fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
sub : Sub (M →SL[σ₁₂] M₂) := ⟨fun f g => ⟨f - g, f.2.sub g.2⟩⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
sub
null
addCommGroup : AddCommGroup (M →SL[σ₁₂] M₂) where __ := ContinuousLinearMap.addCommMonoid neg := (-·) sub := (· - ·) sub_eq_add_neg _ _ := by ext; apply sub_eq_add_neg nsmul := (· • ·) zsmul := (· • ·) zsmul_zero' f := by ext; simp zsmul_succ' n f := by ext; simp [add_smul, add_comm] zsmul_neg' n f := by ext; simp [add_smul] neg_add_cancel _ := by ext; apply neg_add_cancel
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
addCommGroup
null
sub_apply (f g : M →SL[σ₁₂] M₂) (x : M) : (f - g) x = f x - g x := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
sub_apply
null
coe_sub (f g : M →SL[σ₁₂] M₂) : (↑(f - g) : M →ₛₗ[σ₁₂] M₂) = f - g := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_sub
null
coe_sub' (f g : M →SL[σ₁₂] M₂) : ⇑(f - g) = f - g := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_sub'
null
toContinuousAddMonoidHom_sub (f g : M →SL[σ₁₂] M₂) : ↑(f - g) = (f - g : ContinuousAddMonoidHom M M₂) := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_sub
null
@[simp] comp_neg [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [IsTopologicalAddGroup M₂] [IsTopologicalAddGroup M₃] (g : M₂ →SL[σ₂₃] M₃) (f : M →SL[σ₁₂] M₂) : g.comp (-f) = -g.comp f := by ext x simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_neg
null
neg_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [IsTopologicalAddGroup M₃] (g : M₂ →SL[σ₂₃] M₃) (f : M →SL[σ₁₂] M₂) : (-g).comp f = -g.comp f := by ext simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
neg_comp
null
comp_sub [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [IsTopologicalAddGroup M₂] [IsTopologicalAddGroup M₃] (g : M₂ →SL[σ₂₃] M₃) (f₁ f₂ : M →SL[σ₁₂] M₂) : g.comp (f₁ - f₂) = g.comp f₁ - g.comp f₂ := by ext simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_sub
null
sub_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [IsTopologicalAddGroup M₃] (g₁ g₂ : M₂ →SL[σ₂₃] M₃) (f : M →SL[σ₁₂] M₂) : (g₁ - g₂).comp f = g₁.comp f - g₂.comp f := by ext simp
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
sub_comp
null
ring [IsTopologicalAddGroup M] : Ring (M →L[R] M) where __ := ContinuousLinearMap.semiring __ := ContinuousLinearMap.addCommGroup intCast z := z • (1 : M →L[R] M) intCast_ofNat := natCast_zsmul _ intCast_negSucc := negSucc_zsmul _ @[simp]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ring
null
intCast_apply [IsTopologicalAddGroup M] (z : ℤ) (m : M) : (↑z : M →L[R] M) m = z • m := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
intCast_apply
null
smulRight_one_pow [TopologicalSpace R] [IsTopologicalRing R] (c : R) (n : ℕ) : smulRight (1 : R →L[R] R) c ^ n = smulRight (1 : R →L[R] R) (c ^ n) := by induction n with | zero => ext; simp | succ n ihn => rw [pow_succ, ihn, mul_def, smulRight_comp, smul_eq_mul, pow_succ']
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRight_one_pow
null
projKerOfRightInverse [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂) (f₂ : M₂ →SL[σ₂₁] M) (h : Function.RightInverse f₂ f₁) : M →L[R] LinearMap.ker f₁ := (id R M - f₂.comp f₁).codRestrict (LinearMap.ker f₁) fun x => by simp [h (f₁ x)] @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
projKerOfRightInverse
Given a right inverse `f₂ : M₂ →L[R] M` to `f₁ : M →L[R] M₂`, `projKerOfRightInverse f₁ f₂ h` is the projection `M →L[R] LinearMap.ker f₁` along `LinearMap.range f₂`.
coe_projKerOfRightInverse_apply [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂) (f₂ : M₂ →SL[σ₂₁] M) (h : Function.RightInverse f₂ f₁) (x : M) : (f₁.projKerOfRightInverse f₂ h x : M) = x - f₂ (f₁ x) := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_projKerOfRightInverse_apply
null
projKerOfRightInverse_apply_idem [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂) (f₂ : M₂ →SL[σ₂₁] M) (h : Function.RightInverse f₂ f₁) (x : LinearMap.ker f₁) : f₁.projKerOfRightInverse f₂ h x = x := by ext1 simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
projKerOfRightInverse_apply_idem
null
projKerOfRightInverse_comp_inv [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂) (f₂ : M₂ →SL[σ₂₁] M) (h : Function.RightInverse f₂ f₁) (y : M₂) : f₁.projKerOfRightInverse f₂ h (f₂ y) = 0 := Subtype.ext_iff.2 <| by simp [h y]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
projKerOfRightInverse_comp_inv
null
protected isOpenMap_of_ne_zero [TopologicalSpace R] [DivisionRing R] [ContinuousSub R] [AddCommGroup M] [TopologicalSpace M] [ContinuousAdd M] [Module R M] [ContinuousSMul R M] (f : StrongDual R M) (hf : f ≠ 0) : IsOpenMap f := let ⟨x, hx⟩ := exists_ne_zero hf IsOpenMap.of_sections fun y => ⟨fun a => y + (a - f y) • (f x)⁻¹ • x, Continuous.continuousAt <| by fun_prop, by simp, fun a => by simp [hx]⟩
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
isOpenMap_of_ne_zero
A nonzero continuous linear functional is open.
@[simp] smul_comp (c : S₃) (h : M₂ →SL[σ₂₃] M₃) (f : M →SL[σ₁₂] M₂) : (c • h).comp f = c • h.comp f := rfl variable [DistribMulAction S₃ M₂] [ContinuousConstSMul S₃ M₂] [SMulCommClass R₂ S₃ M₂] variable [DistribMulAction S N₂] [ContinuousConstSMul S N₂] [SMulCommClass R S N₂] @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smul_comp
null
comp_smul [LinearMap.CompatibleSMul N₂ N₃ S R] (hₗ : N₂ →L[R] N₃) (c : S) (fₗ : M →L[R] N₂) : hₗ.comp (c • fₗ) = c • hₗ.comp fₗ := by ext x exact hₗ.map_smul_of_tower c (fₗ x) @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_smul
null
comp_smulₛₗ [SMulCommClass R₂ R₂ M₂] [SMulCommClass R₃ R₃ M₃] [ContinuousConstSMul R₂ M₂] [ContinuousConstSMul R₃ M₃] (h : M₂ →SL[σ₂₃] M₃) (c : R₂) (f : M →SL[σ₁₂] M₂) : h.comp (c • f) = σ₂₃ c • h.comp f := by ext x simp only [coe_smul', coe_comp', Function.comp_apply, Pi.smul_apply, ContinuousLinearMap.map_smulₛₗ]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_smulₛₗ
null
distribMulAction [ContinuousAdd M₂] : DistribMulAction S₃ (M →SL[σ₁₂] M₂) where smul_add a f g := ext fun x => smul_add a (f x) (g x) smul_zero a := ext fun _ => smul_zero a
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
distribMulAction
null
module : Module S₃ (M →SL[σ₁₃] M₃) where zero_smul _ := ext fun _ => zero_smul S₃ _ add_smul _ _ _ := ext fun _ => add_smul _ _ _
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
module
null
isCentralScalar [Module S₃ᵐᵒᵖ M₃] [IsCentralScalar S₃ M₃] : IsCentralScalar S₃ (M →SL[σ₁₃] M₃) where op_smul_eq_smul _ _ := ext fun _ => op_smul_eq_smul _ _ variable (S) [ContinuousAdd N₃]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
isCentralScalar
null
@[simps] coeLM : (M →L[R] N₃) →ₗ[S] M →ₗ[R] N₃ where toFun := (↑) map_add' f g := coe_add f g map_smul' c f := coe_smul c f variable {S} (σ₁₃)
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coeLM
The coercion from `M →L[R] M₂` to `M →ₗ[R] M₂`, as a linear map.
@[simps] coeLMₛₗ : (M →SL[σ₁₃] M₃) →ₗ[S₃] M →ₛₗ[σ₁₃] M₃ where toFun := (↑) map_add' f g := coe_add f g map_smul' c f := coe_smul c f
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coeLMₛₗ
The coercion from `M →SL[σ] M₂` to `M →ₛₗ[σ] M₂`, as a linear map.
smulRightₗ (c : M →L[R] S) : M₂ →ₗ[T] M →L[R] M₂ where toFun := c.smulRight map_add' x y := by ext e apply smul_add (c e) map_smul' a x := by ext e dsimp apply smul_comm @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRightₗ
Given `c : E →L[R] S`, `c.smulRightₗ` is the linear map from `F` to `E →L[R] F` sending `f` to `fun e => c e • f`. See also `ContinuousLinearMap.smulRightL`.
coe_smulRightₗ (c : M →L[R] S) : ⇑(smulRightₗ c : M₂ →ₗ[T] M →L[R] M₂) = c.smulRight := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_smulRightₗ
null
algebra : Algebra R (M₂ →L[R] M₂) := Algebra.ofModule smul_comp fun _ _ _ => comp_smul _ _ _ @[simp] theorem algebraMap_apply (r : R) (m : M₂) : algebraMap R (M₂ →L[R] M₂) r m = r • m := rfl
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
algebra
null
restrictScalars (f : M₁ →L[A] M₂) : M₁ →L[R] M₂ := ⟨(f : M₁ →ₗ[A] M₂).restrictScalars R, f.continuous⟩ @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
restrictScalars
If `A` is an `R`-algebra, then a continuous `A`-linear map can be interpreted as a continuous `R`-linear map. We assume `LinearMap.CompatibleSMul M₁ M₂ R A` to match assumptions of `LinearMap.map_smul_of_tower`.
coe_restrictScalars (f : M₁ →L[A] M₂) : (f.restrictScalars R : M₁ →ₗ[R] M₂) = (f : M₁ →ₗ[A] M₂).restrictScalars R := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_restrictScalars
null
coe_restrictScalars' (f : M₁ →L[A] M₂) : ⇑(f.restrictScalars R) = f := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_restrictScalars'
null
toContinuousAddMonoidHom_restrictScalars (f : M₁ →L[A] M₂) : ↑(f.restrictScalars R) = (f : ContinuousAddMonoidHom M₁ M₂) := rfl @[simp] lemma restrictScalars_zero : (0 : M₁ →L[A] M₂).restrictScalars R = 0 := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_restrictScalars
null
restrictScalars_add [ContinuousAdd M₂] (f g : M₁ →L[A] M₂) : (f + g).restrictScalars R = f.restrictScalars R + g.restrictScalars R := rfl variable [Module S M₂] [ContinuousConstSMul S M₂] [SMulCommClass A S M₂] [SMulCommClass R S M₂] @[simp]
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
restrictScalars_add
null
restrictScalars_smul (c : S) (f : M₁ →L[A] M₂) : (c • f).restrictScalars R = c • f.restrictScalars R := rfl variable [ContinuousAdd M₂] variable (A R S M₁ M₂) in
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
restrictScalars_smul
null
restrictScalarsₗ : (M₁ →L[A] M₂) →ₗ[S] M₁ →L[R] M₂ where toFun := restrictScalars R map_add' := restrictScalars_add map_smul' := restrictScalars_smul @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
restrictScalarsₗ
`ContinuousLinearMap.restrictScalars` as a `LinearMap`. See also `ContinuousLinearMap.restrictScalarsL`.
coe_restrictScalarsₗ : ⇑(restrictScalarsₗ A M₁ M₂ R S) = restrictScalars R := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_restrictScalarsₗ
null
@[simp] restrictScalars_sub (f g : M₁ →L[A] M₂) : (f - g).restrictScalars R = f.restrictScalars R - g.restrictScalars R := rfl @[simp]
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
restrictScalars_sub
null
restrictScalars_neg (f : M₁ →L[A] M₂) : (-f).restrictScalars R = -f.restrictScalars R := rfl
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
restrictScalars_neg
null
ClosedComplemented (p : Submodule R M) : Prop := ∃ f : M →L[R] p, ∀ x : p, f x = x
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ClosedComplemented
A submodule `p` is called *complemented* if there exists a continuous projection `M →ₗ[R] p`.
ClosedComplemented.exists_isClosed_isCompl {p : Submodule R M} [T1Space p] (h : ClosedComplemented p) : ∃ q : Submodule R M, IsClosed (q : Set M) ∧ IsCompl p q := Exists.elim h fun f hf => ⟨ker f, isClosed_ker f, LinearMap.isCompl_of_proj hf⟩
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ClosedComplemented.exists_isClosed_isCompl
null
protected ClosedComplemented.isClosed [IsTopologicalAddGroup M] [T1Space M] {p : Submodule R M} (h : ClosedComplemented p) : IsClosed (p : Set M) := by rcases h with ⟨f, hf⟩ have : ker (id R M - p.subtypeL.comp f) = p := LinearMap.ker_id_sub_eq_of_proj hf exact this ▸ isClosed_ker _ @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ClosedComplemented.isClosed
null
closedComplemented_bot : ClosedComplemented (⊥ : Submodule R M) := ⟨0, fun x => by simp only [zero_apply, eq_zero_of_bot_submodule x]⟩ @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
closedComplemented_bot
null
closedComplemented_top : ClosedComplemented (⊤ : Submodule R M) := ⟨(id R M).codRestrict ⊤ fun _x => trivial, fun x => Subtype.ext_iff.2 <| by simp⟩
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
closedComplemented_top
null
ContinuousLinearMap.closedComplemented_ker_of_rightInverse {R : Type*} [Ring R] {M : Type*} [TopologicalSpace M] [AddCommGroup M] {M₂ : Type*} [TopologicalSpace M₂] [AddCommGroup M₂] [Module R M] [Module R M₂] [IsTopologicalAddGroup M] (f₁ : M →L[R] M₂) (f₂ : M₂ →L[R] M) (h : Function.RightInverse f₂ f₁) : (ker f₁).ClosedComplemented := ⟨f₁.projKerOfRightInverse f₂ h, f₁.projKerOfRightInverse_apply_idem f₂ h⟩
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ContinuousLinearMap.closedComplemented_ker_of_rightInverse
null
@[grind =] isIdempotentElem_toLinearMap_iff {R M : Type*} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] {f : M →L[R] M} : IsIdempotentElem f.toLinearMap ↔ IsIdempotentElem f := by simp only [IsIdempotentElem, Module.End.mul_eq_comp, ← coe_comp, mul_def, coe_inj] alias ⟨_, IsIdempotentElem.toLinearMap⟩ := isIdempotentElem_toLinearMap_iff variable {R M : Type*} [Ring R] [TopologicalSpace M] [AddCommGroup M] [Module R M] open ContinuousLinearMap
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
isIdempotentElem_toLinearMap_iff
null
IsIdempotentElem.ext_iff {p q : M →L[R] M} (hp : IsIdempotentElem p) (hq : IsIdempotentElem q) : p = q ↔ range p = range q ∧ ker p = ker q := by simpa using LinearMap.IsIdempotentElem.ext_iff hp.toLinearMap hq.toLinearMap alias ⟨_, IsIdempotentElem.ext⟩ := IsIdempotentElem.ext_iff
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.ext_iff
Idempotent operators are equal iff their range and kernels are.
IsIdempotentElem.range_mem_invtSubmodule_iff {f T : M →L[R] M} (hf : IsIdempotentElem f) : LinearMap.range f ∈ Module.End.invtSubmodule T ↔ f ∘L T ∘L f = T ∘L f := by simpa [← ContinuousLinearMap.coe_comp] using LinearMap.IsIdempotentElem.range_mem_invtSubmodule_iff (T := T) hf.toLinearMap alias ⟨IsIdempotentElem.conj_eq_of_range_mem_invtSubmodule, IsIdempotentElem.range_mem_invtSubmodule⟩ := IsIdempotentElem.range_mem_invtSubmodule_iff
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.range_mem_invtSubmodule_iff
`range f` is invariant under `T` if and only if `f ∘L T ∘L f = T ∘L f`, for idempotent `f`.
IsIdempotentElem.ker_mem_invtSubmodule_iff {f T : M →L[R] M} (hf : IsIdempotentElem f) : LinearMap.ker f ∈ Module.End.invtSubmodule T ↔ f ∘L T ∘L f = f ∘L T := by simpa [← ContinuousLinearMap.coe_comp] using LinearMap.IsIdempotentElem.ker_mem_invtSubmodule_iff (T := T) hf.toLinearMap alias ⟨IsIdempotentElem.conj_eq_of_ker_mem_invtSubmodule, IsIdempotentElem.ker_mem_invtSubmodule⟩ := IsIdempotentElem.ker_mem_invtSubmodule_iff
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.ker_mem_invtSubmodule_iff
`ker f` is invariant under `T` if and only if `f ∘L T ∘L f = f ∘L T`, for idempotent `f`.
IsIdempotentElem.commute_iff {f T : M →L[R] M} (hf : IsIdempotentElem f) : Commute f T ↔ (LinearMap.range f ∈ Module.End.invtSubmodule T ∧ LinearMap.ker f ∈ Module.End.invtSubmodule T) := by simpa [Commute, SemiconjBy, Module.End.mul_eq_comp, ← coe_comp] using LinearMap.IsIdempotentElem.commute_iff (T := T) hf.toLinearMap variable [IsTopologicalAddGroup M]
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.commute_iff
An idempotent operator `f` commutes with `T` if and only if both `range f` and `ker f` are invariant under `T`.
IsIdempotentElem.commute_iff_of_isUnit {f T : M →L[R] M} (hT : IsUnit T) (hf : IsIdempotentElem f) : Commute f T ↔ (range f).map T = range f ∧ (ker f).map T = ker f := by have := hT.map ContinuousLinearMap.toLinearMapRingHom lift T to (M →L[R] M)ˣ using hT simpa [Commute, SemiconjBy, Module.End.mul_eq_comp, ← ContinuousLinearMap.coe_comp] using LinearMap.IsIdempotentElem.commute_iff_of_isUnit this hf.toLinearMap
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.commute_iff_of_isUnit
An idempotent operator `f` commutes with an unit operator `T` if and only if `T (range f) = range f` and `T (ker f) = ker f`.
IsIdempotentElem.range_eq_ker {p : M →L[R] M} (hp : IsIdempotentElem p) : LinearMap.range p = LinearMap.ker (1 - p) := LinearMap.IsIdempotentElem.range_eq_ker hp.toLinearMap
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.range_eq_ker
null
IsIdempotentElem.ker_eq_range {p : M →L[R] M} (hp : IsIdempotentElem p) : LinearMap.ker p = LinearMap.range (1 - p) := LinearMap.IsIdempotentElem.ker_eq_range hp.toLinearMap open ContinuousLinearMap in
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.ker_eq_range
null
IsIdempotentElem.isClosed_range [T1Space M] {p : M →L[R] M} (hp : IsIdempotentElem p) : IsClosed (LinearMap.range p : Set M) := hp.range_eq_ker ▸ isClosed_ker (1 - p)
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
IsIdempotentElem.isClosed_range
null
topDualPairing : (E →L[𝕜] 𝕜) →ₗ[𝕜] E →ₗ[𝕜] 𝕜 := ContinuousLinearMap.coeLM 𝕜 @[deprecated (since := "2025-08-3")] alias NormedSpace.dualPairing := topDualPairing @[deprecated (since := "2025-09-03")] alias strongDualPairing := topDualPairing @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
topDualPairing
The canonical pairing of a vector space and its topological dual.
topDualPairing_apply (v : E →L[𝕜] 𝕜) (x : E) : topDualPairing 𝕜 E v x = v x := rfl @[deprecated (since := "2025-08-3")] alias NormedSpace.dualPairing_apply := topDualPairing_apply @[deprecated (since := "2025-09-03")] alias StrongDual.dualPairing_apply := topDualPairing_apply
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
topDualPairing_apply
null
protected prod (f₁ : M₁ →L[R] M₂) (f₂ : M₁ →L[R] M₃) : M₁ →L[R] M₂ × M₃ := ⟨(f₁ : M₁ →ₗ[R] M₂).prod f₂, f₁.2.prodMk f₂.2⟩ @[simp, norm_cast]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prod
The Cartesian product of two bounded linear maps, as a bounded linear map.
coe_prod (f₁ : M₁ →L[R] M₂) (f₂ : M₁ →L[R] M₃) : (f₁.prod f₂ : M₁ →ₗ[R] M₂ × M₃) = LinearMap.prod f₁ f₂ := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_prod
null
prod_apply (f₁ : M₁ →L[R] M₂) (f₂ : M₁ →L[R] M₃) (x : M₁) : f₁.prod f₂ x = (f₁ x, f₂ x) := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prod_apply
null
inl : M₁ →L[R] M₁ × M₂ := (id R M₁).prod 0
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
inl
The left injection into a product is a continuous linear map.
inr : M₂ →L[R] M₁ × M₂ := (0 : M₂ →L[R] M₁).prod (id R M₂)
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
inr
The right injection into a product is a continuous linear map.
@[simp] inl_apply (x : M₁) : inl R M₁ M₂ x = (x, 0) := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
inl_apply
null
inr_apply (x : M₂) : inr R M₁ M₂ x = (0, x) := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
inr_apply
null
coe_inl : (inl R M₁ M₂ : M₁ →ₗ[R] M₁ × M₂) = LinearMap.inl R M₁ M₂ := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_inl
null
coe_inr : (inr R M₁ M₂ : M₂ →ₗ[R] M₁ × M₂) = LinearMap.inr R M₁ M₂ := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_inr
null
comp_inl_add_comp_inr (L : M₁ × M₂ →L[R] M₃) (v : M₁ × M₂) : L.comp (.inl R M₁ M₂) v.1 + L.comp (.inr R M₁ M₂) v.2 = L v := by simp [← map_add] @[simp]
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
comp_inl_add_comp_inr
null
ker_prod (f : M₁ →L[R] M₂) (g : M₁ →L[R] M₃) : ker (f.prod g) = ker f ⊓ ker g := LinearMap.ker_prod (f : M₁ →ₗ[R] M₂) (g : M₁ →ₗ[R] M₃) variable (R M₁ M₂)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
ker_prod
null
fst : M₁ × M₂ →L[R] M₁ where cont := continuous_fst toLinearMap := LinearMap.fst R M₁ M₂
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
fst
`Prod.fst` as a `ContinuousLinearMap`.
snd : M₁ × M₂ →L[R] M₂ where cont := continuous_snd toLinearMap := LinearMap.snd R M₁ M₂ variable {R M₁ M₂} @[simp, norm_cast]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
snd
`Prod.snd` as a `ContinuousLinearMap`.
coe_fst : ↑(fst R M₁ M₂) = LinearMap.fst R M₁ M₂ := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_fst
null
coe_fst' : ⇑(fst R M₁ M₂) = Prod.fst := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_fst'
null
coe_snd : ↑(snd R M₁ M₂) = LinearMap.snd R M₁ M₂ := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_snd
null
coe_snd' : ⇑(snd R M₁ M₂) = Prod.snd := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_snd'
null
fst_prod_snd : (fst R M₁ M₂).prod (snd R M₁ M₂) = id R (M₁ × M₂) := ext fun ⟨_x, _y⟩ => rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
fst_prod_snd
null
fst_comp_prod (f : M₁ →L[R] M₂) (g : M₁ →L[R] M₃) : (fst R M₂ M₃).comp (f.prod g) = f := ext fun _x => rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
fst_comp_prod
null
snd_comp_prod (f : M₁ →L[R] M₂) (g : M₁ →L[R] M₃) : (snd R M₂ M₃).comp (f.prod g) = g := ext fun _x => rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
snd_comp_prod
null
prodMap (f₁ : M₁ →L[R] M₂) (f₂ : M₃ →L[R] M₄) : M₁ × M₃ →L[R] M₂ × M₄ := (f₁.comp (fst R M₁ M₃)).prod (f₂.comp (snd R M₁ M₃)) @[simp, norm_cast]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prodMap
`Prod.map` of two continuous linear maps.
coe_prodMap (f₁ : M₁ →L[R] M₂) (f₂ : M₃ →L[R] M₄) : ↑(f₁.prodMap f₂) = (f₁ : M₁ →ₗ[R] M₂).prodMap (f₂ : M₃ →ₗ[R] M₄) := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_prodMap
null
coe_prodMap' (f₁ : M₁ →L[R] M₂) (f₂ : M₃ →L[R] M₄) : ⇑(f₁.prodMap f₂) = Prod.map f₁ f₂ := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_prodMap'
null
pi (f : ∀ i, M →L[R] φ i) : M →L[R] ∀ i, φ i := ⟨LinearMap.pi fun i => f i, continuous_pi fun i => (f i).continuous⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi
`pi` construction for continuous linear functions. From a family of continuous linear functions it produces a continuous linear function into a family of topological modules.
coe_pi' (f : ∀ i, M →L[R] φ i) : ⇑(pi f) = fun c i => f i c := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_pi'
null
coe_pi (f : ∀ i, M →L[R] φ i) : (pi f : M →ₗ[R] ∀ i, φ i) = LinearMap.pi fun i => f i := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_pi
null
pi_apply (f : ∀ i, M →L[R] φ i) (c : M) (i : ι) : pi f c i = f i c := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi_apply
null
pi_eq_zero (f : ∀ i, M →L[R] φ i) : pi f = 0 ↔ ∀ i, f i = 0 := by simp only [ContinuousLinearMap.ext_iff, pi_apply, funext_iff] exact forall_swap
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi_eq_zero
null
pi_zero : pi (fun _ => 0 : ∀ i, M →L[R] φ i) = 0 := ext fun _ => rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi_zero
null
pi_comp (f : ∀ i, M →L[R] φ i) (g : M₂ →L[R] M) : (pi f).comp g = pi fun i => (f i).comp g := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi_comp
null
proj (i : ι) : (∀ i, φ i) →L[R] φ i := ⟨LinearMap.proj i, continuous_apply _⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
proj
The projections from a family of topological modules are continuous linear maps.
proj_apply (i : ι) (b : ∀ i, φ i) : (proj i : (∀ i, φ i) →L[R] φ i) b = b i := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
proj_apply
null
proj_pi (f : ∀ i, M₂ →L[R] φ i) (i : ι) : (proj i).comp (pi f) = f i := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
proj_pi
null
coe_proj (i : ι) : (proj i).toLinearMap = (LinearMap.proj i : ((i : ι) → φ i) →ₗ[R] _) := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
coe_proj
null
pi_proj : pi proj = .id R (∀ i, φ i) := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi_proj
null
pi_proj_comp (f : M₂ →L[R] ∀ i, φ i) : pi (proj · ∘L f) = f := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
pi_proj_comp
null
iInf_ker_proj : (⨅ i, ker (proj i : (∀ i, φ i) →L[R] φ i) : Submodule R (∀ i, φ i)) = ⊥ := LinearMap.iInf_ker_proj variable (R φ)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
iInf_ker_proj
null
_root_.Pi.compRightL {α : Type*} (f : α → ι) : ((i : ι) → φ i) →L[R] ((i : α) → φ (f i)) where toFun := fun v i ↦ v (f i) map_add' := by intros; ext; simp map_smul' := by intros; ext; simp cont := by fun_prop @[simp] lemma _root_.Pi.compRightL_apply {α : Type*} (f : α → ι) (v : (i : ι) → φ i) (i : α) : Pi.compRightL R φ f v i = v (f i) := rfl
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
_root_.Pi.compRightL
Given a function `f : α → ι`, it induces a continuous linear function by right composition on product types. For `f = Subtype.val`, this corresponds to forgetting some set of variables.
@[simps! -fullyApplied] single [DecidableEq ι] (i : ι) : φ i →L[R] (∀ i, φ i) where toLinearMap := .single R φ i cont := continuous_single _
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
single
`Pi.single` as a bundled continuous linear map.
sum_comp_single [Fintype ι] [DecidableEq ι] (L : (Π i, φ i) →L[R] M) (v : Π i, φ i) : ∑ i, L.comp (.single R φ i) (v i) = L v := by simp [← map_sum, LinearMap.sum_single_apply]
lemma
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
sum_comp_single
null
range_prod_eq {f : M →L[R] M₂} {g : M →L[R] M₃} (h : ker f ⊔ ker g = ⊤) : range (f.prod g) = (range f).prod (range g) := LinearMap.range_prod_eq h
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
range_prod_eq
null
ker_prod_ker_le_ker_coprod (f : M →L[R] M₃) (g : M₂ →L[R] M₃) : (LinearMap.ker f).prod (LinearMap.ker g) ≤ LinearMap.ker (f.coprod g) := LinearMap.ker_prod_ker_le_ker_coprod f.toLinearMap g.toLinearMap
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
ker_prod_ker_le_ker_coprod
null
@[simps apply] prodEquiv : (M →L[R] M₂) × (M →L[R] M₃) ≃ (M →L[R] M₂ × M₃) where toFun f := f.1.prod f.2 invFun f := ⟨(fst _ _ _).comp f, (snd _ _ _).comp f⟩
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prodEquiv
`ContinuousLinearMap.prod` as an `Equiv`.
prod_ext_iff {f g : M × M₂ →L[R] M₃} : f = g ↔ f.comp (inl _ _ _) = g.comp (inl _ _ _) ∧ f.comp (inr _ _ _) = g.comp (inr _ _ _) := by simp only [← coe_inj, LinearMap.prod_ext_iff] rfl @[ext]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap" ]
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
prod_ext_iff
null