fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
topologicalSpace_eq [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : instTopologicalSpace σ F 𝔖 = TopologicalSpace.induced (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) (UniformOnFun.topologicalSpace E F 𝔖) := by rw [instTopologicalSpace] congr exact IsUniformAddGroup.toUniformSpace_eq
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
topologicalSpace_eq
null
instUniformSpace [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : UniformSpace (UniformConvergenceCLM σ F 𝔖) := UniformSpace.replaceTopology ((UniformOnFun.uniformSpace E F 𝔖).comap (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe)) (by rw [UniformConvergenceCLM.instTopologicalSpace, IsUniformAddGroup.toUniformSpace_eq]; rfl)
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instUniformSpace
The uniform structure associated with `ContinuousLinearMap.strongTopology`. We make sure that this has nice definitional properties.
uniformSpace_eq [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : instUniformSpace σ F 𝔖 = UniformSpace.comap (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) (UniformOnFun.uniformSpace E F 𝔖) := by rw [instUniformSpace, UniformSpace.replaceTopology_eq] @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
uniformSpace_eq
null
uniformity_toTopologicalSpace_eq [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : (UniformConvergenceCLM.instUniformSpace σ F 𝔖).toTopologicalSpace = UniformConvergenceCLM.instTopologicalSpace σ F 𝔖 := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
uniformity_toTopologicalSpace_eq
null
isUniformInducing_coeFn [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : IsUniformInducing (α := UniformConvergenceCLM σ F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) := ⟨rfl⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isUniformInducing_coeFn
null
isUniformEmbedding_coeFn [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : IsUniformEmbedding (α := UniformConvergenceCLM σ F 𝔖) (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) := ⟨isUniformInducing_coeFn .., DFunLike.coe_injective⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isUniformEmbedding_coeFn
null
isEmbedding_coeFn [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : IsEmbedding (X := UniformConvergenceCLM σ F 𝔖) (Y := E →ᵤ[𝔖] F) (UniformOnFun.ofFun 𝔖 ∘ DFunLike.coe) := IsUniformEmbedding.isEmbedding (isUniformEmbedding_coeFn _ _ _)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isEmbedding_coeFn
null
instAddCommGroup [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) : AddCommGroup (UniformConvergenceCLM σ F 𝔖) := ContinuousLinearMap.addCommGroup @[simp]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instAddCommGroup
null
coe_zero [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) : ⇑(0 : UniformConvergenceCLM σ F 𝔖) = 0 := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
coe_zero
null
instIsUniformAddGroup [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) : IsUniformAddGroup (UniformConvergenceCLM σ F 𝔖) := by let φ : (UniformConvergenceCLM σ F 𝔖) →+ E →ᵤ[𝔖] F := ⟨⟨(DFunLike.coe : (UniformConvergenceCLM σ F 𝔖) → E →ᵤ[𝔖] F), rfl⟩, fun _ _ => rfl⟩ exact (isUniformEmbedding_coeFn _ _ _).isUniformAddGroup φ
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instIsUniformAddGroup
null
instIsTopologicalAddGroup [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) : IsTopologicalAddGroup (UniformConvergenceCLM σ F 𝔖) := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup infer_instance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instIsTopologicalAddGroup
null
continuousEvalConst [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = Set.univ) : ContinuousEvalConst (UniformConvergenceCLM σ F 𝔖) E F where continuous_eval_const x := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup exact (UniformOnFun.uniformContinuous_eval h𝔖 x).continuous.comp (isEmbedding_coeFn σ F 𝔖).continuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
continuousEvalConst
null
t2Space [TopologicalSpace F] [IsTopologicalAddGroup F] [T2Space F] (𝔖 : Set (Set E)) (h𝔖 : ⋃₀ 𝔖 = univ) : T2Space (UniformConvergenceCLM σ F 𝔖) := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup haveI : T2Space (E →ᵤ[𝔖] F) := UniformOnFun.t2Space_of_covering h𝔖 exact (isEmbedding_coeFn σ F 𝔖).t2Space
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
t2Space
null
instDistribMulAction (M : Type*) [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜₂ M F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E)) : DistribMulAction M (UniformConvergenceCLM σ F 𝔖) := ContinuousLinearMap.distribMulAction
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instDistribMulAction
null
instModule (R : Type*) [Semiring R] [Module R F] [SMulCommClass 𝕜₂ R F] [TopologicalSpace F] [ContinuousConstSMul R F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) : Module R (UniformConvergenceCLM σ F 𝔖) := ContinuousLinearMap.module
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instModule
null
continuousSMul [RingHomSurjective σ] [RingHomIsometric σ] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul 𝕜₂ F] (𝔖 : Set (Set E)) (h𝔖₃ : ∀ S ∈ 𝔖, IsVonNBounded 𝕜₁ S) : ContinuousSMul 𝕜₂ (UniformConvergenceCLM σ F 𝔖) := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup let φ : (UniformConvergenceCLM σ F 𝔖) →ₗ[𝕜₂] E → F := ⟨⟨DFunLike.coe, fun _ _ => rfl⟩, fun _ _ => rfl⟩ exact UniformOnFun.continuousSMul_induced_of_image_bounded 𝕜₂ E F (UniformConvergenceCLM σ F 𝔖) φ ⟨rfl⟩ fun u s hs => (h𝔖₃ s hs).image u
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
continuousSMul
null
hasBasis_nhds_zero_of_basis [TopologicalSpace F] [IsTopologicalAddGroup F] {ι : Type*} (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (· ⊆ ·) 𝔖) {p : ι → Prop} {b : ι → Set F} (h : (𝓝 0 : Filter F).HasBasis p b) : (𝓝 (0 : UniformConvergenceCLM σ F 𝔖)).HasBasis (fun Si : Set E × ι => Si.1 ∈ 𝔖 ∧ p Si.2) fun Si => { f : E →SL[σ] F | ∀ x ∈ Si.1, f x ∈ b Si.2 } := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup rw [(isEmbedding_coeFn σ F 𝔖).isInducing.nhds_eq_comap] exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap DFunLike.coe
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
hasBasis_nhds_zero_of_basis
null
hasBasis_nhds_zero [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (· ⊆ ·) 𝔖) : (𝓝 (0 : UniformConvergenceCLM σ F 𝔖)).HasBasis (fun SV : Set E × Set F => SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 0 : Filter F)) fun SV => { f : UniformConvergenceCLM σ F 𝔖 | ∀ x ∈ SV.1, f x ∈ SV.2 } := hasBasis_nhds_zero_of_basis σ F 𝔖 h𝔖₁ h𝔖₂ (𝓝 0).basis_sets
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
hasBasis_nhds_zero
null
nhds_zero_eq_of_basis [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) {ι : Type*} {p : ι → Prop} {b : ι → Set F} (h : (𝓝 0 : Filter F).HasBasis p b) : 𝓝 (0 : UniformConvergenceCLM σ F 𝔖) = ⨅ (s : Set E) (_ : s ∈ 𝔖) (i : ι) (_ : p i), 𝓟 {f : UniformConvergenceCLM σ F 𝔖 | MapsTo f s (b i)} := by letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup rw [(isEmbedding_coeFn σ F 𝔖).isInducing.nhds_eq_comap, UniformOnFun.nhds_eq_of_basis _ _ h.uniformity_of_nhds_zero] simp [MapsTo]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
nhds_zero_eq_of_basis
null
nhds_zero_eq [TopologicalSpace F] [IsTopologicalAddGroup F] (𝔖 : Set (Set E)) : 𝓝 (0 : UniformConvergenceCLM σ F 𝔖) = ⨅ s ∈ 𝔖, ⨅ t ∈ 𝓝 (0 : F), 𝓟 {f : UniformConvergenceCLM σ F 𝔖 | MapsTo f s t} := nhds_zero_eq_of_basis _ _ _ (𝓝 0).basis_sets variable {F} in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
nhds_zero_eq
null
eventually_nhds_zero_mapsTo [TopologicalSpace F] [IsTopologicalAddGroup F] {𝔖 : Set (Set E)} {s : Set E} (hs : s ∈ 𝔖) {U : Set F} (hu : U ∈ 𝓝 0) : ∀ᶠ f : UniformConvergenceCLM σ F 𝔖 in 𝓝 0, MapsTo f s U := by rw [nhds_zero_eq] apply_rules [mem_iInf_of_mem, mem_principal_self] variable {σ F} in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
eventually_nhds_zero_mapsTo
null
isVonNBounded_image2_apply {R : Type*} [SeminormedRing R] [TopologicalSpace F] [IsTopologicalAddGroup F] [DistribMulAction R F] [ContinuousConstSMul R F] [SMulCommClass 𝕜₂ R F] {𝔖 : Set (Set E)} {S : Set (UniformConvergenceCLM σ F 𝔖)} (hS : IsVonNBounded R S) {s : Set E} (hs : s ∈ 𝔖) : IsVonNBounded R (Set.image2 (fun f x ↦ f x) S s) := by intro U hU filter_upwards [hS (eventually_nhds_zero_mapsTo σ hs hU)] with c hc rw [image2_subset_iff] intro f hf x hx rcases hc hf with ⟨g, hg, rfl⟩ exact smul_mem_smul_set (hg hx) variable {σ F} in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isVonNBounded_image2_apply
null
isVonNBounded_iff {R : Type*} [NormedDivisionRing R] [TopologicalSpace F] [IsTopologicalAddGroup F] [Module R F] [ContinuousConstSMul R F] [SMulCommClass 𝕜₂ R F] {𝔖 : Set (Set E)} {S : Set (UniformConvergenceCLM σ F 𝔖)} : IsVonNBounded R S ↔ ∀ s ∈ 𝔖, IsVonNBounded R (Set.image2 (fun f x ↦ f x) S s) := by refine ⟨fun hS s hs ↦ isVonNBounded_image2_apply hS hs, fun h ↦ ?_⟩ simp_rw [isVonNBounded_iff_absorbing_le, nhds_zero_eq, le_iInf_iff, le_principal_iff] intro s hs U hU rw [Filter.mem_absorbing, Absorbs] filter_upwards [h s hs hU, eventually_ne_cobounded 0] with c hc hc₀ f hf rw [mem_smul_set_iff_inv_smul_mem₀ hc₀] intro x hx simpa only [mem_smul_set_iff_inv_smul_mem₀ hc₀] using hc (mem_image2_of_mem hf hx)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isVonNBounded_iff
A set `S` of continuous linear maps with topology of uniform convergence on sets `s ∈ 𝔖` is von Neumann bounded iff for any `s ∈ 𝔖`, the set `{f x | (f ∈ S) (x ∈ s)}` is von Neumann bounded.
instUniformContinuousConstSMul (M : Type*) [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜₂ M F] [UniformSpace F] [IsUniformAddGroup F] [UniformContinuousConstSMul M F] (𝔖 : Set (Set E)) : UniformContinuousConstSMul M (UniformConvergenceCLM σ F 𝔖) := (isUniformInducing_coeFn σ F 𝔖).uniformContinuousConstSMul fun _ _ ↦ by rfl
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instUniformContinuousConstSMul
null
instContinuousConstSMul (M : Type*) [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜₂ M F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousConstSMul M F] (𝔖 : Set (Set E)) : ContinuousConstSMul M (UniformConvergenceCLM σ F 𝔖) := let _ := IsTopologicalAddGroup.toUniformSpace F have _ : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup have _ := uniformContinuousConstSMul_of_continuousConstSMul M F inferInstance
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instContinuousConstSMul
null
tendsto_iff_tendstoUniformlyOn {ι : Type*} {p : Filter ι} [UniformSpace F] [IsUniformAddGroup F] (𝔖 : Set (Set E)) {a : ι → UniformConvergenceCLM σ F 𝔖} {a₀ : UniformConvergenceCLM σ F 𝔖} : Filter.Tendsto a p (𝓝 a₀) ↔ ∀ s ∈ 𝔖, TendstoUniformlyOn (a · ·) a₀ p s := by rw [(isEmbedding_coeFn σ F 𝔖).tendsto_nhds_iff, UniformOnFun.tendsto_iff_tendstoUniformlyOn] rfl variable {F} in
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
tendsto_iff_tendstoUniformlyOn
null
isUniformInducing_postcomp {G : Type*} [AddCommGroup G] [UniformSpace G] [IsUniformAddGroup G] {𝕜₃ : Type*} [NormedField 𝕜₃] [Module 𝕜₃ G] {τ : 𝕜₂ →+* 𝕜₃} {ρ : 𝕜₁ →+* 𝕜₃} [RingHomCompTriple σ τ ρ] [UniformSpace F] [IsUniformAddGroup F] (g : F →SL[τ] G) (hg : IsUniformInducing g) (𝔖 : Set (Set E)) : IsUniformInducing (α := UniformConvergenceCLM σ F 𝔖) (β := UniformConvergenceCLM ρ G 𝔖) g.comp := by rw [← (isUniformInducing_coeFn _ _ _).of_comp_iff] exact (UniformOnFun.postcomp_isUniformInducing hg).comp (isUniformInducing_coeFn _ _ _)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isUniformInducing_postcomp
null
completeSpace [UniformSpace F] [IsUniformAddGroup F] [ContinuousSMul 𝕜₂ F] [CompleteSpace F] {𝔖 : Set (Set E)} (h𝔖 : IsCoherentWith 𝔖) (h𝔖U : ⋃₀ 𝔖 = univ) : CompleteSpace (UniformConvergenceCLM σ F 𝔖) := by wlog hF : T2Space F generalizing F · rw [(isUniformInducing_postcomp σ (SeparationQuotient.mkCLM 𝕜₂ F) SeparationQuotient.isUniformInducing_mk _).completeSpace_congr] exacts [this _ inferInstance, SeparationQuotient.postcomp_mkCLM_surjective F σ E] rw [completeSpace_iff_isComplete_range (isUniformInducing_coeFn _ _ _)] apply IsClosed.isComplete have H₁ : IsClosed {f : E →ᵤ[𝔖] F | Continuous ((UniformOnFun.toFun 𝔖) f)} := UniformOnFun.isClosed_setOf_continuous h𝔖 convert H₁.inter <| (LinearMap.isClosed_range_coe E F σ).preimage (UniformOnFun.uniformContinuous_toFun h𝔖U).continuous exact ContinuousLinearMap.range_coeFn_eq variable {𝔖₁ 𝔖₂ : Set (Set E)}
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
completeSpace
null
uniformSpace_mono [UniformSpace F] [IsUniformAddGroup F] (h : 𝔖₂ ⊆ 𝔖₁) : instUniformSpace σ F 𝔖₁ ≤ instUniformSpace σ F 𝔖₂ := by simp_rw [uniformSpace_eq] exact UniformSpace.comap_mono (UniformOnFun.mono (le_refl _) h)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
uniformSpace_mono
null
topologicalSpace_mono [TopologicalSpace F] [IsTopologicalAddGroup F] (h : 𝔖₂ ⊆ 𝔖₁) : instTopologicalSpace σ F 𝔖₁ ≤ instTopologicalSpace σ F 𝔖₂ := by letI := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup simp_rw [← uniformity_toTopologicalSpace_eq] exact UniformSpace.toTopologicalSpace_mono (uniformSpace_mono σ F h)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
topologicalSpace_mono
null
topologicalSpace [TopologicalSpace F] [IsTopologicalAddGroup F] : TopologicalSpace (E →SL[σ] F) := UniformConvergenceCLM.instTopologicalSpace σ F { S | IsVonNBounded 𝕜₁ S }
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
topologicalSpace
The topology of bounded convergence on `E →L[𝕜] F`. This coincides with the topology induced by the operator norm when `E` and `F` are normed spaces.
topologicalAddGroup [TopologicalSpace F] [IsTopologicalAddGroup F] : IsTopologicalAddGroup (E →SL[σ] F) := UniformConvergenceCLM.instIsTopologicalAddGroup σ F _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
topologicalAddGroup
null
continuousSMul [RingHomSurjective σ] [RingHomIsometric σ] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul 𝕜₂ F] : ContinuousSMul 𝕜₂ (E →SL[σ] F) := UniformConvergenceCLM.continuousSMul σ F { S | IsVonNBounded 𝕜₁ S } fun _ hs => hs
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
continuousSMul
null
uniformSpace [UniformSpace F] [IsUniformAddGroup F] : UniformSpace (E →SL[σ] F) := UniformConvergenceCLM.instUniformSpace σ F { S | IsVonNBounded 𝕜₁ S }
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
uniformSpace
null
isUniformAddGroup [UniformSpace F] [IsUniformAddGroup F] : IsUniformAddGroup (E →SL[σ] F) := UniformConvergenceCLM.instIsUniformAddGroup σ F _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isUniformAddGroup
null
instContinuousEvalConst [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul 𝕜₁ E] : ContinuousEvalConst (E →SL[σ] F) E F := UniformConvergenceCLM.continuousEvalConst σ F _ Bornology.isVonNBounded_covers
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instContinuousEvalConst
null
instT2Space [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul 𝕜₁ E] [T2Space F] : T2Space (E →SL[σ] F) := UniformConvergenceCLM.t2Space σ F _ Bornology.isVonNBounded_covers
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instT2Space
null
protected hasBasis_nhds_zero_of_basis [TopologicalSpace F] [IsTopologicalAddGroup F] {ι : Type*} {p : ι → Prop} {b : ι → Set F} (h : (𝓝 0 : Filter F).HasBasis p b) : (𝓝 (0 : E →SL[σ] F)).HasBasis (fun Si : Set E × ι => IsVonNBounded 𝕜₁ Si.1 ∧ p Si.2) fun Si => { f : E →SL[σ] F | ∀ x ∈ Si.1, f x ∈ b Si.2 } := UniformConvergenceCLM.hasBasis_nhds_zero_of_basis σ F { S | IsVonNBounded 𝕜₁ S } ⟨∅, isVonNBounded_empty 𝕜₁ E⟩ (directedOn_of_sup_mem fun _ _ => IsVonNBounded.union) h
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
hasBasis_nhds_zero_of_basis
null
protected hasBasis_nhds_zero [TopologicalSpace F] [IsTopologicalAddGroup F] : (𝓝 (0 : E →SL[σ] F)).HasBasis (fun SV : Set E × Set F => IsVonNBounded 𝕜₁ SV.1 ∧ SV.2 ∈ (𝓝 0 : Filter F)) fun SV => { f : E →SL[σ] F | ∀ x ∈ SV.1, f x ∈ SV.2 } := ContinuousLinearMap.hasBasis_nhds_zero_of_basis (𝓝 0).basis_sets
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
hasBasis_nhds_zero
null
isUniformEmbedding_toUniformOnFun [UniformSpace F] [IsUniformAddGroup F] : IsUniformEmbedding fun f : E →SL[σ] F ↦ UniformOnFun.ofFun {s | Bornology.IsVonNBounded 𝕜₁ s} f := UniformConvergenceCLM.isUniformEmbedding_coeFn ..
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isUniformEmbedding_toUniformOnFun
null
uniformContinuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜₂ M F] [UniformSpace F] [IsUniformAddGroup F] [UniformContinuousConstSMul M F] : UniformContinuousConstSMul M (E →SL[σ] F) := UniformConvergenceCLM.instUniformContinuousConstSMul σ F _ _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
uniformContinuousConstSMul
null
continuousConstSMul {M : Type*} [Monoid M] [DistribMulAction M F] [SMulCommClass 𝕜₂ M F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousConstSMul M F] : ContinuousConstSMul M (E →SL[σ] F) := UniformConvergenceCLM.instContinuousConstSMul σ F _ _
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
continuousConstSMul
null
protected nhds_zero_eq_of_basis [TopologicalSpace F] [IsTopologicalAddGroup F] {ι : Type*} {p : ι → Prop} {b : ι → Set F} (h : (𝓝 0 : Filter F).HasBasis p b) : 𝓝 (0 : E →SL[σ] F) = ⨅ (s : Set E) (_ : IsVonNBounded 𝕜₁ s) (i : ι) (_ : p i), 𝓟 {f : E →SL[σ] F | MapsTo f s (b i)} := UniformConvergenceCLM.nhds_zero_eq_of_basis _ _ _ h
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
nhds_zero_eq_of_basis
null
protected nhds_zero_eq [TopologicalSpace F] [IsTopologicalAddGroup F] : 𝓝 (0 : E →SL[σ] F) = ⨅ (s : Set E) (_ : IsVonNBounded 𝕜₁ s) (U : Set F) (_ : U ∈ 𝓝 0), 𝓟 {f : E →SL[σ] F | MapsTo f s U} := UniformConvergenceCLM.nhds_zero_eq ..
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
nhds_zero_eq
null
eventually_nhds_zero_mapsTo [TopologicalSpace F] [IsTopologicalAddGroup F] {s : Set E} (hs : IsVonNBounded 𝕜₁ s) {U : Set F} (hu : U ∈ 𝓝 0) : ∀ᶠ f : E →SL[σ] F in 𝓝 0, MapsTo f s U := UniformConvergenceCLM.eventually_nhds_zero_mapsTo _ hs hu
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
eventually_nhds_zero_mapsTo
If `s` is a von Neumann bounded set and `U` is a neighbourhood of zero, then sufficiently small continuous linear maps map `s` to `U`.
isVonNBounded_image2_apply {R : Type*} [SeminormedRing R] [TopologicalSpace F] [IsTopologicalAddGroup F] [DistribMulAction R F] [ContinuousConstSMul R F] [SMulCommClass 𝕜₂ R F] {S : Set (E →SL[σ] F)} (hS : IsVonNBounded R S) {s : Set E} (hs : IsVonNBounded 𝕜₁ s) : IsVonNBounded R (Set.image2 (fun f x ↦ f x) S s) := UniformConvergenceCLM.isVonNBounded_image2_apply hS hs
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isVonNBounded_image2_apply
If `S` is a von Neumann bounded set of continuous linear maps `f : E →SL[σ] F` and `s` is a von Neumann bounded set in the domain, then the set `{f x | (f ∈ S) (x ∈ s)}` is von Neumann bounded. See also `isVonNBounded_iff` for an `Iff` version with stronger typeclass assumptions.
isVonNBounded_iff {R : Type*} [NormedDivisionRing R] [TopologicalSpace F] [IsTopologicalAddGroup F] [Module R F] [ContinuousConstSMul R F] [SMulCommClass 𝕜₂ R F] {S : Set (E →SL[σ] F)} : IsVonNBounded R S ↔ ∀ s, IsVonNBounded 𝕜₁ s → IsVonNBounded R (Set.image2 (fun f x ↦ f x) S s) := UniformConvergenceCLM.isVonNBounded_iff
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isVonNBounded_iff
A set `S` of continuous linear maps is von Neumann bounded iff for any von Neumann bounded set `s`, the set `{f x | (f ∈ S) (x ∈ s)}` is von Neumann bounded. For the forward implication with weaker typeclass assumptions, see `isVonNBounded_image2_apply`.
completeSpace [UniformSpace F] [IsUniformAddGroup F] [ContinuousSMul 𝕜₂ F] [CompleteSpace F] [ContinuousSMul 𝕜₁ E] (h : IsCoherentWith {s : Set E | IsVonNBounded 𝕜₁ s}) : CompleteSpace (E →SL[σ] F) := UniformConvergenceCLM.completeSpace _ _ h isVonNBounded_covers
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
completeSpace
null
instCompleteSpace [IsTopologicalAddGroup E] [ContinuousSMul 𝕜₁ E] [SequentialSpace E] [UniformSpace F] [IsUniformAddGroup F] [ContinuousSMul 𝕜₂ F] [CompleteSpace F] : CompleteSpace (E →SL[σ] F) := completeSpace <| .of_seq fun _ _ h ↦ (h.isVonNBounded_range 𝕜₁).insert _ variable (G) [TopologicalSpace F] [TopologicalSpace G]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
instCompleteSpace
null
@[simps] precomp [IsTopologicalAddGroup G] [ContinuousConstSMul 𝕜₃ G] [RingHomSurjective σ] [RingHomIsometric σ] (L : E →SL[σ] F) : (F →SL[τ] G) →L[𝕜₃] E →SL[ρ] G where toFun f := f.comp L map_add' f g := add_comp f g L map_smul' a f := smul_comp a f L cont := by letI : UniformSpace G := IsTopologicalAddGroup.toUniformSpace G haveI : IsUniformAddGroup G := isUniformAddGroup_of_addCommGroup rw [(UniformConvergenceCLM.isEmbedding_coeFn _ _ _).continuous_iff] apply (UniformOnFun.precomp_uniformContinuous fun S hS => hS.image L).continuous.comp (UniformConvergenceCLM.isEmbedding_coeFn _ _ _).continuous variable (E) {G}
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
precomp
Pre-composition by a *fixed* continuous linear map as a continuous linear map. Note that in non-normed space it is not always true that composition is continuous in both variables, so we have to fix one of them.
@[simps] postcomp [IsTopologicalAddGroup F] [IsTopologicalAddGroup G] [ContinuousConstSMul 𝕜₃ G] [ContinuousConstSMul 𝕜₂ F] (L : F →SL[τ] G) : (E →SL[σ] F) →SL[τ] E →SL[ρ] G where toFun f := L.comp f map_add' := comp_add L map_smul' := comp_smulₛₗ L cont := by letI : UniformSpace G := IsTopologicalAddGroup.toUniformSpace G haveI : IsUniformAddGroup G := isUniformAddGroup_of_addCommGroup letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup rw [(UniformConvergenceCLM.isEmbedding_coeFn _ _ _).continuous_iff] exact (UniformOnFun.postcomp_uniformContinuous L.uniformContinuous).continuous.comp (UniformConvergenceCLM.isEmbedding_coeFn _ _ _).continuous
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
postcomp
Post-composition by a *fixed* continuous linear map as a continuous linear map. Note that in non-normed space it is not always true that composition is continuous in both variables, so we have to fix one of them.
toLinearMap₁₂ (L : E →SL[σ₁₃] F →SL[σ₂₃] G) : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G := (coeLMₛₗ σ₂₃).comp L.toLinearMap @[deprecated (since := "2025-07-28")] alias toLinearMap₂ := toLinearMap₁₂ @[simp] lemma toLinearMap₁₂_apply (L : E →SL[σ₁₃] F →SL[σ₂₃] G) (v : E) (w : F) : L.toLinearMap₁₂ v w = L v w := rfl @[deprecated (since := "2025-07-28")] alias toLinearMap₂_apply := toLinearMap₁₂_apply
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
toLinearMap₁₂
Send a continuous bilinear map to an abstract bilinear map (forgetting continuity).
isUniformEmbedding_restrictScalars : IsUniformEmbedding (restrictScalars 𝕜' : (E →L[𝕜] F) → (E →L[𝕜'] F)) := by rw [← isUniformEmbedding_toUniformOnFun.of_comp_iff] convert isUniformEmbedding_toUniformOnFun using 4 with s exact ⟨fun h ↦ h.extend_scalars _, fun h ↦ h.restrict_scalars _⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isUniformEmbedding_restrictScalars
null
uniformContinuous_restrictScalars : UniformContinuous (restrictScalars 𝕜' : (E →L[𝕜] F) → (E →L[𝕜'] F)) := (isUniformEmbedding_restrictScalars 𝕜').uniformContinuous
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
uniformContinuous_restrictScalars
null
isEmbedding_restrictScalars : IsEmbedding (restrictScalars 𝕜' : (E →L[𝕜] F) → (E →L[𝕜'] F)) := letI : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F haveI : IsUniformAddGroup F := isUniformAddGroup_of_addCommGroup (isUniformEmbedding_restrictScalars _).isEmbedding @[continuity, fun_prop]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
isEmbedding_restrictScalars
null
continuous_restrictScalars : Continuous (restrictScalars 𝕜' : (E →L[𝕜] F) → (E →L[𝕜'] F)) := (isEmbedding_restrictScalars _).continuous variable (𝕜 E F) variable (𝕜'' : Type*) [Ring 𝕜''] [Module 𝕜'' F] [ContinuousConstSMul 𝕜'' F] [SMulCommClass 𝕜 𝕜'' F] [SMulCommClass 𝕜' 𝕜'' F]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
continuous_restrictScalars
null
restrictScalarsL : (E →L[𝕜] F) →L[𝕜''] E →L[𝕜'] F := .mk <| restrictScalarsₗ 𝕜 E F 𝕜' 𝕜'' variable {𝕜 E F 𝕜' 𝕜''} @[simp]
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
restrictScalarsL
`ContinuousLinearMap.restrictScalars` as a `ContinuousLinearMap`.
coe_restrictScalarsL : (restrictScalarsL 𝕜 E F 𝕜' 𝕜'' : (E →L[𝕜] F) →ₗ[𝕜''] E →L[𝕜'] F) = restrictScalarsₗ 𝕜 E F 𝕜' 𝕜'' := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
coe_restrictScalarsL
null
coe_restrict_scalarsL' : ⇑(restrictScalarsL 𝕜 E F 𝕜' 𝕜'') = restrictScalars 𝕜' := rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
coe_restrict_scalarsL'
null
@[simps apply symm_apply toLinearEquiv_apply toLinearEquiv_symm_apply] arrowCongrSL (e₁₂ : E ≃SL[σ₁₂] F) (e₄₃ : H ≃SL[σ₄₃] G) : (E →SL[σ₁₄] H) ≃SL[σ₄₃] F →SL[σ₂₃] G := { e₁₂.arrowCongrEquiv e₄₃ with toFun := fun L => (e₄₃ : H →SL[σ₄₃] G).comp (L.comp (e₁₂.symm : F →SL[σ₂₁] E)) invFun := fun L => (e₄₃.symm : G →SL[σ₃₄] H).comp (L.comp (e₁₂ : E →SL[σ₁₂] F)) map_add' := fun f g => by simp only [add_comp, comp_add] map_smul' := fun t f => by simp only [smul_comp, comp_smulₛₗ] continuous_toFun := ((postcomp F e₄₃.toContinuousLinearMap).comp (precomp H e₁₂.symm.toContinuousLinearMap)).continuous continuous_invFun := ((precomp H e₁₂.toContinuousLinearMap).comp (postcomp F e₄₃.symm.toContinuousLinearMap)).continuous }
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
arrowCongrSL
A pair of continuous (semi)linear equivalences generates a (semi)linear equivalence between the spaces of continuous (semi)linear maps.
arrowCongr (e₁ : E ≃L[𝕜] F) (e₂ : H ≃L[𝕜] G) : (E →L[𝕜] H) ≃L[𝕜] F →L[𝕜] G := e₁.arrowCongrSL e₂ @[simp] lemma arrowCongr_apply (e₁ : E ≃L[𝕜] F) (e₂ : H ≃L[𝕜] G) (f : E →L[𝕜] H) (x : F) : e₁.arrowCongr e₂ f x = e₂ (f (e₁.symm x)) := rfl @[simp] lemma arrowCongr_symm (e₁ : E ≃L[𝕜] F) (e₂ : H ≃L[𝕜] G) : (e₁.arrowCongr e₂).symm = e₁.symm.arrowCongr e₂.symm := rfl
def
Topology
[ "Mathlib.Topology.Algebra.Module.Equiv", "Mathlib.Topology.Algebra.Module.UniformConvergence", "Mathlib.Topology.Algebra.SeparationQuotient.Section", "Mathlib.Topology.Hom.ContinuousEvalConst" ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
arrowCongr
A pair of continuous linear equivalences generates a continuous linear equivalence between the spaces of continuous linear maps.
UniformFun.continuousSMul_induced_of_range_bounded (φ : hom) (hφ : IsInducing (ofFun ∘ φ)) (h : ∀ u : H, Bornology.IsVonNBounded 𝕜 (Set.range (φ u))) : ContinuousSMul 𝕜 H := by have : IsTopologicalAddGroup H := let ofFun' : (α → E) →+ (α →ᵤ E) := AddMonoidHom.id _ IsInducing.topologicalAddGroup (ofFun'.comp (φ : H →+ (α → E))) hφ have hb : (𝓝 (0 : H)).HasBasis (· ∈ 𝓝 (0 : E)) fun V ↦ {u | ∀ x, φ u x ∈ V} := by simp only [hφ.nhds_eq_comap, Function.comp_apply, map_zero] exact UniformFun.hasBasis_nhds_zero.comap _ apply ContinuousSMul.of_basis_zero hb · intro U hU have : Tendsto (fun x : 𝕜 × E ↦ x.1 • x.2) (𝓝 0) (𝓝 0) := continuous_smul.tendsto' _ _ (zero_smul _ _) rcases ((Filter.basis_sets _).prod_nhds (Filter.basis_sets _)).tendsto_left_iff.1 this U hU with ⟨⟨V, W⟩, ⟨hV, hW⟩, hVW⟩ refine ⟨V, hV, W, hW, Set.smul_subset_iff.2 fun a ha u hu x ↦ ?_⟩ rw [map_smul] exact hVW (Set.mk_mem_prod ha (hu x)) · intro c U hU have : Tendsto (c • · : E → E) (𝓝 0) (𝓝 0) := (continuous_const_smul c).tendsto' _ _ (smul_zero _) refine ⟨_, this hU, fun u hu x ↦ ?_⟩ simpa only [map_smul] using hu x · intro u U hU simp only [Set.mem_setOf_eq, map_smul, Pi.smul_apply] simpa only [Set.mapsTo_range_iff] using (h u hU).eventually_nhds_zero (mem_of_mem_nhds hU)
lemma
Topology
[ "Mathlib.Analysis.LocallyConvex.Bounded", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.UniformConvergence" ]
Mathlib/Topology/Algebra/Module/UniformConvergence.lean
UniformFun.continuousSMul_induced_of_range_bounded
Let `E` be a topological vector space over a normed field `𝕜`, let `α` be any type. Let `H` be a submodule of `α →ᵤ E` such that the range of each `f ∈ H` is von Neumann bounded. Then `H` is a topological vector space over `𝕜`, i.e., the pointwise scalar multiplication is continuous in both variables. For convenience we require that `H` is a vector space over `𝕜` with a topology induced by `UniformFun.ofFun ∘ φ`, where `φ : H →ₗ[𝕜] (α → E)`.
UniformOnFun.continuousSMul_induced_of_image_bounded (φ : hom) (hφ : IsInducing (ofFun 𝔖 ∘ φ)) (h : ∀ u : H, ∀ s ∈ 𝔖, Bornology.IsVonNBounded 𝕜 ((φ u : α → E) '' s)) : ContinuousSMul 𝕜 H := by obtain rfl := hφ.eq_induced; clear hφ simp only [induced_iInf, UniformOnFun.topologicalSpace_eq, induced_compose] refine continuousSMul_iInf fun s ↦ continuousSMul_iInf fun hs ↦ ?_ letI : TopologicalSpace H := .induced (UniformFun.ofFun ∘ s.restrict ∘ φ) (UniformFun.topologicalSpace s E) set φ' : H →ₗ[𝕜] (s → E) := { toFun := s.restrict ∘ φ, map_smul' := fun c x ↦ by exact congr_arg s.restrict (map_smul φ c x), map_add' := fun x y ↦ by exact congr_arg s.restrict (map_add φ x y) } refine UniformFun.continuousSMul_induced_of_range_bounded 𝕜 s E H φ' ⟨rfl⟩ fun u ↦ ?_ simpa only [Set.image_eq_range] using h u s hs
lemma
Topology
[ "Mathlib.Analysis.LocallyConvex.Bounded", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.UniformConvergence" ]
Mathlib/Topology/Algebra/Module/UniformConvergence.lean
UniformOnFun.continuousSMul_induced_of_image_bounded
Let `E` be a TVS, `𝔖 : Set (Set α)` and `H` a submodule of `α →ᵤ[𝔖] E`. If the image of any `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`, equipped with the topology of `𝔖`-convergence, is a TVS. For convenience, we don't literally ask for `H : Submodule (α →ᵤ[𝔖] E)`. Instead, we prove the result for any vector space `H` equipped with a linear inducing to `α →ᵤ[𝔖] E`, which is often easier to use. We also state the `Submodule` version as `UniformOnFun.continuousSMul_submodule_of_image_bounded`.
UniformOnFun.continuousSMul_submodule_of_image_bounded (H : Submodule 𝕜 (α →ᵤ[𝔖] E)) (h : ∀ u ∈ H, ∀ s ∈ 𝔖, Bornology.IsVonNBounded 𝕜 (u '' s)) : @ContinuousSMul 𝕜 H _ _ ((UniformOnFun.topologicalSpace α E 𝔖).induced ((↑) : H → α →ᵤ[𝔖] E)) := UniformOnFun.continuousSMul_induced_of_image_bounded 𝕜 α E H (LinearMap.id.domRestrict H : H →ₗ[𝕜] α → E) IsInducing.subtypeVal fun ⟨u, hu⟩ => h u hu
theorem
Topology
[ "Mathlib.Analysis.LocallyConvex.Bounded", "Mathlib.Topology.Algebra.FilterBasis", "Mathlib.Topology.Algebra.UniformConvergence" ]
Mathlib/Topology/Algebra/Module/UniformConvergence.lean
UniformOnFun.continuousSMul_submodule_of_image_bounded
Let `E` be a TVS, `𝔖 : Set (Set α)` and `H` a submodule of `α →ᵤ[𝔖] E`. If the image of any `S ∈ 𝔖` by any `u ∈ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`, equipped with the topology of `𝔖`-convergence, is a TVS. If you have a hard time using this lemma, try the one above instead.
@[nolint unusedArguments] WeakBilin [CommSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] [AddCommMonoid F] [Module 𝕜 F] (_ : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) := E deriving AddCommMonoid, Module 𝕜
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
WeakBilin
The space `E` equipped with the weak topology induced by the bilinear form `B`.
instAddCommGroup [CommSemiring 𝕜] [a : AddCommGroup E] [Module 𝕜 E] [AddCommMonoid F] [Module 𝕜 F] (B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) : AddCommGroup (WeakBilin B) := a
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
instAddCommGroup
null
instIsScalarTower [CommSemiring 𝕜] [CommSemiring 𝕝] [AddCommMonoid E] [Module 𝕜 E] [AddCommMonoid F] [Module 𝕜 F] [SMul 𝕝 𝕜] [Module 𝕝 E] [s : IsScalarTower 𝕝 𝕜 E] (B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) : IsScalarTower 𝕝 𝕜 (WeakBilin B) := s
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
instIsScalarTower
null
instTopologicalSpace : TopologicalSpace (WeakBilin B) := TopologicalSpace.induced (fun x y => B x y) Pi.topologicalSpace
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
instTopologicalSpace
null
coeFn_continuous : Continuous fun (x : WeakBilin B) y => B x y := continuous_induced_dom @[fun_prop]
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
coeFn_continuous
The coercion `(fun x y => B x y) : E → (F → 𝕜)` is continuous.
eval_continuous (y : F) : Continuous fun x : WeakBilin B => B x y := (continuous_pi_iff.mp (coeFn_continuous B)) y
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
eval_continuous
null
continuous_of_continuous_eval [TopologicalSpace α] {g : α → WeakBilin B} (h : ∀ y, Continuous fun a => B (g a) y) : Continuous g := continuous_induced_rng.2 (continuous_pi_iff.mpr h)
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
continuous_of_continuous_eval
null
isEmbedding {B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜} (hB : Function.Injective B) : IsEmbedding fun (x : WeakBilin B) y => B x y := Function.Injective.isEmbedding_induced <| LinearMap.coe_injective.comp hB
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
isEmbedding
The coercion `(fun x y => B x y) : E → (F → 𝕜)` is an embedding.
tendsto_iff_forall_eval_tendsto {l : Filter α} {f : α → WeakBilin B} {x : WeakBilin B} (hB : Function.Injective B) : Tendsto f l (𝓝 x) ↔ ∀ y, Tendsto (fun i => B (f i) y) l (𝓝 (B x y)) := by rw [← tendsto_pi_nhds, (isEmbedding hB).tendsto_nhds_iff] rfl
theorem
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
tendsto_iff_forall_eval_tendsto
null
instContinuousAdd [ContinuousAdd 𝕜] : ContinuousAdd (WeakBilin B) := by refine ⟨continuous_induced_rng.2 ?_⟩ refine cast (congr_arg _ ?_) (((coeFn_continuous B).comp continuous_fst).add ((coeFn_continuous B).comp continuous_snd)) ext simp only [Function.comp_apply, Pi.add_apply, map_add, LinearMap.add_apply]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
instContinuousAdd
Addition in `WeakBilin B` is continuous.
instContinuousSMul [ContinuousSMul 𝕜 𝕜] : ContinuousSMul 𝕜 (WeakBilin B) := by refine ⟨continuous_induced_rng.2 ?_⟩ refine cast (congr_arg _ ?_) (continuous_fst.smul ((coeFn_continuous B).comp continuous_snd)) ext simp only [Function.comp_apply, Pi.smul_apply, LinearMap.map_smulₛₗ, RingHom.id_apply, LinearMap.smul_apply]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
instContinuousSMul
Scalar multiplication by `𝕜` on `WeakBilin B` is continuous.
eval [ContinuousAdd 𝕜] [ContinuousConstSMul 𝕜 𝕜] : F →ₗ[𝕜] StrongDual 𝕜 (WeakBilin B) where toFun f := ⟨B.flip f, by fun_prop⟩ map_add' _ _ := by ext; simp map_smul' _ _ := by ext; simp
def
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
eval
Map `F` into the topological dual of `E` with the weak topology induced by `F`
instIsTopologicalAddGroup [ContinuousAdd 𝕜] : IsTopologicalAddGroup (WeakBilin B) where toContinuousAdd := by infer_instance continuous_neg := by refine continuous_induced_rng.2 (continuous_pi_iff.mpr fun y => ?_) refine cast (congr_arg _ ?_) (eval_continuous B (-y)) ext x simp only [map_neg, Function.comp_apply, LinearMap.neg_apply]
instance
Topology
[ "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.LinearAlgebra.BilinearMap" ]
Mathlib/Topology/Algebra/Module/WeakBilin.lean
instIsTopologicalAddGroup
`WeakBilin B` is a `IsTopologicalAddGroup`, meaning that addition and negation are continuous.
WeakDual (𝕜 E : Type*) [CommSemiring 𝕜] [TopologicalSpace 𝕜] [ContinuousAdd 𝕜] [ContinuousConstSMul 𝕜 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E] := WeakBilin (topDualPairing 𝕜 E) deriving AddCommMonoid, Module 𝕜, TopologicalSpace, ContinuousAdd, Inhabited, FunLike, ContinuousLinearMapClass
def
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
WeakDual
The weak star topology is the topology coarsest topology on `E →L[𝕜] 𝕜` such that all functionals `fun v => v x` are continuous.
instMulAction (M) [Monoid M] [DistribMulAction M 𝕜] [SMulCommClass 𝕜 M 𝕜] [ContinuousConstSMul M 𝕜] : MulAction M (WeakDual 𝕜 E) := ContinuousLinearMap.mulAction
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instMulAction
If a monoid `M` distributively continuously acts on `𝕜` and this action commutes with multiplication on `𝕜`, then it acts on `WeakDual 𝕜 E`.
instDistribMulAction (M) [Monoid M] [DistribMulAction M 𝕜] [SMulCommClass 𝕜 M 𝕜] [ContinuousConstSMul M 𝕜] : DistribMulAction M (WeakDual 𝕜 E) := ContinuousLinearMap.distribMulAction
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instDistribMulAction
If a monoid `M` distributively continuously acts on `𝕜` and this action commutes with multiplication on `𝕜`, then it acts distributively on `WeakDual 𝕜 E`.
instModule' (R) [Semiring R] [Module R 𝕜] [SMulCommClass 𝕜 R 𝕜] [ContinuousConstSMul R 𝕜] : Module R (WeakDual 𝕜 E) := ContinuousLinearMap.module
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instModule'
If `𝕜` is a topological module over a semiring `R` and scalar multiplication commutes with the multiplication on `𝕜`, then `WeakDual 𝕜 E` is a module over `R`.
instContinuousConstSMul (M) [Monoid M] [DistribMulAction M 𝕜] [SMulCommClass 𝕜 M 𝕜] [ContinuousConstSMul M 𝕜] : ContinuousConstSMul M (WeakDual 𝕜 E) := ⟨fun m => continuous_induced_rng.2 <| (WeakBilin.coeFn_continuous (topDualPairing 𝕜 E)).const_smul m⟩
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instContinuousConstSMul
null
instContinuousSMul (M) [Monoid M] [DistribMulAction M 𝕜] [SMulCommClass 𝕜 M 𝕜] [TopologicalSpace M] [ContinuousSMul M 𝕜] : ContinuousSMul M (WeakDual 𝕜 E) := ⟨continuous_induced_rng.2 <| continuous_fst.smul ((WeakBilin.coeFn_continuous (topDualPairing 𝕜 E)).comp continuous_snd)⟩
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instContinuousSMul
If a monoid `M` distributively continuously acts on `𝕜` and this action commutes with multiplication on `𝕜`, then it continuously acts on `WeakDual 𝕜 E`.
coeFn_continuous : Continuous fun (x : WeakDual 𝕜 E) y => x y := continuous_induced_dom
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
coeFn_continuous
null
eval_continuous (y : E) : Continuous fun x : WeakDual 𝕜 E => x y := continuous_pi_iff.mp coeFn_continuous y
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
eval_continuous
null
continuous_of_continuous_eval [TopologicalSpace α] {g : α → WeakDual 𝕜 E} (h : ∀ y, Continuous fun a => (g a) y) : Continuous g := continuous_induced_rng.2 (continuous_pi_iff.mpr h)
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
continuous_of_continuous_eval
null
instT2Space [T2Space 𝕜] : T2Space (WeakDual 𝕜 E) := (WeakBilin.isEmbedding ContinuousLinearMap.coe_injective).t2Space
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instT2Space
null
instAddCommGroup : AddCommGroup (WeakDual 𝕜 E) := WeakBilin.instAddCommGroup (topDualPairing 𝕜 E)
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instAddCommGroup
null
instIsTopologicalAddGroup : IsTopologicalAddGroup (WeakDual 𝕜 E) := WeakBilin.instIsTopologicalAddGroup (topDualPairing 𝕜 E)
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instIsTopologicalAddGroup
null
WeakSpace (𝕜 E) [CommSemiring 𝕜] [TopologicalSpace 𝕜] [ContinuousAdd 𝕜] [ContinuousConstSMul 𝕜 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E] := WeakBilin (topDualPairing 𝕜 E).flip deriving AddCommMonoid, Module 𝕜, TopologicalSpace, ContinuousAdd
def
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
WeakSpace
The weak topology is the topology coarsest topology on `E` such that all functionals `fun x => v x` are continuous.
instModule' [CommSemiring 𝕝] [Module 𝕝 E] : Module 𝕝 (WeakSpace 𝕜 E) := WeakBilin.instModule' (topDualPairing 𝕜 E).flip
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instModule'
null
instIsScalarTower [CommSemiring 𝕝] [Module 𝕝 𝕜] [Module 𝕝 E] [IsScalarTower 𝕝 𝕜 E] : IsScalarTower 𝕝 𝕜 (WeakSpace 𝕜 E) := WeakBilin.instIsScalarTower (topDualPairing 𝕜 E).flip
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instIsScalarTower
null
instContinuousSMul [ContinuousSMul 𝕜 𝕜] : ContinuousSMul 𝕜 (WeakSpace 𝕜 E) := WeakBilin.instContinuousSMul _ variable [AddCommMonoid F] [Module 𝕜 F] [TopologicalSpace F]
instance
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
instContinuousSMul
null
map (f : E →L[𝕜] F) : WeakSpace 𝕜 E →L[𝕜] WeakSpace 𝕜 F := { f with cont := WeakBilin.continuous_of_continuous_eval _ fun l => WeakBilin.eval_continuous _ (l ∘L f) }
def
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
map
A continuous linear map from `E` to `F` is still continuous when `E` and `F` are equipped with their weak topologies.
map_apply (f : E →L[𝕜] F) (x : E) : WeakSpace.map f x = f x := rfl @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
map_apply
null
coe_map (f : E →L[𝕜] F) : (WeakSpace.map f : E → F) = f := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
coe_map
null
toWeakSpace : E ≃ₗ[𝕜] WeakSpace 𝕜 E := LinearEquiv.refl 𝕜 E variable (𝕜 E) in
def
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
toWeakSpace
There is a canonical map `E → WeakSpace 𝕜 E` (the "identity" mapping). It is a linear equivalence.
toWeakSpaceCLM : E →L[𝕜] WeakSpace 𝕜 E where __ := toWeakSpace 𝕜 E cont := by apply WeakBilin.continuous_of_continuous_eval exact ContinuousLinearMap.continuous variable (𝕜 E) in @[simp]
def
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
toWeakSpaceCLM
For a topological vector space `E`, "identity mapping" `E → WeakSpace 𝕜 E` is continuous. This definition implements it as a continuous linear map.
toWeakSpaceCLM_eq_toWeakSpace (x : E) : toWeakSpaceCLM 𝕜 E x = toWeakSpace 𝕜 E x := by rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
toWeakSpaceCLM_eq_toWeakSpace
null
toWeakSpaceCLM_bijective : Function.Bijective (toWeakSpaceCLM 𝕜 E) := (toWeakSpace 𝕜 E).bijective
theorem
Topology
[ "Mathlib.LinearAlgebra.BilinearMap", "Mathlib.Topology.Algebra.Module.LinearMap", "Mathlib.Topology.Algebra.Module.WeakBilin" ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
toWeakSpaceCLM_bijective
null