) (r : 𝕜) : Tendsto (fun n ↦ r / g n) l (𝓝 0) := tendsto_const_nhds.div_atTop hg
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.const_div_atTop
null
Filter.Tendsto.const_div_atBot (hg : Tendsto g l atBot) (r : 𝕜) : Tendsto (fun n ↦ r / g n) l (𝓝 0) := tendsto_const_nhds.div_atBot hg
lemma
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.const_div_atBot
null
Filter.Tendsto.inv_tendsto_atBot (h : Tendsto f l atBot) : Tendsto f⁻¹ l (𝓝 0) := tendsto_inv_atBot_zero.comp h
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.inv_tendsto_atBot
null
Filter.Tendsto.inv_tendsto_nhdsLT_zero (h : Tendsto f l (𝓝[<] 0)) : Tendsto f⁻¹ l atBot := tendsto_inv_nhdsLT_zero.comp h
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.inv_tendsto_nhdsLT_zero
null