fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
prod_ext {f g : M × M₂ →L[R] M₃} (hl : f.comp (inl _ _ _) = g.comp (inl _ _ _)) (hr : f.comp (inr _ _ _) = g.comp (inr _ _ _)) : f = g := prod_ext_iff.2 ⟨hl, hr⟩ variable (S : Type*) [Semiring S] [Module S M₂] [ContinuousAdd M₂] [SMulCommClass R S M₂] [ContinuousConstSMul S M₂] [Module S M₃] [ContinuousAdd M₃] [SMulCommClass R S M₃] [ContinuousConstSMul S M₃]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prod_ext
null
@[simps apply] prodₗ : ((M →L[R] M₂) × (M →L[R] M₃)) ≃ₗ[S] M →L[R] M₂ × M₃ := { prodEquiv with map_add' := fun _f _g => rfl map_smul' := fun _c _f => rfl }
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prodₗ
`ContinuousLinearMap.prod` as a `LinearEquiv`.
@[simps! coe apply] coprod (f₁ : M₁ →L[R] M) (f₂ : M₂ →L[R] M) : M₁ × M₂ →L[R] M := ⟨.coprod f₁ f₂, (f₁.cont.comp continuous_fst).add (f₂.cont.comp continuous_snd)⟩ @[simp] lemma coprod_add (f₁ g₁ : M₁ →L[R] M) (f₂ g₂ : M₂ →L[R] M) : (f₁ + g₁).coprod (f₂ + g₂) = f₁.coprod f₂ + g₁.coprod g₂ := by ext <;> simp
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coprod
The continuous linear map given by `(x, y) ↦ f₁ x + f₂ y`.
range_coprod (f₁ : M₁ →L[R] M) (f₂ : M₂ →L[R] M) : range (f₁.coprod f₂) = range f₁ ⊔ range f₂ := LinearMap.range_coprod ..
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
range_coprod
null
comp_fst_add_comp_snd (f₁ : M₁ →L[R] M) (f₂ : M₂ →L[R] M) : f₁.comp (.fst _ _ _) + f₂.comp (.snd _ _ _) = f₁.coprod f₂ := rfl
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
comp_fst_add_comp_snd
null
comp_coprod (f : M →L[R] N) (g₁ : M₁ →L[R] M) (g₂ : M₂ →L[R] M) : f.comp (g₁.coprod g₂) = (f.comp g₁).coprod (f.comp g₂) := coe_injective <| LinearMap.comp_coprod .. @[simp] lemma coprod_comp_inl (f₁ : M₁ →L[R] M) (f₂ : M₂ →L[R] M) : (f₁.coprod f₂).comp (.inl _ _ _) = f₁ := coe_injective <| LinearMap.coprod_inl .. @[simp] lemma coprod_comp_inr (f₁ : M₁ →L[R] M) (f₂ : M₂ →L[R] M) : (f₁.coprod f₂).comp (.inr _ _ _) = f₂ := coe_injective <| LinearMap.coprod_inr .. @[simp]
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
comp_coprod
null
coprod_inl_inr : ContinuousLinearMap.coprod (.inl R M N) (.inr R M N) = .id R (M × N) := coe_injective <| LinearMap.coprod_inl_inr
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coprod_inl_inr
null
@[simps] coprodEquiv [ContinuousAdd M₁] [ContinuousAdd M₂] [Semiring S] [Module S M] [ContinuousConstSMul S M] [SMulCommClass R S M] : ((M₁ →L[R] M) × (M₂ →L[R] M)) ≃ₗ[S] M₁ × M₂ →L[R] M where toFun f := f.1.coprod f.2 invFun f := (f.comp (.inl ..), f.comp (.inr ..)) left_inv f := by simp right_inv f := by simp [← comp_coprod f (.inl R M₁ M₂)] map_add' a b := coprod_add .. map_smul' r a := by dsimp ext <;> simp [smul_apply]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coprodEquiv
Taking the product of two maps with the same codomain is equivalent to taking the product of their domains. See note [bundled maps over different rings] for why separate `R` and `S` semirings are used. TODO: Upgrade this to a `ContinuousLinearEquiv`. This should be true for any topological vector space over a normed field thanks to `ContinuousLinearMap.precomp` and `ContinuousLinearMap.postcomp`.
ker_coprod_of_disjoint_range {f₁ : M₁ →L[R] M} {f₂ : M₂ →L[R] M} (hf : Disjoint (range f₁) (range f₂)) : LinearMap.ker (f₁.coprod f₂) = (LinearMap.ker f₁).prod (LinearMap.ker f₂) := LinearMap.ker_coprod_of_disjoint_range f₁.toLinearMap f₂.toLinearMap hf
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
ker_coprod_of_disjoint_range
null
IsClosed (f : E →ₗ.[R] F) : Prop := _root_.IsClosed (f.graph : Set (E × F)) variable [ContinuousAdd E] [ContinuousAdd F] variable [TopologicalSpace R] [ContinuousSMul R E] [ContinuousSMul R F]
def
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosed
An unbounded operator is closed iff its graph is closed.
IsClosable (f : E →ₗ.[R] F) : Prop := ∃ f' : LinearPMap R E F, f.graph.topologicalClosure = f'.graph
def
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable
An unbounded operator is closable iff the closure of its graph is a graph.
IsClosed.isClosable {f : E →ₗ.[R] F} (hf : f.IsClosed) : f.IsClosable := ⟨f, hf.submodule_topologicalClosure_eq⟩
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosed.isClosable
A closed operator is trivially closable.
IsClosable.leIsClosable {f g : E →ₗ.[R] F} (hf : f.IsClosable) (hfg : g ≤ f) : g.IsClosable := by obtain ⟨f', hf⟩ := hf have : g.graph.topologicalClosure ≤ f'.graph := by rw [← hf] exact Submodule.topologicalClosure_mono (le_graph_of_le hfg) use g.graph.topologicalClosure.toLinearPMap rw [Submodule.toLinearPMap_graph_eq] exact fun _ hx hx' => f'.graph_fst_eq_zero_snd (this hx) hx'
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable.leIsClosable
If `g` has a closable extension `f`, then `g` itself is closable.
IsClosable.existsUnique {f : E →ₗ.[R] F} (hf : f.IsClosable) : ∃! f' : E →ₗ.[R] F, f.graph.topologicalClosure = f'.graph := by refine existsUnique_of_exists_of_unique hf fun _ _ hy₁ hy₂ => eq_of_eq_graph ?_ rw [← hy₁, ← hy₂] open Classical in
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable.existsUnique
The closure is unique.
noncomputable closure (f : E →ₗ.[R] F) : E →ₗ.[R] F := if hf : f.IsClosable then hf.choose else f
def
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
closure
If `f` is closable, then `f.closure` is the closure. Otherwise it is defined as `f.closure = f`.
closure_def {f : E →ₗ.[R] F} (hf : f.IsClosable) : f.closure = hf.choose := by simp [closure, hf]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
closure_def
null
closure_def' {f : E →ₗ.[R] F} (hf : ¬f.IsClosable) : f.closure = f := by simp [closure, hf]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
closure_def'
null
IsClosable.graph_closure_eq_closure_graph {f : E →ₗ.[R] F} (hf : f.IsClosable) : f.graph.topologicalClosure = f.closure.graph := by rw [closure_def hf] exact hf.choose_spec
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable.graph_closure_eq_closure_graph
The closure (as a submodule) of the graph is equal to the graph of the closure (as a `LinearPMap`).
le_closure (f : E →ₗ.[R] F) : f ≤ f.closure := by by_cases hf : f.IsClosable · refine le_of_le_graph ?_ rw [← hf.graph_closure_eq_closure_graph] exact (graph f).le_topologicalClosure rw [closure_def' hf]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
le_closure
A `LinearPMap` is contained in its closure.
IsClosable.closure_mono {f g : E →ₗ.[R] F} (hg : g.IsClosable) (h : f ≤ g) : f.closure ≤ g.closure := by refine le_of_le_graph ?_ rw [← (hg.leIsClosable h).graph_closure_eq_closure_graph] rw [← hg.graph_closure_eq_closure_graph] exact Submodule.topologicalClosure_mono (le_graph_of_le h)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable.closure_mono
null
IsClosable.closure_isClosed {f : E →ₗ.[R] F} (hf : f.IsClosable) : f.closure.IsClosed := by rw [IsClosed, ← hf.graph_closure_eq_closure_graph] exact f.graph.isClosed_topologicalClosure
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable.closure_isClosed
If `f` is closable, then the closure is closed.
IsClosable.closureIsClosable {f : E →ₗ.[R] F} (hf : f.IsClosable) : f.closure.IsClosable := hf.closure_isClosed.isClosable
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
IsClosable.closureIsClosable
If `f` is closable, then the closure is closable.
isClosable_iff_exists_closed_extension {f : E →ₗ.[R] F} : f.IsClosable ↔ ∃ g : E →ₗ.[R] F, g.IsClosed ∧ f ≤ g := ⟨fun h => ⟨f.closure, h.closure_isClosed, f.le_closure⟩, fun ⟨_, hg, h⟩ => hg.isClosable.leIsClosable h⟩ /-! ### The core of a linear operator -/
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
isClosable_iff_exists_closed_extension
null
HasCore (f : E →ₗ.[R] F) (S : Submodule R E) : Prop where le_domain : S ≤ f.domain closure_eq : (f.domRestrict S).closure = f
structure
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
HasCore
A submodule `S` is a core of `f` if the closure of the restriction of `f` to `S` is `f`.
hasCore_def {f : E →ₗ.[R] F} {S : Submodule R E} (h : f.HasCore S) : (f.domRestrict S).closure = f := h.2
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
hasCore_def
null
closureHasCore (f : E →ₗ.[R] F) : f.closure.HasCore f.domain := by refine ⟨f.le_closure.1, ?_⟩ congr ext x h1 h2 · simp only [domRestrict_domain, Submodule.mem_inf, and_iff_left_iff_imp] intro hx exact f.le_closure.1 hx let z : f.closure.domain := ⟨x, f.le_closure.1 h2⟩ have hyz : x = z := rfl rw [f.le_closure.2 hyz] exact domRestrict_apply hyz
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
closureHasCore
For every unbounded operator `f` the submodule `f.domain` is a core of its closure. Note that we don't require that `f` is closable, due to the definition of the closure.
inverse_closed_iff (hf : LinearMap.ker f.toFun = ⊥) : f.inverse.IsClosed ↔ f.IsClosed := by rw [IsClosed, inverse_graph hf] exact (ContinuousLinearEquiv.prodComm R E F).isClosed_image variable [ContinuousAdd E] [ContinuousAdd F] variable [TopologicalSpace R] [ContinuousSMul R E] [ContinuousSMul R F]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
inverse_closed_iff
The inverse of `f : LinearPMap` is closed if and only if `f` is closed.
closure_inverse_graph (hf : LinearMap.ker f.toFun = ⊥) (hf' : f.IsClosable) (hcf : LinearMap.ker f.closure.toFun = ⊥) : f.closure.inverse.graph = f.inverse.graph.topologicalClosure := by rw [inverse_graph hf, inverse_graph hcf, ← hf'.graph_closure_eq_closure_graph] apply SetLike.ext' simp only [Submodule.topologicalClosure_coe, Submodule.map_coe, LinearEquiv.prodComm_apply] apply (image_closure_subset_closure_image continuous_swap).antisymm have h1 := Set.image_equiv_eq_preimage_symm f.graph (LinearEquiv.prodComm R E F).toEquiv have h2 := Set.image_equiv_eq_preimage_symm (_root_.closure f.graph) (LinearEquiv.prodComm R E F).toEquiv simp only [LinearEquiv.coe_toEquiv, LinearEquiv.prodComm_apply] at h1 h2 rw [h1, h2] apply continuous_swap.closure_preimage_subset
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
closure_inverse_graph
If `f` is invertible and closable as well as its closure being invertible, then the graph of the inverse of the closure is given by the closure of the graph of the inverse.
inverse_isClosable_iff (hf : LinearMap.ker f.toFun = ⊥) (hf' : f.IsClosable) : f.inverse.IsClosable ↔ LinearMap.ker f.closure.toFun = ⊥ := by constructor · intro ⟨f', h⟩ rw [LinearMap.ker_eq_bot'] intro ⟨x, hx⟩ hx' simp only [Submodule.mk_eq_zero] rw [toFun_eq_coe, eq_comm, image_iff] at hx' have : (0, x) ∈ graph f' := by rw [← h, inverse_graph hf] rw [← hf'.graph_closure_eq_closure_graph, ← SetLike.mem_coe, Submodule.topologicalClosure_coe] at hx' apply image_closure_subset_closure_image continuous_swap simp only [Set.mem_image, Prod.exists, Prod.swap_prod_mk, Prod.mk.injEq] exact ⟨x, 0, hx', rfl, rfl⟩ exact graph_fst_eq_zero_snd f' this rfl · intro h use f.closure.inverse exact (closure_inverse_graph hf hf' h).symm
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
inverse_isClosable_iff
Assuming that `f` is invertible and closable, then the closure is invertible if and only if the inverse of `f` is closable.
inverse_closure (hf : LinearMap.ker f.toFun = ⊥) (hf' : f.IsClosable) (hcf : LinearMap.ker f.closure.toFun = ⊥) : f.inverse.closure = f.closure.inverse := by apply eq_of_eq_graph rw [closure_inverse_graph hf hf' hcf, ((inverse_isClosable_iff hf hf').mpr hcf).graph_closure_eq_closure_graph]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearPMap", "Mathlib.Topology.Algebra.Module.Basic", "Mathlib.Topology.Algebra.Module.Equiv" ]
Mathlib/Topology/Algebra/Module/LinearPMap.lean
inverse_closure
If `f` is invertible and closable, then taking the closure and the inverse commute.
LocallyConvexSpace (𝕜 E : Type*) [Semiring 𝕜] [PartialOrder 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E] : Prop where convex_basis : ∀ x : E, (𝓝 x).HasBasis (fun s : Set E => s ∈ 𝓝 x ∧ Convex 𝕜 s) id variable (𝕜 E : Type*) [Semiring 𝕜] [PartialOrder 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E]
class
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace
A `LocallyConvexSpace` is a topological semimodule over an ordered semiring in which convex neighborhoods of a point form a neighborhood basis at that point.
locallyConvexSpace_iff : LocallyConvexSpace 𝕜 E ↔ ∀ x : E, (𝓝 x).HasBasis (fun s : Set E => s ∈ 𝓝 x ∧ Convex 𝕜 s) id := ⟨fun _ ↦ LocallyConvexSpace.convex_basis, LocallyConvexSpace.mk⟩
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
locallyConvexSpace_iff
null
LocallyConvexSpace.ofBases {ι : Type*} (b : E → ι → Set E) (p : E → ι → Prop) (hbasis : ∀ x : E, (𝓝 x).HasBasis (p x) (b x)) (hconvex : ∀ x i, p x i → Convex 𝕜 (b x i)) : LocallyConvexSpace 𝕜 E := ⟨fun x => (hbasis x).to_hasBasis (fun i hi => ⟨b x i, ⟨⟨(hbasis x).mem_of_mem hi, hconvex x i hi⟩, le_refl (b x i)⟩⟩) fun s hs => ⟨(hbasis x).index s hs.1, ⟨(hbasis x).property_index hs.1, (hbasis x).set_index_subset hs.1⟩⟩⟩
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.ofBases
null
LocallyConvexSpace.convex_basis_zero [LocallyConvexSpace 𝕜 E] : (𝓝 0 : Filter E).HasBasis (fun s => s ∈ (𝓝 0 : Filter E) ∧ Convex 𝕜 s) id := LocallyConvexSpace.convex_basis 0
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.convex_basis_zero
null
locallyConvexSpace_iff_exists_convex_subset : LocallyConvexSpace 𝕜 E ↔ ∀ x : E, ∀ U ∈ 𝓝 x, ∃ S ∈ 𝓝 x, Convex 𝕜 S ∧ S ⊆ U := (locallyConvexSpace_iff 𝕜 E).trans (forall_congr' fun _ => hasBasis_self)
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
locallyConvexSpace_iff_exists_convex_subset
null
LocallyConvexSpace.ofBasisZero {ι : Type*} (b : ι → Set E) (p : ι → Prop) (hbasis : (𝓝 0).HasBasis p b) (hconvex : ∀ i, p i → Convex 𝕜 (b i)) : LocallyConvexSpace 𝕜 E := by refine LocallyConvexSpace.ofBases 𝕜 E (fun (x : E) (i : ι) => (x + ·) '' b i) (fun _ => p) (fun x => ?_) fun x i hi => (hconvex i hi).translate x rw [← map_add_left_nhds_zero] exact hbasis.map _
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.ofBasisZero
null
locallyConvexSpace_iff_zero : LocallyConvexSpace 𝕜 E ↔ (𝓝 0 : Filter E).HasBasis (fun s : Set E => s ∈ (𝓝 0 : Filter E) ∧ Convex 𝕜 s) id := ⟨fun _ => LocallyConvexSpace.convex_basis 0, fun h => LocallyConvexSpace.ofBasisZero 𝕜 E _ _ h fun _ => And.right⟩
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
locallyConvexSpace_iff_zero
null
locallyConvexSpace_iff_exists_convex_subset_zero : LocallyConvexSpace 𝕜 E ↔ ∀ U ∈ (𝓝 0 : Filter E), ∃ S ∈ (𝓝 0 : Filter E), Convex 𝕜 S ∧ S ⊆ U := (locallyConvexSpace_iff_zero 𝕜 E).trans hasBasis_self
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
locallyConvexSpace_iff_exists_convex_subset_zero
null
Convex.locPathConnectedSpace [Module ℝ E] [ContinuousSMul ℝ E] [LocallyConvexSpace ℝ E] {S : Set E} (hS : Convex ℝ S) : LocPathConnectedSpace S := by refine ⟨fun x ↦ ⟨fun s ↦ ⟨fun hs ↦ ?_, fun ⟨t, ht⟩ ↦ mem_of_superset ht.1.1 ht.2⟩⟩⟩ let ⟨t, ht⟩ := (mem_nhds_subtype S x s).mp hs let ⟨t', ht'⟩ := (LocallyConvexSpace.convex_basis (𝕜 := ℝ) x.1).mem_iff.mp ht.1 refine ⟨(↑) ⁻¹' t', ⟨?_, ?_⟩, (preimage_mono ht'.2).trans ht.2⟩ · exact continuousAt_subtype_val.preimage_mem_nhds ht'.1.1 · refine Subtype.preimage_coe_self_inter _ _ ▸ IsPathConnected.preimage_coe ?_ inter_subset_left exact (hS.inter ht'.1.2).isPathConnected ⟨x, x.2, mem_of_mem_nhds ht'.1.1⟩
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
Convex.locPathConnectedSpace
Convex subsets of locally convex spaces are locally path-connected.
LocallyConvexSpace.convex_open_basis_zero [LocallyConvexSpace 𝕜 E] : (𝓝 0 : Filter E).HasBasis (fun s => (0 : E) ∈ s ∧ IsOpen s ∧ Convex 𝕜 s) id := (LocallyConvexSpace.convex_basis_zero 𝕜 E).to_hasBasis (fun s hs => ⟨interior s, ⟨mem_interior_iff_mem_nhds.mpr hs.1, isOpen_interior, hs.2.interior⟩, interior_subset⟩) fun s hs => ⟨s, ⟨hs.2.1.mem_nhds hs.1, hs.2.2⟩, subset_rfl⟩ variable {𝕜 E} [LocallyConvexSpace 𝕜 E] {s t : Set E} {x : E}
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.convex_open_basis_zero
null
Disjoint.exists_open_convexes (disj : Disjoint s t) (hs₁ : Convex 𝕜 s) (hs₂ : IsCompact s) (ht₁ : Convex 𝕜 t) (ht₂ : IsClosed t) : ∃ u v, IsOpen u ∧ IsOpen v ∧ Convex 𝕜 u ∧ Convex 𝕜 v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v := by letI : UniformSpace E := IsTopologicalAddGroup.toUniformSpace E haveI : IsUniformAddGroup E := isUniformAddGroup_of_addCommGroup have := (LocallyConvexSpace.convex_open_basis_zero 𝕜 E).comap fun x : E × E => x.2 - x.1 rw [← uniformity_eq_comap_nhds_zero] at this rcases disj.exists_uniform_thickening_of_basis this hs₂ ht₂ with ⟨V, ⟨hV0, hVopen, hVconvex⟩, hV⟩ refine ⟨s + V, t + V, hVopen.add_left, hVopen.add_left, hs₁.add hVconvex, ht₁.add hVconvex, subset_add_left _ hV0, subset_add_left _ hV0, ?_⟩ simp_rw [← iUnion_add_left_image, image_add_left] simp_rw [UniformSpace.ball, ← preimage_comp, sub_eq_neg_add] at hV exact hV
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
Disjoint.exists_open_convexes
In a locally convex space, every two disjoint convex sets such that one is compact and the other is closed admit disjoint convex open neighborhoods.
exists_open_convex_of_notMem (hx : x ∉ s) (hsconv : Convex 𝕜 s) (hsclosed : IsClosed s) : ∃ U V : Set E, IsOpen U ∧ IsOpen V ∧ Convex 𝕜 U ∧ Convex 𝕜 V ∧ x ∈ U ∧ s ⊆ V ∧ Disjoint U V := by simpa [*] using Disjoint.exists_open_convexes (s := {x}) (t := s) (𝕜 := 𝕜) @[deprecated (since := "2025-05-23")] alias exists_open_convex_of_not_mem := exists_open_convex_of_notMem
lemma
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
exists_open_convex_of_notMem
In a locally convex space, every point `x` and closed convex set `s ∌ x` admit disjoint convex open neighborhoods.
protected LocallyConvexSpace.sInf {ts : Set (TopologicalSpace E)} (h : ∀ t ∈ ts, @LocallyConvexSpace 𝕜 E _ _ _ _ t) : @LocallyConvexSpace 𝕜 E _ _ _ _ (sInf ts) := by letI : TopologicalSpace E := sInf ts refine .ofBases 𝕜 E (fun _ => fun If : Set ts × (ts → Set E) => ⋂ i ∈ If.1, If.2 i) (fun x => fun If : Set ts × (ts → Set E) => If.1.Finite ∧ ∀ i ∈ If.1, If.2 i ∈ @nhds _ (↑i) x ∧ Convex 𝕜 (If.2 i)) (fun x => ?_) fun x If hif => convex_iInter fun i => convex_iInter fun hi => (hif.2 i hi).2 rw [nhds_sInf, ← iInf_subtype''] exact .iInf' fun i : ts => (@locallyConvexSpace_iff 𝕜 E _ _ _ _ ↑i).mp (h (↑i) i.2) x @[deprecated (since := "2025-05-05")] alias locallyConvexSpace_sInf := LocallyConvexSpace.sInf
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.sInf
null
protected LocallyConvexSpace.iInf {ts' : ι → TopologicalSpace E} (h' : ∀ i, @LocallyConvexSpace 𝕜 E _ _ _ _ (ts' i)) : @LocallyConvexSpace 𝕜 E _ _ _ _ (⨅ i, ts' i) := .sInf <| by rwa [forall_mem_range] @[deprecated (since := "2025-05-05")] alias locallyConvexSpace_iInf := LocallyConvexSpace.iInf
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.iInf
null
protected LocallyConvexSpace.inf {t₁ t₂ : TopologicalSpace E} (h₁ : @LocallyConvexSpace 𝕜 E _ _ _ _ t₁) (h₂ : @LocallyConvexSpace 𝕜 E _ _ _ _ t₂) : @LocallyConvexSpace 𝕜 E _ _ _ _ (t₁ ⊓ t₂) := by rw [inf_eq_iInf] refine .iInf fun b => ?_ cases b <;> assumption @[deprecated (since := "2025-05-05")] alias locallyConvexSpace_inf := LocallyConvexSpace.inf
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.inf
null
protected LocallyConvexSpace.induced {t : TopologicalSpace F} [LocallyConvexSpace 𝕜 F] (f : E →ₗ[𝕜] F) : @LocallyConvexSpace 𝕜 E _ _ _ _ (t.induced f) := by letI : TopologicalSpace E := t.induced f refine LocallyConvexSpace.ofBases 𝕜 E (fun _ => preimage f) (fun x => fun s : Set F => s ∈ 𝓝 (f x) ∧ Convex 𝕜 s) (fun x => ?_) fun x s ⟨_, hs⟩ => hs.linear_preimage f rw [nhds_induced] exact (LocallyConvexSpace.convex_basis <| f x).comap f @[deprecated (since := "2025-05-05")] alias locallyConvexSpace_induced := LocallyConvexSpace.induced
theorem
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.induced
null
Pi.locallyConvexSpace {ι : Type*} {X : ι → Type*} [∀ i, AddCommMonoid (X i)] [∀ i, TopologicalSpace (X i)] [∀ i, Module 𝕜 (X i)] [∀ i, LocallyConvexSpace 𝕜 (X i)] : LocallyConvexSpace 𝕜 (∀ i, X i) := .iInf fun i => .induced (LinearMap.proj i)
instance
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
Pi.locallyConvexSpace
null
Prod.locallyConvexSpace [TopologicalSpace E] [TopologicalSpace F] [LocallyConvexSpace 𝕜 E] [LocallyConvexSpace 𝕜 F] : LocallyConvexSpace 𝕜 (E × F) := .inf (.induced (LinearMap.fst _ _ _)) (.induced (LinearMap.snd _ _ _))
instance
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
Prod.locallyConvexSpace
null
LinearOrderedSemiring.toLocallyConvexSpace {R : Type*} [TopologicalSpace R] [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] [OrderTopology R] : LocallyConvexSpace R R where convex_basis x := by obtain hl | hl := isBot_or_exists_lt x · refine hl.rec ?_ _ intro refine nhds_bot_basis.to_hasBasis' ?_ ?_ · intros refine ⟨Set.Iio _, ?_, .rfl⟩ simp_all [Iio_mem_nhds, convex_Iio] · simp +contextual obtain hu | hu := isTop_or_exists_gt x · refine hu.rec ?_ _ intro refine nhds_top_basis.to_hasBasis' ?_ ?_ · intros refine ⟨Set.Ioi _, ?_, subset_rfl⟩ simp_all · simp +contextual refine (nhds_basis_Ioo' hl hu).to_hasBasis' ?_ ?_ · simp only [id_eq, and_imp, Prod.forall] exact fun _ _ h₁ h₂ ↦ ⟨_, by simp [h₁, h₂, Ioo_mem_nhds, convex_Ioo], subset_rfl⟩ · simp +contextual
instance
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LinearOrderedSemiring.toLocallyConvexSpace
A linear ordered semiring is a locally convex space over itself.
Convex.eventually_nhdsWithin_segment {E 𝕜 : Type*} [Semiring 𝕜] [PartialOrder 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E] [LocallyConvexSpace 𝕜 E] {s : Set E} (hs : Convex 𝕜 s) {x₀ : E} (hx₀s : x₀ ∈ s) {p : E → Prop} (h : ∀ᶠ x in 𝓝[s] x₀, p x) : ∀ᶠ x in 𝓝[s] x₀, ∀ y ∈ segment 𝕜 x₀ x, p y := by rw [eventually_nhdsWithin_iff, (LocallyConvexSpace.convex_basis (𝕜 := 𝕜) x₀).eventually_iff] at h ⊢ obtain ⟨u, ⟨hu_nhds, hu_convex⟩, h⟩ := h refine ⟨u, ⟨hu_nhds, hu_convex⟩, fun x hxu hxs y hy ↦ h ?_ (hs.segment_subset hx₀s hxs hy)⟩ suffices segment 𝕜 x₀ x ⊆ u from this hy exact hu_convex.segment_subset (mem_of_mem_nhds hu_nhds) hxu
lemma
Topology
[ "Mathlib.Analysis.Convex.Topology", "Mathlib.Topology.Connected.LocPathConnected", "Mathlib.Analysis.Convex.PathConnected" ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
Convex.eventually_nhdsWithin_segment
null
moduleTopology : TopologicalSpace A := sInf {t | @ContinuousSMul R A _ _ t ∧ @ContinuousAdd A t _}
abbrev
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
moduleTopology
The module topology, for a module `A` over a topological ring `R`. It's the finest topology making addition and the `R`-action continuous, or equivalently the finest topology making `A` into a topological `R`-module. More precisely it's the Inf of the set of topologies with these properties; theorems `continuousSMul` and `continuousAdd` show that the module topology also has these properties.
IsModuleTopology [τA : TopologicalSpace A] : Prop where /-- Note that this should not be used directly, and `eq_moduleTopology`, which takes `R` and `A` explicitly, should be used instead. -/ eq_moduleTopology' : τA = moduleTopology R A
class
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
IsModuleTopology
A class asserting that the topology on a module over a topological ring `R` is the module topology. See `moduleTopology` for more discussion of the module topology.
eq_moduleTopology [τA : TopologicalSpace A] [IsModuleTopology R A] : τA = moduleTopology R A := IsModuleTopology.eq_moduleTopology' (R := R) (A := A)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
eq_moduleTopology
null
ModuleTopology.continuousSMul : @ContinuousSMul R A _ _ (moduleTopology R A) := /- Proof: We need to prove that the product topology is finer than the pullback of the module topology. But the module topology is an Inf and thus a limit, and pullback is a right adjoint, so it preserves limits. We must thus show that the product topology is finer than an Inf, so it suffices to show it's a lower bound, which is not hard. All this is wrapped into `continuousSMul_sInf`. -/ continuousSMul_sInf fun _ h ↦ h.1
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
ModuleTopology.continuousSMul
Note that the topology isn't part of the discrimination key so this gets tried on every `IsModuleTopology` goal and hence the low priority. -/ instance (priority := low) {R : Type*} [TopologicalSpace R] {A : Type*} [Add A] [SMul R A] : letI := moduleTopology R A; IsModuleTopology R A := letI := moduleTopology R A; ⟨rfl⟩ /-- Scalar multiplication `• : R × A → A` is continuous if `R` is a topological ring, and `A` is an `R` module with the module topology.
ModuleTopology.continuousAdd : @ContinuousAdd A (moduleTopology R A) _ := continuousAdd_sInf fun _ h ↦ h.2
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
ModuleTopology.continuousAdd
Addition `+ : A × A → A` is continuous if `R` is a topological ring, and `A` is an `R` module with the module topology.
IsModuleTopology.toContinuousSMul [TopologicalSpace A] [IsModuleTopology R A] : ContinuousSMul R A := eq_moduleTopology R A ▸ ModuleTopology.continuousSMul R A
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
IsModuleTopology.toContinuousSMul
null
IsModuleTopology.toContinuousAdd [TopologicalSpace A] [IsModuleTopology R A] : ContinuousAdd A := eq_moduleTopology R A ▸ ModuleTopology.continuousAdd R A
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
IsModuleTopology.toContinuousAdd
null
moduleTopology_le [τA : TopologicalSpace A] [ContinuousSMul R A] [ContinuousAdd A] : moduleTopology R A ≤ τA := sInf_le ⟨inferInstance, inferInstance⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
moduleTopology_le
The module topology is `≤` any topology making `A` into a topological module.
of_continuous_id [ContinuousAdd A] [ContinuousSMul R A] (h : @Continuous A A τA (moduleTopology R A) id) : IsModuleTopology R A where eq_moduleTopology' := le_antisymm (continuous_id_iff_le.1 h) (moduleTopology_le _ _)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
of_continuous_id
If `A` is a topological `R`-module and the identity map from (`A` with its given topology) to (`A` with the module topology) is continuous, then the topology on `A` is the module topology.
instSubsingleton [Subsingleton A] : IsModuleTopology R A where eq_moduleTopology' := Subsingleton.elim _ _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
instSubsingleton
The zero module has the module topology.
iso (e : A ≃L[R] B) : IsModuleTopology R B where eq_moduleTopology' := by let g : A →ₗ[R] B := e let g' : B →ₗ[R] A := e.symm let h : A →+ B := e let h' : B →+ A := e.symm simp_rw [e.toHomeomorph.symm.isInducing.1, eq_moduleTopology R A, moduleTopology, induced_sInf] apply congr_arg ext τ -- from this point on the definitions of `g`, `g'` etc. above don't work without `@`. rw [Set.mem_image] constructor · rintro ⟨σ, ⟨hσ1, hσ2⟩, rfl⟩ exact ⟨continuousSMul_induced g'.toMulActionHom, continuousAdd_induced h'⟩ · rintro ⟨h1, h2⟩ use τ.induced e rw [induced_compose] refine ⟨⟨continuousSMul_induced g.toMulActionHom, continuousAdd_induced h⟩, ?_⟩ nth_rw 2 [← induced_id (t := τ)] simp
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
iso
If `A` and `B` are `R`-modules, homeomorphic via an `R`-linear homeomorphism, and if `A` has the module topology, then so does `B`.
_root_.IsTopologicalSemiring.toIsModuleTopology : IsModuleTopology R R := by /- By a previous lemma it suffices to show that the identity from (R,usual) to (R, module topology) is continuous. -/ apply of_continuous_id /- The idea needed here is to rewrite the identity function as the composite of `r ↦ (r,1)` from `R` to `R × R`, and multiplication `R × R → R`. -/ rw [show (id : R → R) = (fun rs ↦ rs.1 • rs.2) ∘ (fun r ↦ (r, 1)) by ext; simp] /- It thus suffices to show that each of these maps are continuous. For this claim to even make sense, we need to topologise `R × R`. The trick is to do this by giving the first `R` the usual topology `τR` and the second `R` the module topology. To do this we have to "fight mathlib" a bit with `@`, because there is more than one topology on `R` here. -/ apply @Continuous.comp R (R × R) R τR (@instTopologicalSpaceProd R R τR (moduleTopology R R)) (moduleTopology R R) · /- The map R × R → R is `•`, so by a fundamental property of the module topology, this is continuous. -/ exact @continuous_smul _ _ _ _ (moduleTopology R R) <| ModuleTopology.continuousSMul .. · /- The map `R → R × R` sending `r` to `(r,1)` is a map into a product, so it suffices to show that each of the two factors is continuous. But the first is the identity function on `(R, usual topology)` and the second is a constant function. -/ exact @Continuous.prodMk _ _ _ _ (moduleTopology R R) _ _ _ continuous_id <| @continuous_const _ _ _ (moduleTopology R R) _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
_root_.IsTopologicalSemiring.toIsModuleTopology
The topology on a topological semiring `R` agrees with the module topology when considering `R` as an `R`-module in the obvious way (i.e., via `Semiring.toModule`).
_root_.IsTopologicalSemiring.toOppositeIsModuleTopology : IsModuleTopology Rᵐᵒᵖ R := .iso (MulOpposite.opContinuousLinearEquiv Rᵐᵒᵖ).symm
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
_root_.IsTopologicalSemiring.toOppositeIsModuleTopology
The module topology coming from the action of the topological ring `Rᵐᵒᵖ` on `R` (via `Semiring.toOppositeModule`, i.e. via `(op r) • m = m * r`) is `R`'s topology.
@[fun_prop, continuity] continuous_of_distribMulActionHom (φ : A →+[R] B) : Continuous φ := by rw [eq_moduleTopology R A, continuous_iff_le_induced] exact sInf_le <| ⟨continuousSMul_induced (φ.toMulActionHom), continuousAdd_induced φ.toAddMonoidHom⟩ @[fun_prop, continuity]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_of_distribMulActionHom
Every `R`-linear map between two topological `R`-modules, where the source has the module topology, is continuous.
continuous_of_linearMap (φ : A →ₗ[R] B) : Continuous φ := continuous_of_distribMulActionHom φ.toDistribMulActionHom variable (R) in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_of_linearMap
null
continuous_neg (C : Type*) [AddCommGroup C] [Module R C] [TopologicalSpace C] [IsModuleTopology R C] : Continuous (fun a ↦ -a : C → C) := haveI : ContinuousAdd C := IsModuleTopology.toContinuousAdd R C continuous_of_linearMap (LinearEquiv.neg R).toLinearMap variable (R) in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_neg
null
continuousNeg (C : Type*) [AddCommGroup C] [Module R C] [TopologicalSpace C] [IsModuleTopology R C] : ContinuousNeg C where continuous_neg := continuous_neg R C variable (R) in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuousNeg
null
topologicalAddGroup (C : Type*) [AddCommGroup C] [Module R C] [TopologicalSpace C] [IsModuleTopology R C] : IsTopologicalAddGroup C where continuous_add := (IsModuleTopology.toContinuousAdd R C).1 continuous_neg := continuous_neg R C @[fun_prop, continuity]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
topologicalAddGroup
null
continuous_of_ringHom {R A B} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [TopologicalSpace R] [TopologicalSpace A] [IsModuleTopology R A] [TopologicalSpace B] [IsTopologicalSemiring B] (φ : A →+* B) (hφ : Continuous (φ.comp (algebraMap R A))) : Continuous φ := by let inst := Module.compHom B (φ.comp (algebraMap R A)) let φ' : A →ₗ[R] B := ⟨φ, fun r m ↦ by simp [Algebra.smul_def]; rfl⟩ have : ContinuousSMul R B := ⟨(hφ.comp continuous_fst).mul continuous_snd⟩ exact continuous_of_linearMap φ'
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_of_ringHom
null
isQuotientMap_of_surjective [τB : TopologicalSpace B] [IsModuleTopology R B] {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) : IsQuotientMap φ where surjective := hφ eq_coinduced := by haveI := topologicalAddGroup R A haveI := topologicalAddGroup R B have this : Continuous φ := continuous_of_linearMap φ rw [continuous_iff_coinduced_le] at this refine le_antisymm ?_ this rw [eq_moduleTopology R B] clear! τB letI : TopologicalSpace B := .coinduced φ inferInstance have hφo : IsOpenQuotientMap φ := AddMonoidHom.isOpenQuotientMap_of_isQuotientMap ⟨hφ, rfl⟩ refine sInf_le ⟨?_, ?_⟩ · -- In this branch, we prove that `• : R × B → B` is continuous for the coinduced topology. apply ContinuousSMul.mk obtain ⟨hA⟩ : ContinuousSMul R A := inferInstance /- By linearity of φ, this diagram commutes: R × A --(•)--> A | | |id × φ |φ | | \/ \/ R × B --(•)--> B -/ have hφ2 : (fun p ↦ p.1 • p.2 : R × B → B) ∘ (Prod.map id φ) = φ ∘ (fun p ↦ p.1 • p.2 : R × A → A) := by ext; simp have hoq : IsOpenQuotientMap (_ : R × A → R × B) := IsOpenQuotientMap.prodMap .id hφo rw [← hoq.continuous_comp_iff] rw [hφ2] exact Continuous.comp hφo.continuous hA · /- In this branch we show that addition is continuous for the coinduced topology on `B`. The argument is basically the same, this time using commutativity of A × A --(+)--> A | | |φ × φ |φ | | \/ \/ B × B --(+)--> B -/ apply ContinuousAdd.mk obtain ⟨hA⟩ := IsModuleTopology.toContinuousAdd R A have hφ2 : (fun p ↦ p.1 + p.2 : B × B → B) ∘ (Prod.map φ φ) = φ ∘ (fun p ↦ p.1 + p.2 : A × A → A) := by ext; simp rw [← (IsOpenQuotientMap.prodMap hφo hφo).continuous_comp_iff, hφ2] exact Continuous.comp hφo.continuous hA
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
isQuotientMap_of_surjective
A linear surjection between modules with the module topology is a quotient map. Equivalently, the pushforward of the module topology along a surjective linear map is again the module topology.
isOpenQuotientMap_of_surjective [TopologicalSpace B] [IsModuleTopology R B] {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) : IsOpenQuotientMap φ := have := toContinuousAdd R A AddMonoidHom.isOpenQuotientMap_of_isQuotientMap <| isQuotientMap_of_surjective hφ omit [IsModuleTopology R A] in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
isOpenQuotientMap_of_surjective
A linear surjection between modules with the module topology is an open quotient map.
isOpenMap_of_surjective [TopologicalSpace B] [IsModuleTopology R B] [ContinuousAdd A] [ContinuousSMul R A] {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) : IsOpenMap φ := by have hOpenMap := letI : TopologicalSpace A := moduleTopology R A have : IsModuleTopology R A := ⟨rfl⟩ isOpenQuotientMap_of_surjective hφ |>.isOpenMap intro U hU exact hOpenMap U <| moduleTopology_le R A U hU
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
isOpenMap_of_surjective
A linear surjection to a module with the module topology is open.
_root_.ModuleTopology.eq_coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) : moduleTopology R B = TopologicalSpace.coinduced φ inferInstance := by letI : TopologicalSpace B := moduleTopology R B haveI : IsModuleTopology R B := ⟨rfl⟩ exact (isQuotientMap_of_surjective hφ).eq_coinduced
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
_root_.ModuleTopology.eq_coinduced_of_surjective
null
instQuot (S : Submodule R A) : IsModuleTopology R (A ⧸ S) := by constructor have := toContinuousAdd R A have quot := (Submodule.isOpenQuotientMap_mkQ S).isQuotientMap.eq_coinduced have module := ModuleTopology.eq_coinduced_of_surjective <| Submodule.mkQ_surjective S rw [quot, module]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
instQuot
null
instProd : IsModuleTopology R (M × N) := by constructor have : ContinuousAdd M := toContinuousAdd R M have : ContinuousAdd N := toContinuousAdd R N refine le_antisymm ?_ <| sInf_le ⟨Prod.continuousSMul, Prod.continuousAdd⟩ let P := M × N let τP : TopologicalSpace P := moduleTopology R P have : IsModuleTopology R P := ⟨rfl⟩ have : ContinuousAdd P := ModuleTopology.continuousAdd R P let i : M × N → P := id rw [← continuous_id_iff_le] change @Continuous (M × N) P instTopologicalSpaceProd τP i let i₁ : M →ₗ[R] P := LinearMap.inl R M N let i₂ : N →ₗ[R] P := LinearMap.inr R M N rw [show (i : M × N → P) = (fun abcd ↦ abcd.1 + abcd.2 : P × P → P) ∘ (fun ab ↦ (i₁ ab.1, i₂ ab.2)) by ext ⟨a, b⟩ <;> aesop] fun_prop
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
instProd
The product of the module topologies for two modules over a topological ring is the module topology.
instPi : IsModuleTopology R (∀ i, A i) := by induction ι using Finite.induction_empty_option · -- invariance under equivalence of the finite type we're taking the product over case of_equiv X Y e _ _ _ _ _ => exact iso (ContinuousLinearEquiv.piCongrLeft R A e) · -- empty case infer_instance · -- "inductive step" is to check for product over `Option ι` case when known for product over `ι` case h_option ι _ hind _ _ _ _ => let e : Option ι ≃ ι ⊕ Unit := Equiv.optionEquivSumPUnit ι suffices IsModuleTopology R ((i' : ι ⊕ Unit) → A (e.symm i')) from iso (.piCongrLeft R A e.symm) suffices IsModuleTopology R (((s : ι) → A (e.symm (Sum.inl s))) × ((t : Unit) → A (e.symm (Sum.inr t)))) from iso (ContinuousLinearEquiv.sumPiEquivProdPi R ι Unit _).symm have := iso (ContinuousLinearEquiv.piUnique R (fun t ↦ A (e.symm (Sum.inr t)))).symm infer_instance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
instPi
The product of the module topologies for a finite family of modules over a topological ring is the module topology.
continuous_bilinear_of_pi_fintype (ι : Type*) [Finite ι] (bil : (ι → R) →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : ((ι → R) × B → C)) := by classical cases nonempty_fintype ι have h : (fun fb ↦ bil fb.1 fb.2 : ((ι → R) × B → C)) = (fun fb ↦ ∑ i, ((fb.1 i) • (bil (Finsupp.single i 1) fb.2) : C)) := by ext ⟨f, b⟩ nth_rw 1 [← Finset.univ_sum_single f] simp_rw [← Finsupp.single_eq_pi_single, map_sum, LinearMap.coeFn_sum, Finset.sum_apply] refine Finset.sum_congr rfl (fun x _ ↦ ?_) rw [← Finsupp.smul_single_one] push_cast simp rw [h] haveI : ContinuousAdd C := toContinuousAdd R C fun_prop
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_bilinear_of_pi_fintype
If `n` is finite and `B`,`C` are `R`-modules with the module topology, then any bilinear map `Rⁿ × B → C` is automatically continuous. Note that whilst this result works for semirings, for rings this result is superseded by `IsModuleTopology.continuous_bilinear_of_finite_left`.
@[continuity, fun_prop] continuous_bilinear_of_finite_left [Module.Finite R A] (bil : A →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : (A × B → C)) := by obtain ⟨m, f, hf⟩ := Module.Finite.exists_fin' R A let bil' : (Fin m → R) →ₗ[R] B →ₗ[R] C := bil.comp f let φ := f.prodMap (LinearMap.id : B →ₗ[R] B) have hφ : Function.Surjective φ := Function.Surjective.prodMap hf fun b ↦ ⟨b, rfl⟩ rw [Topology.IsQuotientMap.continuous_iff (isQuotientMap_of_surjective hφ)] exact continuous_bilinear_of_pi_fintype (Fin m) bil'
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_bilinear_of_finite_left
If `A`, `B` and `C` have the module topology, and if furthermore `A` is a finite `R`-module, then any bilinear map `A × B → C` is automatically continuous
@[continuity, fun_prop] continuous_bilinear_of_finite_right [Module.Finite R B] (bil : A →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : (A × B → C)) := by rw [show (fun ab ↦ bil ab.1 ab.2 : (A × B → C)) = ((fun ba ↦ bil.flip ba.1 ba.2 : (B × A → C)) ∘ (Prod.swap : A × B → B × A)) by ext; simp] fun_prop
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_bilinear_of_finite_right
If `A`, `B` and `C` have the module topology, and if furthermore `B` is a finite `R`-module, then any bilinear map `A × B → C` is automatically continuous
@[continuity, fun_prop] continuous_mul_of_finite : Continuous (fun ab ↦ ab.1 * ab.2 : D × D → D) := continuous_bilinear_of_finite_left (LinearMap.mul R D) include R in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
continuous_mul_of_finite
If `D` is an `R`-algebra, finite as an `R`-module, and if `D` has the module topology, then multiplication on `D` is automatically continuous.
isTopologicalRing : IsTopologicalRing D where continuous_add := (toContinuousAdd R D).1 continuous_mul := continuous_mul_of_finite R D continuous_neg := continuous_neg R D
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.RingTheory.Finiteness.Cardinality", "Mathlib.Algebra.Algebra.Bilinear", "Mathlib.Algebra.Group.Basic" ]
Mathlib/Topology/Algebra/Module/ModuleTopology.lean
isTopologicalRing
If `R` is a topological ring and `D` is an `R`-algebra, finite as an `R`-module, and if `D` is given the module topology, then `D` is a topological ring.
@[ext] IsContPerfPair (p : M →ₗ[R] N →ₗ[R] R) where continuous_uncurry (p) : Continuous fun (x, y) ↦ p x y bijective_left (p) : Bijective fun x ↦ ContinuousLinearMap.mk (p x) <| continuous_uncurry.comp <| .prodMk_right x bijective_right (p) : Bijective fun y ↦ ContinuousLinearMap.mk (p.flip y) <| continuous_uncurry.comp <| .prodMk_left y variable [p.IsContPerfPair] alias continuous_uncurry_of_isContPerfPair := IsContPerfPair.continuous_uncurry
class
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/PerfectPairing.lean
IsContPerfPair
For a topological ring `R` and two topological modules `M` and `N`, a continuous perfect pairing is a continuous bilinear map `M × N → R` that is bijective in both arguments. We require continuity in the forward direction only so that we can put several different topologies on the continuous dual: strong, weak, weak-* topology...
flip.instIsContPerfPair : p.flip.IsContPerfPair where continuous_uncurry := p.continuous_uncurry_of_isContPerfPair.comp continuous_swap bijective_left := IsContPerfPair.bijective_right p bijective_right := IsContPerfPair.bijective_left p
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/PerfectPairing.lean
flip.instIsContPerfPair
Given a perfect pairing between `M`and `N`, we may interchange the roles of `M` and `N`.
continuous_of_isContPerfPair : Continuous (p x) := p.continuous_uncurry_of_isContPerfPair.comp <| .prodMk_right x variable [IsTopologicalRing R]
lemma
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/PerfectPairing.lean
continuous_of_isContPerfPair
null
noncomputable toContPerfPair : M ≃ₗ[R] StrongDual R N := .ofBijective { toFun := _, map_add' x y := by ext; simp, map_smul' r x := by ext; simp } <| IsContPerfPair.bijective_left p @[simp] lemma toLinearMap_toContPerfPair (x : M) : p.toContPerfPair x = p x := rfl @[simp] lemma toContPerfPair_apply (x : M) (y : N) : p.toContPerfPair x y = p x y := rfl
def
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/PerfectPairing.lean
toContPerfPair
Turn a continuous perfect pairing between `M` and `N` into a map from `M` to continuous linear maps `N → R`.
perfectSpace_of_module : PerfectSpace E := by refine ⟨fun x hx ↦ ?_⟩ let ⟨r, hr₀, hr⟩ := NormedField.exists_norm_lt_one 𝕜 obtain ⟨c, hc⟩ : ∃ (c : E), c ≠ 0 := exists_ne 0 have A : Tendsto (fun (n : ℕ) ↦ x + r ^ n • c) atTop (𝓝 (x + (0 : 𝕜) • c)) := by apply Tendsto.add tendsto_const_nhds exact (tendsto_pow_atTop_nhds_zero_of_norm_lt_one hr).smul tendsto_const_nhds have B : Tendsto (fun (n : ℕ) ↦ x + r ^ n • c) atTop (𝓝[univ \ {x}] x) := by simp only [zero_smul, add_zero] at A simp [tendsto_nhdsWithin_iff, A, hc, norm_pos_iff.mp hr₀] exact accPt_principal_iff_nhdsWithin.mpr ((atTop_neBot.map _).mono B)
lemma
Topology
[ "Mathlib.Analysis.SpecificLimits.Normed", "Mathlib.Topology.Perfect" ]
Mathlib/Topology/Algebra/Module/PerfectSpace.lean
perfectSpace_of_module
null
LinearMap.isClosed_or_dense_ker (l : M →ₗ[R] N) : IsClosed (LinearMap.ker l : Set M) ∨ Dense (LinearMap.ker l : Set M) := by rcases l.surjective_or_eq_zero with (hl | rfl) · exact (LinearMap.ker l).isClosed_or_dense_of_isCoatom (LinearMap.isCoatom_ker_of_surjective hl) · rw [LinearMap.ker_zero] left exact isClosed_univ
theorem
Topology
[ "Mathlib.RingTheory.SimpleModule.Basic", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/Simple.lean
LinearMap.isClosed_or_dense_ker
The kernel of a linear map taking values in a simple module over the base ring is closed or dense. Applies, e.g., to the case when `R = N` is a division ring.
@[simps!] starL (R : Type*) {A : Type*} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] : A ≃L⋆[R] A where toLinearEquiv := starLinearEquiv R continuous_toFun := continuous_star continuous_invFun := continuous_star
def
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
starL
If `A` is a topological module over a commutative `R` with compatible actions, then `star` is a continuous semilinear equivalence.
@[simps!] starL' (R : Type*) {A : Type*} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] : A ≃L[R] A := (starL R : A ≃L⋆[R] A).trans ({ AddEquiv.refl A with map_smul' := fun r a => by simp continuous_toFun := continuous_id continuous_invFun := continuous_id } : A ≃L⋆[R] A) variable (R : Type*) (A : Type*) [Semiring R] [StarMul R] [TrivialStar R] [AddCommGroup A] [Module R A] [StarAddMonoid A] [StarModule R A] [Invertible (2 : R)] [TopologicalSpace A]
def
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
starL'
If `A` is a topological module over a commutative `R` with trivial star and compatible actions, then `star` is a continuous linear equivalence.
continuous_selfAdjointPart [ContinuousAdd A] [ContinuousStar A] [ContinuousConstSMul R A] : Continuous (selfAdjointPart R (A := A)) := ((continuous_const_smul _).comp <| continuous_id.add continuous_star).subtype_mk _
theorem
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
continuous_selfAdjointPart
null
continuous_skewAdjointPart [ContinuousSub A] [ContinuousStar A] [ContinuousConstSMul R A] : Continuous (skewAdjointPart R (A := A)) := ((continuous_const_smul _).comp <| continuous_id.sub continuous_star).subtype_mk _
theorem
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
continuous_skewAdjointPart
null
continuous_decomposeProdAdjoint [IsTopologicalAddGroup A] [ContinuousStar A] [ContinuousConstSMul R A] : Continuous (StarModule.decomposeProdAdjoint R A) := (continuous_selfAdjointPart R A).prodMk (continuous_skewAdjointPart R A)
theorem
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
continuous_decomposeProdAdjoint
null
continuous_decomposeProdAdjoint_symm [ContinuousAdd A] : Continuous (StarModule.decomposeProdAdjoint R A).symm := (continuous_subtype_val.comp continuous_fst).add (continuous_subtype_val.comp continuous_snd)
theorem
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
continuous_decomposeProdAdjoint_symm
null
@[simps! -isSimp] selfAdjointPartL [ContinuousAdd A] [ContinuousStar A] [ContinuousConstSMul R A] : A →L[R] selfAdjoint A where toLinearMap := selfAdjointPart R cont := continuous_selfAdjointPart _ _
def
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
selfAdjointPartL
The self-adjoint part of an element of a star module, as a continuous linear map.
@[simps!] skewAdjointPartL [ContinuousSub A] [ContinuousStar A] [ContinuousConstSMul R A] : A →L[R] skewAdjoint A where toLinearMap := skewAdjointPart R cont := continuous_skewAdjointPart _ _
def
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
skewAdjointPartL
The skew-adjoint part of an element of a star module, as a continuous linear map.
@[simps!] StarModule.decomposeProdAdjointL [IsTopologicalAddGroup A] [ContinuousStar A] [ContinuousConstSMul R A] : A ≃L[R] selfAdjoint A × skewAdjoint A where toLinearEquiv := StarModule.decomposeProdAdjoint R A continuous_toFun := continuous_decomposeProdAdjoint _ _ continuous_invFun := continuous_decomposeProdAdjoint_symm _ _
def
Topology
[ "Mathlib.Algebra.Star.Module", "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Star" ]
Mathlib/Topology/Algebra/Module/Star.lean
StarModule.decomposeProdAdjointL
The decomposition of elements of a star module into their self- and skew-adjoint parts, as a continuous linear equivalence.
@[nolint unusedArguments] UniformConvergenceCLM [TopologicalSpace F] (_ : Set (Set E)) := E →SL[σ] F
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
UniformConvergenceCLM
Given `E` and `F` two topological vector spaces and `𝔖 : Set (Set E)`, then `UniformConvergenceCLM σ F 𝔖` is a type synonym of `E →SL[σ] F` equipped with the "topology of uniform convergence on the elements of `𝔖`". If the continuous linear image of any element of `𝔖` is bounded, this makes `E →SL[σ] F` a topological vector space.
instFunLike [TopologicalSpace F] (𝔖 : Set (Set E)) : FunLike (UniformConvergenceCLM σ F 𝔖) E F := ContinuousLinearMap.funLike
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instFunLike
null
instContinuousSemilinearMapClass [TopologicalSpace F] (𝔖 : Set (Set E)) : ContinuousSemilinearMapClass (UniformConvergenceCLM σ F 𝔖) σ E F := ContinuousLinearMap.continuousSemilinearMapClass
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instContinuousSemilinearMapClass
null
instTopologicalSpace [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) : TopologicalSpace (UniformConvergenceCLM σ F 𝔖) := (@UniformOnFun.topologicalSpace E F (IsTopologicalAddGroup.toUniformSpace F) 𝔖).induced (DFunLike.coe : (UniformConvergenceCLM σ F 𝔖) → (E →ᵤ[𝔖] F))
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instTopologicalSpace
null