fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
smulCommClass [SMulCommClass S₂ T₂ M₂] : SMulCommClass S₂ T₂ (M₁ →SL[σ₁₂] M₂) := ⟨fun a b f => ext fun x => smul_comm a b (f x)⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulCommClass
null
zero : Zero (M₁ →SL[σ₁₂] M₂) := ⟨⟨0, continuous_zero⟩⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
zero
The continuous map that is constantly zero.
inhabited : Inhabited (M₁ →SL[σ₁₂] M₂) := ⟨0⟩ @[simp]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
inhabited
null
default_def : (default : M₁ →SL[σ₁₂] M₂) = 0 := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
default_def
null
zero_apply (x : M₁) : (0 : M₁ →SL[σ₁₂] M₂) x = 0 := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
zero_apply
null
coe_zero : ((0 : M₁ →SL[σ₁₂] M₂) : M₁ →ₛₗ[σ₁₂] M₂) = 0 := rfl /- no simp attribute on the next line as simp does not always simplify `0 x` to `0` when `0` is the zero function, while it does for the zero continuous linear map, and this is the most important property we care about. -/ @[norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_zero
null
coe_zero' : ⇑(0 : M₁ →SL[σ₁₂] M₂) = 0 := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_zero'
null
toContinuousAddMonoidHom_zero : ((0 : M₁ →SL[σ₁₂] M₂) : ContinuousAddMonoidHom M₁ M₂) = 0 := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_zero
null
uniqueOfLeft [Subsingleton M₁] : Unique (M₁ →SL[σ₁₂] M₂) := coe_injective.unique
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
uniqueOfLeft
null
uniqueOfRight [Subsingleton M₂] : Unique (M₁ →SL[σ₁₂] M₂) := coe_injective.unique
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
uniqueOfRight
null
exists_ne_zero {f : M₁ →SL[σ₁₂] M₂} (hf : f ≠ 0) : ∃ x, f x ≠ 0 := by by_contra! h exact hf (ContinuousLinearMap.ext h)
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
exists_ne_zero
null
id : M₁ →L[R₁] M₁ := ⟨LinearMap.id, continuous_id⟩
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
id
the identity map as a continuous linear map.
one : One (M₁ →L[R₁] M₁) := ⟨id R₁ M₁⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
one
null
one_def : (1 : M₁ →L[R₁] M₁) = id R₁ M₁ := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
one_def
null
id_apply (x : M₁) : id R₁ M₁ x = x := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
id_apply
null
coe_id : (id R₁ M₁ : M₁ →ₗ[R₁] M₁) = LinearMap.id := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_id
null
coe_id' : ⇑(id R₁ M₁) = _root_.id := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_id'
null
toContinuousAddMonoidHom_id : (id R₁ M₁ : ContinuousAddMonoidHom M₁ M₁) = .id _ := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_id
null
coe_eq_id {f : M₁ →L[R₁] M₁} : (f : M₁ →ₗ[R₁] M₁) = LinearMap.id ↔ f = id _ _ := by rw [← coe_id, coe_inj] @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_eq_id
null
one_apply (x : M₁) : (1 : M₁ →L[R₁] M₁) x = x := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
one_apply
null
add : Add (M₁ →SL[σ₁₂] M₂) := ⟨fun f g => ⟨f + g, f.2.add g.2⟩⟩ @[simp]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
add
null
add_apply (f g : M₁ →SL[σ₁₂] M₂) (x : M₁) : (f + g) x = f x + g x := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
add_apply
null
coe_add (f g : M₁ →SL[σ₁₂] M₂) : (↑(f + g) : M₁ →ₛₗ[σ₁₂] M₂) = f + g := rfl @[norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_add
null
coe_add' (f g : M₁ →SL[σ₁₂] M₂) : ⇑(f + g) = f + g := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_add'
null
toContinuousAddMonoidHom_add (f g : M₁ →SL[σ₁₂] M₂) : ↑(f + g) = (f + g : ContinuousAddMonoidHom M₁ M₂) := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_add
null
addCommMonoid : AddCommMonoid (M₁ →SL[σ₁₂] M₂) where zero_add := by intros ext apply_rules [zero_add, add_assoc, add_zero, neg_add_cancel, add_comm] add_zero := by intros ext apply_rules [zero_add, add_assoc, add_zero, neg_add_cancel, add_comm] add_comm := by intros ext apply_rules [zero_add, add_assoc, add_zero, neg_add_cancel, add_comm] add_assoc := by intros ext apply_rules [zero_add, add_assoc, add_zero, neg_add_cancel, add_comm] nsmul := (· • ·) nsmul_zero f := by ext simp nsmul_succ n f := by ext simp [add_smul] @[simp, norm_cast]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
addCommMonoid
null
coe_sum {ι : Type*} (t : Finset ι) (f : ι → M₁ →SL[σ₁₂] M₂) : ↑(∑ d ∈ t, f d) = (∑ d ∈ t, f d : M₁ →ₛₗ[σ₁₂] M₂) := map_sum (AddMonoidHom.mk ⟨((↑) : (M₁ →SL[σ₁₂] M₂) → M₁ →ₛₗ[σ₁₂] M₂), rfl⟩ fun _ _ => rfl) _ _ @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_sum
null
coe_sum' {ι : Type*} (t : Finset ι) (f : ι → M₁ →SL[σ₁₂] M₂) : ⇑(∑ d ∈ t, f d) = ∑ d ∈ t, ⇑(f d) := by simp only [← coe_coe, coe_sum, LinearMap.coeFn_sum]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_sum'
null
sum_apply {ι : Type*} (t : Finset ι) (f : ι → M₁ →SL[σ₁₂] M₂) (b : M₁) : (∑ d ∈ t, f d) b = ∑ d ∈ t, f d b := by simp only [coe_sum', Finset.sum_apply]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
sum_apply
null
comp (g : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : M₁ →SL[σ₁₃] M₃ := ⟨(g : M₂ →ₛₗ[σ₂₃] M₃).comp (f : M₁ →ₛₗ[σ₁₂] M₂), g.2.comp f.2⟩ @[inherit_doc comp] infixr:80 " ∘L " => @ContinuousLinearMap.comp _ _ _ _ _ _ (RingHom.id _) (RingHom.id _) (RingHom.id _) _ _ _ _ _ _ _ _ _ _ _ _ RingHomCompTriple.ids @[simp, norm_cast]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp
Composition of bounded linear maps.
coe_comp (h : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : (h.comp f : M₁ →ₛₗ[σ₁₃] M₃) = (h : M₂ →ₛₗ[σ₂₃] M₃).comp (f : M₁ →ₛₗ[σ₁₂] M₂) := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_comp
null
coe_comp' (h : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : ⇑(h.comp f) = h ∘ f := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_comp'
null
toContinuousAddMonoidHom_comp (h : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : (↑(h.comp f) : ContinuousAddMonoidHom M₁ M₃) = (h : ContinuousAddMonoidHom M₂ M₃).comp f := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_comp
null
comp_apply (g : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) (x : M₁) : (g.comp f) x = g (f x) := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_apply
null
comp_id (f : M₁ →SL[σ₁₂] M₂) : f.comp (id R₁ M₁) = f := ext fun _x => rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_id
null
id_comp (f : M₁ →SL[σ₁₂] M₂) : (id R₂ M₂).comp f = f := ext fun _x => rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
id_comp
null
leftInverse_of_comp {f : E →L[R] F} {g : F →L[R] E} (hinv : g.comp f = ContinuousLinearMap.id R E) : Function.LeftInverse g f := by simpa [← Function.rightInverse_iff_comp] using congr(⇑$hinv)
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
leftInverse_of_comp
`g ∘ f = id` as `ContinuousLinearMap`s implies `g ∘ f = id` as functions.
rightInverse_of_comp {f : E →L[R] F} {g : F →L[R] E} (hinv : f.comp g = ContinuousLinearMap.id R F) : Function.RightInverse g f := leftInverse_of_comp hinv
lemma
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
rightInverse_of_comp
`f ∘ g = id` as `ContinuousLinearMap`s implies `f ∘ g = id` as functions.
@[simp] comp_zero (g : M₂ →SL[σ₂₃] M₃) : g.comp (0 : M₁ →SL[σ₁₂] M₂) = 0 := by ext simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_zero
null
zero_comp (f : M₁ →SL[σ₁₂] M₂) : (0 : M₂ →SL[σ₂₃] M₃).comp f = 0 := by ext simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
zero_comp
null
comp_add [ContinuousAdd M₂] [ContinuousAdd M₃] (g : M₂ →SL[σ₂₃] M₃) (f₁ f₂ : M₁ →SL[σ₁₂] M₂) : g.comp (f₁ + f₂) = g.comp f₁ + g.comp f₂ := by ext simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_add
null
add_comp [ContinuousAdd M₃] (g₁ g₂ : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : (g₁ + g₂).comp f = g₁.comp f + g₂.comp f := by ext simp
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
add_comp
null
comp_finset_sum {ι : Type*} {s : Finset ι} [ContinuousAdd M₂] [ContinuousAdd M₃] (g : M₂ →SL[σ₂₃] M₃) (f : ι → M₁ →SL[σ₁₂] M₂) : g.comp (∑ i ∈ s, f i) = ∑ i ∈ s, g.comp (f i) := by ext simp
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_finset_sum
null
finset_sum_comp {ι : Type*} {s : Finset ι} [ContinuousAdd M₃] (g : ι → M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : (∑ i ∈ s, g i).comp f = ∑ i ∈ s, (g i).comp f := by ext simp only [coe_comp', coe_sum', Function.comp_apply, Finset.sum_apply]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
finset_sum_comp
null
comp_assoc {R₄ : Type*} [Semiring R₄] [Module R₄ M₄] {σ₁₄ : R₁ →+* R₄} {σ₂₄ : R₂ →+* R₄} {σ₃₄ : R₃ →+* R₄} [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄] [RingHomCompTriple σ₂₃ σ₃₄ σ₂₄] [RingHomCompTriple σ₁₂ σ₂₄ σ₁₄] (h : M₃ →SL[σ₃₄] M₄) (g : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : (h.comp g).comp f = h.comp (g.comp f) := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_assoc
null
instMul : Mul (M₁ →L[R₁] M₁) := ⟨comp⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
instMul
null
mul_def (f g : M₁ →L[R₁] M₁) : f * g = f.comp g := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
mul_def
null
coe_mul (f g : M₁ →L[R₁] M₁) : ⇑(f * g) = f ∘ g := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_mul
null
mul_apply (f g : M₁ →L[R₁] M₁) (x : M₁) : (f * g) x = f (g x) := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
mul_apply
null
monoidWithZero : MonoidWithZero (M₁ →L[R₁] M₁) where mul_zero f := ext fun _ => map_zero f zero_mul _ := ext fun _ => rfl mul_one _ := ext fun _ => rfl one_mul _ := ext fun _ => rfl mul_assoc _ _ _ := ext fun _ => rfl
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
monoidWithZero
null
coe_pow (f : M₁ →L[R₁] M₁) (n : ℕ) : ⇑(f ^ n) = f^[n] := hom_coe_pow _ rfl (fun _ _ ↦ rfl) _ _
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_pow
null
instNatCast [ContinuousAdd M₁] : NatCast (M₁ →L[R₁] M₁) where natCast n := n • (1 : M₁ →L[R₁] M₁)
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
instNatCast
null
semiring [ContinuousAdd M₁] : Semiring (M₁ →L[R₁] M₁) where __ := ContinuousLinearMap.monoidWithZero __ := ContinuousLinearMap.addCommMonoid left_distrib f g h := ext fun x => map_add f (g x) (h x) right_distrib _ _ _ := ext fun _ => LinearMap.add_apply _ _ _ toNatCast := instNatCast natCast_zero := zero_smul ℕ (1 : M₁ →L[R₁] M₁) natCast_succ n := AddMonoid.nsmul_succ n (1 : M₁ →L[R₁] M₁)
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
semiring
null
@[simps] toLinearMapRingHom [ContinuousAdd M₁] : (M₁ →L[R₁] M₁) →+* M₁ →ₗ[R₁] M₁ where toFun := toLinearMap map_zero' := rfl map_one' := rfl map_add' _ _ := rfl map_mul' _ _ := rfl @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toLinearMapRingHom
`ContinuousLinearMap.toLinearMap` as a `RingHom`.
natCast_apply [ContinuousAdd M₁] (n : ℕ) (m : M₁) : (↑n : M₁ →L[R₁] M₁) m = n • m := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
natCast_apply
null
ofNat_apply [ContinuousAdd M₁] (n : ℕ) [n.AtLeastTwo] (m : M₁) : (ofNat(n) : M₁ →L[R₁] M₁) m = OfNat.ofNat n • m := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ofNat_apply
null
applyModule : Module (M₁ →L[R₁] M₁) M₁ := Module.compHom _ toLinearMapRingHom @[simp]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
applyModule
The tautological action by `M₁ →L[R₁] M₁` on `M`. This generalizes `Function.End.applyMulAction`.
protected smul_def (f : M₁ →L[R₁] M₁) (a : M₁) : f • a = f a := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smul_def
null
applyFaithfulSMul : FaithfulSMul (M₁ →L[R₁] M₁) M₁ := ⟨fun {_ _} => ContinuousLinearMap.ext⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
applyFaithfulSMul
`ContinuousLinearMap.applyModule` is faithful.
applySMulCommClass : SMulCommClass R₁ (M₁ →L[R₁] M₁) M₁ where smul_comm r e m := (e.map_smul r m).symm
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
applySMulCommClass
null
applySMulCommClass' : SMulCommClass (M₁ →L[R₁] M₁) R₁ M₁ where smul_comm := ContinuousLinearMap.map_smul
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
applySMulCommClass'
null
continuousConstSMul_apply : ContinuousConstSMul (M₁ →L[R₁] M₁) M₁ := ⟨ContinuousLinearMap.continuous⟩
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
continuousConstSMul_apply
null
isClosed_ker [T1Space M₂] [FunLike F M₁ M₂] [ContinuousSemilinearMapClass F σ₁₂ M₁ M₂] (f : F) : IsClosed (ker f : Set M₁) := continuous_iff_isClosed.1 (map_continuous f) _ isClosed_singleton
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
isClosed_ker
null
isComplete_ker {M' : Type*} [UniformSpace M'] [CompleteSpace M'] [AddCommMonoid M'] [Module R₁ M'] [T1Space M₂] [FunLike F M' M₂] [ContinuousSemilinearMapClass F σ₁₂ M' M₂] (f : F) : IsComplete (ker f : Set M') := (isClosed_ker f).isComplete
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
isComplete_ker
null
completeSpace_ker {M' : Type*} [UniformSpace M'] [CompleteSpace M'] [AddCommMonoid M'] [Module R₁ M'] [T1Space M₂] [FunLike F M' M₂] [ContinuousSemilinearMapClass F σ₁₂ M' M₂] (f : F) : CompleteSpace (ker f) := (isComplete_ker f).completeSpace_coe
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
completeSpace_ker
null
completeSpace_eqLocus {M' : Type*} [UniformSpace M'] [CompleteSpace M'] [AddCommMonoid M'] [Module R₁ M'] [T2Space M₂] [FunLike F M' M₂] [ContinuousSemilinearMapClass F σ₁₂ M' M₂] (f g : F) : CompleteSpace (LinearMap.eqLocus f g) := IsClosed.completeSpace_coe (hs := isClosed_eq (map_continuous f) (map_continuous g))
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
completeSpace_eqLocus
null
codRestrict (f : M₁ →SL[σ₁₂] M₂) (p : Submodule R₂ M₂) (h : ∀ x, f x ∈ p) : M₁ →SL[σ₁₂] p where cont := f.continuous.subtype_mk _ toLinearMap := (f : M₁ →ₛₗ[σ₁₂] M₂).codRestrict p h @[norm_cast]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
codRestrict
Restrict codomain of a continuous linear map.
coe_codRestrict (f : M₁ →SL[σ₁₂] M₂) (p : Submodule R₂ M₂) (h : ∀ x, f x ∈ p) : (f.codRestrict p h : M₁ →ₛₗ[σ₁₂] p) = (f : M₁ →ₛₗ[σ₁₂] M₂).codRestrict p h := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_codRestrict
null
coe_codRestrict_apply (f : M₁ →SL[σ₁₂] M₂) (p : Submodule R₂ M₂) (h : ∀ x, f x ∈ p) (x) : (f.codRestrict p h x : M₂) = f x := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_codRestrict_apply
null
ker_codRestrict (f : M₁ →SL[σ₁₂] M₂) (p : Submodule R₂ M₂) (h : ∀ x, f x ∈ p) : ker (f.codRestrict p h) = ker f := (f : M₁ →ₛₗ[σ₁₂] M₂).ker_codRestrict p h
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
ker_codRestrict
null
rangeRestrict [RingHomSurjective σ₁₂] (f : M₁ →SL[σ₁₂] M₂) := f.codRestrict (LinearMap.range f) (LinearMap.mem_range_self f) @[simp]
abbrev
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
rangeRestrict
Restrict the codomain of a continuous linear map `f` to `f.range`.
coe_rangeRestrict [RingHomSurjective σ₁₂] (f : M₁ →SL[σ₁₂] M₂) : (f.rangeRestrict : M₁ →ₛₗ[σ₁₂] LinearMap.range f) = (f : M₁ →ₛₗ[σ₁₂] M₂).rangeRestrict := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_rangeRestrict
null
_root_.Submodule.subtypeL (p : Submodule R₁ M₁) : p →L[R₁] M₁ where cont := continuous_subtype_val toLinearMap := p.subtype @[simp, norm_cast]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
_root_.Submodule.subtypeL
`Submodule.subtype` as a `ContinuousLinearMap`.
_root_.Submodule.coe_subtypeL (p : Submodule R₁ M₁) : (p.subtypeL : p →ₗ[R₁] M₁) = p.subtype := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
_root_.Submodule.coe_subtypeL
null
_root_.Submodule.coe_subtypeL' (p : Submodule R₁ M₁) : ⇑p.subtypeL = p.subtype := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
_root_.Submodule.coe_subtypeL'
null
_root_.Submodule.subtypeL_apply (p : Submodule R₁ M₁) (x : p) : p.subtypeL x = x := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
_root_.Submodule.subtypeL_apply
null
_root_.Submodule.range_subtypeL (p : Submodule R₁ M₁) : range p.subtypeL = p := Submodule.range_subtype _ @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
_root_.Submodule.range_subtypeL
null
_root_.Submodule.ker_subtypeL (p : Submodule R₁ M₁) : ker p.subtypeL = ⊥ := Submodule.ker_subtype _
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
_root_.Submodule.ker_subtypeL
null
@[simps coe] smulRight (c : M₁ →L[R] S) (f : M₂) : M₁ →L[R] M₂ := { c.toLinearMap.smulRight f with cont := c.2.smul continuous_const } @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRight
The linear map `fun x => c x • f`. Associates to a scalar-valued linear map and an element of `M₂` the `M₂`-valued linear map obtained by multiplying the two (a.k.a. tensoring by `M₂`). See also `ContinuousLinearMap.smulRightₗ` and `ContinuousLinearMap.smulRightL`.
smulRight_apply {c : M₁ →L[R] S} {f : M₂} {x : M₁} : (smulRight c f : M₁ → M₂) x = c x • f := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRight_apply
null
@[simp] smulRight_one_one (c : R₁ →L[R₁] M₂) : smulRight (1 : R₁ →L[R₁] R₁) (c 1) = c := by ext simp [← ContinuousLinearMap.map_smul_of_tower] @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRight_one_one
null
smulRight_one_eq_iff {f f' : M₂} : smulRight (1 : R₁ →L[R₁] R₁) f = smulRight (1 : R₁ →L[R₁] R₁) f' ↔ f = f' := by simp only [ContinuousLinearMap.ext_ring_iff, smulRight_apply, one_apply, one_smul]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRight_one_eq_iff
null
smulRight_comp [ContinuousMul R₁] {x : M₂} {c : R₁} : (smulRight (1 : R₁ →L[R₁] R₁) x).comp (smulRight (1 : R₁ →L[R₁] R₁) c) = smulRight (1 : R₁ →L[R₁] R₁) (c • x) := by ext simp
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
smulRight_comp
null
range_smulRight_apply {R : Type*} [DivisionSemiring R] [Module R M₁] [Module R M₂] [TopologicalSpace R] [ContinuousSMul R M₂] {f : M₁ →L[R] R} (hf : f ≠ 0) (x : M₂) : range (f.smulRight x) = Submodule.span R {x} := LinearMap.range_smulRight_apply (by simpa [coe_inj, ← coe_zero] using hf) x
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
range_smulRight_apply
null
toSpanSingleton (x : M₁) : R₁ →L[R₁] M₁ where toLinearMap := LinearMap.toSpanSingleton R₁ M₁ x cont := continuous_id.smul continuous_const @[simp]
def
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toSpanSingleton
Given an element `x` of a topological space `M` over a semiring `R`, the natural continuous linear map from `R` to `M` by taking multiples of `x`.
toSpanSingleton_apply (x : M₁) (r : R₁) : toSpanSingleton R₁ x r = r • x := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toSpanSingleton_apply
null
toSpanSingleton_one (x : M₁) : toSpanSingleton R₁ x 1 = x := one_smul _ _
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toSpanSingleton_one
null
toSpanSingleton_add [ContinuousAdd M₁] (x y : M₁) : toSpanSingleton R₁ (x + y) = toSpanSingleton R₁ x + toSpanSingleton R₁ y := coe_inj.mp <| LinearMap.toSpanSingleton_add _ _
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toSpanSingleton_add
null
toSpanSingleton_smul {α} [Monoid α] [DistribMulAction α M₁] [ContinuousConstSMul α M₁] [SMulCommClass R₁ α M₁] (c : α) (x : M₁) : toSpanSingleton R₁ (c • x) = c • toSpanSingleton R₁ x := coe_inj.mp <| LinearMap.toSpanSingleton_smul _ _ @[deprecated (since := "2025-08-28")] alias toSpanSingleton_smul' := toSpanSingleton_smul
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toSpanSingleton_smul
null
one_smulRight_eq_toSpanSingleton (x : M₁) : (1 : R₁ →L[R₁] R₁).smulRight x = toSpanSingleton R₁ x := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
one_smulRight_eq_toSpanSingleton
null
toLinearMap_toSpanSingleton (x : M₁) : (toSpanSingleton R₁ x).toLinearMap = LinearMap.toSpanSingleton R₁ M₁ x := rfl variable {R₁} in
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toLinearMap_toSpanSingleton
null
comp_toSpanSingleton (f : M₁ →L[R₁] M₂) (x : M₁) : f ∘L toSpanSingleton R₁ x = toSpanSingleton R₁ (f x) := coe_inj.mp <| LinearMap.comp_toSpanSingleton _ _
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
comp_toSpanSingleton
null
protected map_neg (f : M →SL[σ₁₂] M₂) (x : M) : f (-x) = -f x := by exact map_neg f x
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
map_neg
null
protected map_sub (f : M →SL[σ₁₂] M₂) (x y : M) : f (x - y) = f x - f y := by exact map_sub f x y @[simp]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
map_sub
null
sub_apply' (f g : M →SL[σ₁₂] M₂) (x : M) : ((f : M →ₛₗ[σ₁₂] M₂) - g) x = f x - g x := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
sub_apply'
null
neg : Neg (M →SL[σ₁₂] M₂) := ⟨fun f => ⟨-f, f.2.neg⟩⟩ @[simp]
instance
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
neg
null
neg_apply (f : M →SL[σ₁₂] M₂) (x : M) : (-f) x = -f x := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
neg_apply
null
coe_neg (f : M →SL[σ₁₂] M₂) : (↑(-f) : M →ₛₗ[σ₁₂] M₂) = -f := rfl @[norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_neg
null
coe_neg' (f : M →SL[σ₁₂] M₂) : ⇑(-f) = -f := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
coe_neg'
null
toContinuousAddMonoidHom_neg (f : M →SL[σ₁₂] M₂) : ↑(-f) = -(f : ContinuousAddMonoidHom M M₂) := rfl
theorem
Topology
[ "Mathlib.Algebra.Module.LinearMap.DivisionRing", "Mathlib.LinearAlgebra.Projection", "Mathlib.Topology.Algebra.ContinuousMonoidHom", "Mathlib.Topology.Algebra.IsUniformGroup.Defs", "Mathlib.Topology.Algebra.Module.Basic" ]
Mathlib/Topology/Algebra/Module/LinearMap.lean
toContinuousAddMonoidHom_neg
null