fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
bdd_le_mul_tendsto_zero' {f g : α → 𝕜} (C : 𝕜) (hf : ∀ᶠ x in l, |f x| ≤ C) (hg : Tendsto g l (𝓝 0)) : Tendsto (fun x ↦ f x * g x) l (𝓝 0) := by rw [tendsto_zero_iff_abs_tendsto_zero] have hC : Tendsto (fun x ↦ |C * g x|) l (𝓝 0) := by convert (hg.const_mul C).abs simp_rw [mul_zero, abs_zero] apply tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds hC · filter_upwards [hf] with x _ using abs_nonneg _ · filter_upwards [hf] with x hx simp only [comp_apply, abs_mul] exact mul_le_mul_of_nonneg_right (hx.trans (le_abs_self C)) (abs_nonneg _)
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
bdd_le_mul_tendsto_zero'
If `g` tends to zero and there exists a constant `C : 𝕜` such that eventually `|f x| ≤ C`, then the product `f * g` tends to zero.
bdd_le_mul_tendsto_zero {f g : α → 𝕜} {b B : 𝕜} (hb : ∀ᶠ x in l, b ≤ f x) (hB : ∀ᶠ x in l, f x ≤ B) (hg : Tendsto g l (𝓝 0)) : Tendsto (fun x ↦ f x * g x) l (𝓝 0) := by set C := max |b| |B| have hbC : -C ≤ b := neg_le.mpr (le_max_of_le_left (neg_le_abs b)) have hBC : B ≤ C := le_max_of_le_right (le_abs_self B) apply bdd_le_mul_tendsto_zero' C _ hg filter_upwards [hb, hB] exact fun x hbx hBx ↦ abs_le.mpr ⟨hbC.trans hbx, hBx.trans hBC⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
bdd_le_mul_tendsto_zero
If `g` tends to zero and there exist constants `b B : 𝕜` such that eventually `b ≤ f x| ≤ B`, then the product `f * g` tends to zero.
tendsto_bdd_div_atTop_nhds_zero {f g : α → 𝕜} {b B : 𝕜} (hb : ∀ᶠ x in l, b ≤ f x) (hB : ∀ᶠ x in l, f x ≤ B) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (𝓝 0) := by simp only [div_eq_mul_inv] exact bdd_le_mul_tendsto_zero hb hB hg.inv_tendsto_atTop
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_bdd_div_atTop_nhds_zero
If `g` tends to `atTop` and there exist constants `b B : 𝕜` such that eventually `b ≤ f x| ≤ B`, then the quotient `f / g` tends to zero.
tendsto_const_mul_zpow_atTop_zero {n : ℤ} {c : 𝕜} (hn : n < 0) : Tendsto (fun x => c * x ^ n) atTop (𝓝 0) := mul_zero c ▸ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_const_mul_zpow_atTop_zero
null
tendsto_const_mul_pow_nhds_iff' {n : ℕ} {c d : 𝕜} : Tendsto (fun x : 𝕜 => c * x ^ n) atTop (𝓝 d) ↔ (c = 0 ∨ n = 0) ∧ c = d := by rcases eq_or_ne n 0 with (rfl | hn) · simp [tendsto_const_nhds_iff] rcases lt_trichotomy c 0 with (hc | rfl | hc) · have := tendsto_const_mul_pow_atBot_iff.2 ⟨hn, hc⟩ simp [not_tendsto_nhds_of_tendsto_atBot this, hc.ne, hn] · simp [tendsto_const_nhds_iff] · have := tendsto_const_mul_pow_atTop_iff.2 ⟨hn, hc⟩ simp [not_tendsto_nhds_of_tendsto_atTop this, hc.ne', hn]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_const_mul_pow_nhds_iff'
null
tendsto_const_mul_pow_nhds_iff {n : ℕ} {c d : 𝕜} (hc : c ≠ 0) : Tendsto (fun x : 𝕜 => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d := by simp [tendsto_const_mul_pow_nhds_iff', hc]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_const_mul_pow_nhds_iff
null
tendsto_const_mul_zpow_atTop_nhds_iff {n : ℤ} {c d : 𝕜} (hc : c ≠ 0) : Tendsto (fun x : 𝕜 => c * x ^ n) atTop (𝓝 d) ↔ n = 0 ∧ c = d ∨ n < 0 ∧ d = 0 := by refine ⟨fun h => ?_, fun h => ?_⟩ · cases n with | ofNat n => left simpa [tendsto_const_mul_pow_nhds_iff hc] using h | negSucc n => have hn := Int.negSucc_lt_zero n exact Or.inr ⟨hn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)⟩ · rcases h with h | h · simp only [h.left, h.right, zpow_zero, mul_one] exact tendsto_const_nhds · exact h.2.symm ▸ tendsto_const_mul_zpow_atTop_zero h.1
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
tendsto_const_mul_zpow_atTop_nhds_iff
null
comap_mulLeft_nhdsGT_zero {x : 𝕜} (hx : 0 < x) : comap (x * ·) (𝓝[>] 0) = 𝓝[>] 0 := by rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div] congr 1 refine ((Homeomorph.mulLeft₀ x hx.ne').comap_nhds_eq _).trans ?_ simp
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
comap_mulLeft_nhdsGT_zero
null
eventually_nhdsGT_zero_mul_left {x : 𝕜} (hx : 0 < x) {p : 𝕜 → Prop} (h : ∀ᶠ ε in 𝓝[>] 0, p ε) : ∀ᶠ ε in 𝓝[>] 0, p (x * ε) := by rw [← comap_mulLeft_nhdsGT_zero hx] exact h.comap fun ε => x * ε
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Pointwise.Interval", "Mathlib.Order.Filter.AtTopBot.Field", "Mathlib.Topology.Algebra.Field", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Field.lean
eventually_nhdsGT_zero_mul_left
null
tendsto_mul_pow_div_factorial_sub_atTop (a c : K) (d : ℕ) : Tendsto (fun n ↦ a * c ^ n / (n - d)!) atTop (𝓝 0) := by rw [tendsto_order] constructor all_goals intro ε hε filter_upwards [eventually_mul_pow_lt_factorial_sub (a * ε⁻¹) c d] with n h rw [mul_right_comm, ← div_eq_mul_inv] at h · rw [div_lt_iff_of_neg hε] at h rwa [lt_div_iff₀' (Nat.cast_pos.mpr (Nat.factorial_pos _))] · rw [div_lt_iff₀ hε] at h rwa [div_lt_iff₀' (Nat.cast_pos.mpr (Nat.factorial_pos _))]
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_mul_pow_div_factorial_sub_atTop
null
tendsto_pow_div_factorial_atTop (c : K) : Tendsto (fun n ↦ c ^ n / n !) atTop (𝓝 0) := by convert tendsto_mul_pow_div_factorial_sub_atTop 1 c 0 rw [one_mul]
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_pow_div_factorial_atTop
null
tendsto_floor_atTop : Tendsto (floor : α → ℤ) atTop atTop := floor_mono.tendsto_atTop_atTop fun b => ⟨(b + 1 : ℤ), by rw [floor_intCast]; exact (lt_add_one _).le⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_atTop
null
tendsto_floor_atBot : Tendsto (floor : α → ℤ) atBot atBot := floor_mono.tendsto_atBot_atBot fun b => ⟨b, (floor_intCast _).le⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_atBot
null
tendsto_ceil_atTop : Tendsto (ceil : α → ℤ) atTop atTop := ceil_mono.tendsto_atTop_atTop fun b => ⟨b, (ceil_intCast _).ge⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_atTop
null
tendsto_ceil_atBot : Tendsto (ceil : α → ℤ) atBot atBot := ceil_mono.tendsto_atBot_atBot fun b => ⟨(b - 1 : ℤ), by rw [ceil_intCast]; exact (sub_one_lt _).le⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_atBot
null
continuousOn_floor (n : ℤ) : ContinuousOn (fun x => floor x : α → α) (Ico n (n + 1) : Set α) := (continuousOn_congr <| floor_eq_on_Ico' n).mpr continuousOn_const
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
continuousOn_floor
null
continuousOn_ceil [IsStrictOrderedRing α] (n : ℤ) : ContinuousOn (fun x => ceil x : α → α) (Ioc (n - 1) n : Set α) := (continuousOn_congr <| ceil_eq_on_Ioc' n).mpr continuousOn_const
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
continuousOn_ceil
null
tendsto_floor_right_pure_floor (x : α) : Tendsto (floor : α → ℤ) (𝓝[≥] x) (pure ⌊x⌋) := tendsto_pure.2 <| mem_of_superset (Ico_mem_nhdsGE <| lt_floor_add_one x) fun _y hy => floor_eq_on_Ico _ _ ⟨(floor_le x).trans hy.1, hy.2⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_right_pure_floor
null
tendsto_floor_right_pure (n : ℤ) : Tendsto (floor : α → ℤ) (𝓝[≥] n) (pure n) := by simpa only [floor_intCast] using tendsto_floor_right_pure_floor (n : α)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_right_pure
null
tendsto_ceil_left_pure_ceil (x : α) : Tendsto (ceil : α → ℤ) (𝓝[≤] x) (pure ⌈x⌉) := tendsto_pure.2 <| mem_of_superset (Ioc_mem_nhdsLE <| sub_lt_iff_lt_add.2 <| ceil_lt_add_one _) fun _y hy => ceil_eq_on_Ioc _ _ ⟨hy.1, hy.2.trans (le_ceil _)⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_left_pure_ceil
null
tendsto_ceil_left_pure (n : ℤ) : Tendsto (ceil : α → ℤ) (𝓝[≤] n) (pure n) := by simpa only [ceil_intCast] using tendsto_ceil_left_pure_ceil (n : α)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_left_pure
null
tendsto_floor_left_pure_ceil_sub_one (x : α) : Tendsto (floor : α → ℤ) (𝓝[<] x) (pure (⌈x⌉ - 1)) := have h₁ : ↑(⌈x⌉ - 1) < x := by rw [cast_sub, cast_one, sub_lt_iff_lt_add]; exact ceil_lt_add_one _ have h₂ : x ≤ ↑(⌈x⌉ - 1) + 1 := by rw [cast_sub, cast_one, sub_add_cancel]; exact le_ceil _ tendsto_pure.2 <| mem_of_superset (Ico_mem_nhdsLT h₁) fun _y hy => floor_eq_on_Ico _ _ ⟨hy.1, hy.2.trans_le h₂⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_left_pure_ceil_sub_one
null
tendsto_floor_left_pure_sub_one (n : ℤ) : Tendsto (floor : α → ℤ) (𝓝[<] n) (pure (n - 1)) := by simpa only [ceil_intCast] using tendsto_floor_left_pure_ceil_sub_one (n : α) omit [IsStrictOrderedRing α] in
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_left_pure_sub_one
null
tendsto_ceil_right_pure_floor_add_one (x : α) : Tendsto (ceil : α → ℤ) (𝓝[>] x) (pure (⌊x⌋ + 1)) := have : ↑(⌊x⌋ + 1) - 1 ≤ x := by rw [cast_add, cast_one, add_sub_cancel_right]; exact floor_le _ tendsto_pure.2 <| mem_of_superset (Ioc_mem_nhdsGT <| lt_succ_floor _) fun _y hy => ceil_eq_on_Ioc _ _ ⟨this.trans_lt hy.1, hy.2⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_right_pure_floor_add_one
null
tendsto_ceil_right_pure_add_one (n : ℤ) : Tendsto (ceil : α → ℤ) (𝓝[>] n) (pure (n + 1)) := by simpa only [floor_intCast] using tendsto_ceil_right_pure_floor_add_one (n : α)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_right_pure_add_one
null
tendsto_floor_right (n : ℤ) : Tendsto (fun x => floor x : α → α) (𝓝[≥] n) (𝓝[≥] n) := ((tendsto_pure_pure _ _).comp (tendsto_floor_right_pure n)).mono_right <| pure_le_nhdsWithin le_rfl
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_right
null
tendsto_floor_right' (n : ℤ) : Tendsto (fun x => floor x : α → α) (𝓝[≥] n) (𝓝 n) := (tendsto_floor_right n).mono_right inf_le_left
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_right'
null
tendsto_ceil_left (n : ℤ) : Tendsto (fun x => ceil x : α → α) (𝓝[≤] n) (𝓝[≤] n) := ((tendsto_pure_pure _ _).comp (tendsto_ceil_left_pure n)).mono_right <| pure_le_nhdsWithin le_rfl
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_left
null
tendsto_ceil_left' (n : ℤ) : Tendsto (fun x => ceil x : α → α) (𝓝[≤] n) (𝓝 n) := (tendsto_ceil_left n).mono_right inf_le_left
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_left'
null
tendsto_floor_left (n : ℤ) : Tendsto (fun x => floor x : α → α) (𝓝[<] n) (𝓝[≤] (n - 1)) := ((tendsto_pure_pure _ _).comp (tendsto_floor_left_pure_sub_one n)).mono_right <| by rw [← @cast_one α, ← cast_sub]; exact pure_le_nhdsWithin le_rfl
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_left
null
tendsto_ceil_right (n : ℤ) : Tendsto (fun x => ceil x : α → α) (𝓝[>] n) (𝓝[≥] (n + 1)) := ((tendsto_pure_pure _ _).comp (tendsto_ceil_right_pure_add_one n)).mono_right <| by rw [← @cast_one α, ← cast_add]; exact pure_le_nhdsWithin le_rfl
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_right
null
tendsto_floor_left' (n : ℤ) : Tendsto (fun x => floor x : α → α) (𝓝[<] n) (𝓝 (n - 1)) := (tendsto_floor_left n).mono_right inf_le_left
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_left'
null
tendsto_ceil_right' (n : ℤ) : Tendsto (fun x => ceil x : α → α) (𝓝[>] n) (𝓝 (n + 1)) := (tendsto_ceil_right n).mono_right inf_le_left
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_right'
null
continuousOn_fract [IsTopologicalAddGroup α] (n : ℤ) : ContinuousOn (fract : α → α) (Ico n (n + 1) : Set α) := continuousOn_id.sub (continuousOn_floor n)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
continuousOn_fract
null
continuousAt_fract [OrderClosedTopology α] [IsTopologicalAddGroup α] {x : α} (h : x ≠ ⌊x⌋) : ContinuousAt fract x := (continuousOn_fract ⌊x⌋).continuousAt <| Ico_mem_nhds ((floor_le _).lt_of_ne h.symm) (lt_floor_add_one _) variable [IsStrictOrderedRing α]
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
continuousAt_fract
null
tendsto_fract_left' [OrderClosedTopology α] [IsTopologicalAddGroup α] (n : ℤ) : Tendsto (fract : α → α) (𝓝[<] n) (𝓝 1) := by rw [← sub_sub_cancel (n : α) 1] refine (tendsto_id.mono_left nhdsWithin_le_nhds).sub ?_ exact tendsto_floor_left' n
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_fract_left'
null
tendsto_fract_left [OrderClosedTopology α] [IsTopologicalAddGroup α] (n : ℤ) : Tendsto (fract : α → α) (𝓝[<] n) (𝓝[<] 1) := tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ (tendsto_fract_left' _) (Eventually.of_forall fract_lt_one)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_fract_left
null
tendsto_fract_right' [OrderClosedTopology α] [IsTopologicalAddGroup α] (n : ℤ) : Tendsto (fract : α → α) (𝓝[≥] n) (𝓝 0) := sub_self (n : α) ▸ (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id).sub (tendsto_floor_right' n)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_fract_right'
null
tendsto_fract_right [OrderClosedTopology α] [IsTopologicalAddGroup α] (n : ℤ) : Tendsto (fract : α → α) (𝓝[≥] n) (𝓝[≥] 0) := tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ (tendsto_fract_right' _) (Eventually.of_forall fract_nonneg) local notation "I" => (Icc 0 1 : Set α) variable [OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_fract_right
null
ContinuousOn.comp_fract' {f : β → α → γ} (h : ContinuousOn (uncurry f) <| univ ×ˢ I) (hf : ∀ s, f s 0 = f s 1) : Continuous fun st : β × α => f st.1 (fract st.2) := by change Continuous (uncurry f ∘ Prod.map id fract) rw [continuous_iff_continuousAt] rintro ⟨s, t⟩ rcases em (∃ n : ℤ, t = n) with (⟨n, rfl⟩ | ht) · rw [ContinuousAt, nhds_prod_eq, ← nhdsLT_sup_nhdsGE (n : α), prod_sup, tendsto_sup] constructor · refine (((h (s, 1) ⟨trivial, zero_le_one, le_rfl⟩).tendsto.mono_left ?_).comp (tendsto_id.prodMap (tendsto_fract_left _))).mono_right (le_of_eq ?_) · rw [nhdsWithin_prod_eq, nhdsWithin_univ, ← nhdsWithin_Ico_eq_nhdsLT one_pos] exact Filter.prod_mono le_rfl (nhdsWithin_mono _ Ico_subset_Icc_self) · simp [hf] · refine (((h (s, 0) ⟨trivial, le_rfl, zero_le_one⟩).tendsto.mono_left <| le_of_eq ?_).comp (tendsto_id.prodMap (tendsto_fract_right _))).mono_right (le_of_eq ?_) <;> simp [nhdsWithin_prod_eq, nhdsWithin_univ] · replace ht : t ≠ ⌊t⌋ := fun ht' => ht ⟨_, ht'⟩ refine (h.continuousAt ?_).comp (continuousAt_id.prodMap (continuousAt_fract ht)) exact prod_mem_nhds univ_mem (Icc_mem_nhds (fract_pos.2 ht) (fract_lt_one _))
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
ContinuousOn.comp_fract'
Do not use this, use `ContinuousOn.comp_fract` instead.
ContinuousOn.comp_fract {s : β → α} {f : β → α → γ} (h : ContinuousOn (uncurry f) <| univ ×ˢ Icc 0 1) (hs : Continuous s) (hf : ∀ s, f s 0 = f s 1) : Continuous fun x : β => f x <| Int.fract (s x) := (h.comp_fract' hf).comp (continuous_id.prodMk hs)
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
ContinuousOn.comp_fract
null
ContinuousOn.comp_fract'' {f : α → β} (h : ContinuousOn f I) (hf : f 0 = f 1) : Continuous (f ∘ fract) := ContinuousOn.comp_fract (h.comp continuousOn_snd fun _x hx => (mem_prod.mp hx).2) continuous_id fun _ => hf
theorem
Topology
[ "Mathlib.Algebra.Order.Floor.Ring", "Mathlib.Order.Filter.AtTopBot.Floor", "Mathlib.Topology.Algebra.Order.Group" ]
Mathlib/Topology/Algebra/Order/Floor.lean
ContinuousOn.comp_fract''
A special case of `ContinuousOn.comp_fract`.
@[to_additive (attr := continuity)] continuous_mabs : Continuous (mabs : G → G) := continuous_id.max continuous_inv
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
continuous_mabs
null
@[to_additive] protected Filter.Tendsto.mabs {a : G} (h : Tendsto f l (𝓝 a)) : Tendsto (fun x => |f x|ₘ) l (𝓝 |a|ₘ) := (continuous_mabs.tendsto _).comp h @[to_additive (attr := simp)]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
Filter.Tendsto.mabs
null
comap_mabs_nhds_one : comap mabs (𝓝 (1 : G)) = 𝓝 1 := by simp [nhds_eq_iInf_mabs_div] @[to_additive]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
comap_mabs_nhds_one
null
tendsto_one_iff_mabs_tendsto_one (f : α → G) : Tendsto f l (𝓝 1) ↔ Tendsto (mabs ∘ f) l (𝓝 1) := by rw [← tendsto_comap_iff, comap_mabs_nhds_one]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
tendsto_one_iff_mabs_tendsto_one
null
@[to_additive (attr := fun_prop)] protected Continuous.mabs (h : Continuous f) : Continuous fun x => |f x|ₘ := continuous_mabs.comp h @[to_additive (attr := fun_prop)]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
Continuous.mabs
null
protected ContinuousAt.mabs (h : ContinuousAt f x) : ContinuousAt (fun x => |f x|ₘ) x := Filter.Tendsto.mabs h @[to_additive]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
ContinuousAt.mabs
null
protected ContinuousWithinAt.mabs (h : ContinuousWithinAt f s x) : ContinuousWithinAt (fun x => |f x|ₘ) s x := Filter.Tendsto.mabs h @[to_additive (attr := fun_prop)]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
ContinuousWithinAt.mabs
null
protected ContinuousOn.mabs (h : ContinuousOn f s) : ContinuousOn (fun x => |f x|ₘ) s := fun x hx => (h x hx).mabs @[to_additive]
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
ContinuousOn.mabs
null
tendsto_mabs_nhdsNE_one : Tendsto (mabs : G → G) (𝓝[≠] 1) (𝓝[>] 1) := (continuous_mabs.tendsto' (1 : G) 1 mabs_one).inf <| tendsto_principal_principal.2 fun _x => one_lt_mabs.2 @[deprecated (since := "2025-03-18")] alias tendsto_abs_nhdsWithin_zero := tendsto_abs_nhdsNE_zero
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
tendsto_mabs_nhdsNE_one
null
@[to_additive /-- In a linearly ordered additive group, the integer multiples of an element are dense iff they are the whole group. -/] denseRange_zpow_iff_surjective {a : G} : DenseRange (a ^ · : ℤ → G) ↔ Surjective (a ^ · : ℤ → G) := by refine ⟨fun h ↦ ?_, fun h ↦ h.denseRange⟩ wlog ha₀ : 1 < a generalizing a · simp only [← range_eq_univ, DenseRange] at * rcases (not_lt.1 ha₀).eq_or_lt with rfl | hlt · simpa only [one_zpow, range_const, dense_iff_closure_eq, closure_singleton] using h · have H : range (a⁻¹ ^ · : ℤ → G) = range (a ^ · : ℤ → G) := by simpa only [← inv_zpow, zpow_neg, comp_def] using neg_surjective.range_comp (a ^ · : ℤ → G) rw [← H] apply this <;> simpa only [H, one_lt_inv'] intro b obtain ⟨m, hm, hm'⟩ : ∃ m : ℤ, a ^ m ∈ Ioo b (b * a * a) := by have hne : (Ioo b (b * a * a)).Nonempty := ⟨b * a, by simpa⟩ simpa using h.exists_mem_open isOpen_Ioo hne rcases eq_or_ne b (a ^ (m - 1)) with rfl | hne; · simp suffices (Ioo (a ^ m) (a ^ (m + 1))).Nonempty by rcases h.exists_mem_open isOpen_Ioo this with ⟨l, hl⟩ have : m < l ∧ l < m + 1 := by simpa [zpow_lt_zpow_iff_right ha₀] using hl cutsat rcases hne.lt_or_gt with hlt | hlt · refine ⟨b * a * a, hm', ?_⟩ simpa only [zpow_add, zpow_sub, zpow_one, ← div_eq_mul_inv, lt_div_iff_mul_lt, mul_lt_mul_iff_right] using hlt · use b * a simp only [mem_Ioo, zpow_add, zpow_sub, zpow_one, ← div_eq_mul_inv, mul_lt_mul_iff_right] at hlt ⊢ exact ⟨div_lt_iff_lt_mul.1 hlt, hm⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
denseRange_zpow_iff_surjective
In a linearly ordered multiplicative group, the integer powers of an element are dense iff they are the whole group.
@[to_additive /-- In a nontrivial densely linearly ordered additive group, the integer multiples of an element can't be dense. -/] not_denseRange_zpow [Nontrivial G] [DenselyOrdered G] {a : G} : ¬DenseRange (a ^ · : ℤ → G) := denseRange_zpow_iff_surjective.not.mpr fun h ↦ not_isCyclic_of_denselyOrdered G ⟨⟨a, h⟩⟩
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Basic", "Mathlib.Topology.Algebra.Group.Defs", "Mathlib.Topology.Order.LeftRightNhds" ]
Mathlib/Topology/Algebra/Order/Group.lean
not_denseRange_zpow
In a nontrivial densely linearly ordered commutative group, the integer powers of an element can't be dense.
le_limsup_add (h₁ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u := by isBoundedDefault) (h₂ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u := by isBoundedDefault) (h₃ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v := by isBoundedDefault) (h₄ : IsBoundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v := by isBoundedDefault) : (limsup u f) + liminf v f ≤ limsup (u + v) f := by have h := isCoboundedUnder_le_add h₄ h₂ -- These `have` tactic improve performance. have h' := isBoundedUnder_le_add h₃ h₁ rw [add_comm] at h h' refine add_le_of_forall_lt fun a a_u b b_v ↦ (le_limsup_iff h h').2 fun c c_ab ↦ ?_ refine ((frequently_lt_of_lt_limsup h₂ a_u).and_eventually (eventually_lt_of_lt_liminf b_v h₄)).mono fun _ ab_x ↦ ?_ exact c_ab.trans (add_lt_add ab_x.1 ab_x.2)
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
le_limsup_add
null
limsup_add_le (h₁ : IsBoundedUnder (fun x1 x2 ↦ x1 ≥ x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u := by isBoundedDefault) (h₃ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v := by isBoundedDefault) (h₄ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v := by isBoundedDefault) : limsup (u + v) f ≤ (limsup u f) + limsup v f := by have h := isCoboundedUnder_le_add h₁ h₃ have h' := isBoundedUnder_le_add h₂ h₄ refine le_add_of_forall_lt fun a a_u b b_v ↦ ?_ rw [limsup_le_iff h h'] intro c c_ab filter_upwards [eventually_lt_of_limsup_lt a_u, eventually_lt_of_limsup_lt b_v] with x a_x b_x exact (add_lt_add a_x b_x).trans c_ab
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
limsup_add_le
null
le_liminf_add (h₁ : IsBoundedUnder (fun x1 x2 ↦ x1 ≥ x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u := by isBoundedDefault) (h₃ : IsBoundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v := by isBoundedDefault) (h₄ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v := by isBoundedDefault) : (liminf u f) + liminf v f ≤ liminf (u + v) f := by have h := isCoboundedUnder_ge_add h₂ h₄ have h' := isBoundedUnder_ge_add h₁ h₃ refine add_le_of_forall_lt fun a a_u b b_v ↦ ?_ rw [le_liminf_iff h h'] intro c c_ab filter_upwards [eventually_lt_of_lt_liminf a_u, eventually_lt_of_lt_liminf b_v] with x a_x b_x exact c_ab.trans (add_lt_add a_x b_x)
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
le_liminf_add
null
liminf_add_le (h₁ : IsBoundedUnder (fun x1 x2 ↦ x1 ≥ x2) f u := by isBoundedDefault) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u := by isBoundedDefault) (h₃ : IsBoundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v := by isBoundedDefault) (h₄ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v := by isBoundedDefault) : liminf (u + v) f ≤ (limsup u f) + liminf v f := by have h := isCoboundedUnder_ge_add h₂ h₄ have h' := isBoundedUnder_ge_add h₁ h₃ refine le_add_of_forall_lt fun a a_u b b_v ↦ (liminf_le_iff h h').2 fun _ c_ab ↦ ?_ refine ((frequently_lt_of_liminf_lt h₄ b_v).and_eventually (eventually_lt_of_limsup_lt a_u h₂)).mono fun _ ab_x ↦ ?_ exact (add_lt_add ab_x.2 ab_x.1).trans c_ab
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
liminf_add_le
null
le_limsup_mul (h₁ : ∃ᶠ x in f, 0 ≤ u x) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v) : (limsup u f) * liminf v f ≤ limsup (u * v) f := by have h := IsCoboundedUnder.of_frequently_ge (a := 0) <| (h₁.and_eventually h₃).mono fun x ⟨ux_0, vx_0⟩ ↦ mul_nonneg ux_0 vx_0 have h' := isBoundedUnder_le_mul_of_nonneg h₁ h₂ h₃ h₄ have u0 : 0 ≤ limsup u f := le_limsup_of_frequently_le h₁ h₂ have uv : 0 ≤ limsup (u * v) f := le_limsup_of_frequently_le ((h₁.and_eventually h₃).mono fun _ ⟨hu, hv⟩ ↦ mul_nonneg hu hv) h' refine mul_le_of_forall_lt_of_nonneg u0 uv fun a a0 au b b0 bv ↦ ?_ refine (le_limsup_iff h h').2 fun c c_ab ↦ ?_ replace h₁ := IsCoboundedUnder.of_frequently_ge h₁ -- Pre-compute it to gain 4 s. have h₅ := frequently_lt_of_lt_limsup h₁ au have h₆ := eventually_lt_of_lt_liminf bv (isBoundedUnder_of_eventually_ge h₃) apply (h₅.and_eventually (h₆.and h₃)).mono exact fun x ⟨xa, ⟨xb, _⟩⟩ ↦ c_ab.trans_le <| mul_le_mul xa.le xb.le b0 (a0.trans xa.le)
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
le_limsup_mul
null
limsup_mul_le (h₁ : ∃ᶠ x in f, 0 ≤ u x) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f v) : limsup (u * v) f ≤ (limsup u f) * limsup v f := by have h := IsCoboundedUnder.of_frequently_ge (a := 0) <| (h₁.and_eventually h₃).mono fun x ⟨ux_0, vx_0⟩ ↦ mul_nonneg ux_0 vx_0 have h' := isBoundedUnder_le_mul_of_nonneg h₁ h₂ h₃ h₄ refine le_mul_of_forall_lt₀ fun a a_u b b_v ↦ (limsup_le_iff h h').2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_limsup_lt a_u, eventually_lt_of_limsup_lt b_v, h₃] with x x_a x_b v_0 apply lt_of_le_of_lt _ c_ab rcases lt_or_ge (u x) 0 with u_0 | u_0 · apply (mul_nonpos_of_nonpos_of_nonneg u_0.le v_0).trans exact mul_nonneg ((le_limsup_of_frequently_le h₁ h₂).trans a_u.le) (v_0.trans x_b.le) · exact mul_le_mul x_a.le x_b.le v_0 (u_0.trans x_a.le)
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
limsup_mul_le
null
le_liminf_mul [f.NeBot] (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v) : (liminf u f) * liminf v f ≤ liminf (u * v) f := by have h := isCoboundedUnder_ge_mul_of_nonneg h₁ h₂ h₃ h₄ have h' := isBoundedUnder_of_eventually_ge (a := 0) <| (h₁.and h₃).mono fun x ⟨u0, v0⟩ ↦ mul_nonneg u0 v0 apply mul_le_of_forall_lt_of_nonneg (le_liminf_of_le h₂.isCoboundedUnder_ge h₁) (le_liminf_of_le h ((h₁.and h₃).mono fun x ⟨u0, v0⟩ ↦ mul_nonneg u0 v0)) intro a a0 au b b0 bv refine (le_liminf_iff h h').2 fun c c_ab ↦ ?_ filter_upwards [eventually_lt_of_lt_liminf au (isBoundedUnder_of_eventually_ge h₁), eventually_lt_of_lt_liminf bv (isBoundedUnder_of_eventually_ge h₃)] with x xa xb exact c_ab.trans_le (mul_le_mul xa.le xb.le b0 (a0.trans xa.le))
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
le_liminf_mul
null
liminf_mul_le [f.NeBot] (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v) : liminf (u * v) f ≤ (limsup u f) * liminf v f := by have h := isCoboundedUnder_ge_mul_of_nonneg h₁ h₂ h₃ h₄ have h' := isBoundedUnder_of_eventually_ge (a := 0) <| (h₁.and h₃).mono fun x ⟨u_0, v_0⟩ ↦ mul_nonneg u_0 v_0 refine le_mul_of_forall_lt₀ fun a a_u b b_v ↦ (liminf_le_iff h h').2 fun c c_ab ↦ ?_ refine ((frequently_lt_of_liminf_lt h₄ b_v).and_eventually ((eventually_lt_of_limsup_lt a_u).and (h₁.and h₃))).mono fun x ⟨x_v, x_u, u_0, v_0⟩ ↦ ?_ exact (mul_le_mul x_u.le x_v.le v_0 (u_0.trans x_u.le)).trans_lt c_ab
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
liminf_mul_le
null
limsup_const_add (F : Filter ι) [NeBot F] [Add R] [ContinuousAdd R] [AddLeftMono R] (f : ι → R) (c : R) (bdd_above : F.IsBoundedUnder (· ≤ ·) f) (cobdd : F.IsCoboundedUnder (· ≤ ·) f) : Filter.limsup (fun i ↦ c + f i) F = c + Filter.limsup f F := (Monotone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ c + x) (fun _ _ h ↦ add_le_add_left h c) (continuous_add_left c).continuousAt bdd_above cobdd).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
limsup_const_add
`liminf (c + xᵢ) = c + liminf xᵢ`.
limsup_add_const (F : Filter ι) [NeBot F] [Add R] [ContinuousAdd R] [AddRightMono R] (f : ι → R) (c : R) (bdd_above : F.IsBoundedUnder (· ≤ ·) f) (cobdd : F.IsCoboundedUnder (· ≤ ·) f) : Filter.limsup (fun i ↦ f i + c) F = Filter.limsup f F + c := (Monotone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ x + c) (fun _ _ h ↦ add_le_add_right h c) (continuous_add_right c).continuousAt bdd_above cobdd).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
limsup_add_const
`limsup (xᵢ + c) = (limsup xᵢ) + c`.
liminf_const_add (F : Filter ι) [NeBot F] [Add R] [ContinuousAdd R] [AddLeftMono R] (f : ι → R) (c : R) (cobdd : F.IsCoboundedUnder (· ≥ ·) f) (bdd_below : F.IsBoundedUnder (· ≥ ·) f) : Filter.liminf (fun i ↦ c + f i) F = c + Filter.liminf f F := (Monotone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ c + x) (fun _ _ h ↦ add_le_add_left h c) (continuous_add_left c).continuousAt cobdd bdd_below).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
liminf_const_add
`liminf (c + xᵢ) = c + liminf xᵢ`.
liminf_add_const (F : Filter ι) [NeBot F] [Add R] [ContinuousAdd R] [AddRightMono R] (f : ι → R) (c : R) (cobdd : F.IsCoboundedUnder (· ≥ ·) f) (bdd_below : F.IsBoundedUnder (· ≥ ·) f) : Filter.liminf (fun i ↦ f i + c) F = Filter.liminf f F + c := (Monotone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ x + c) (fun _ _ h ↦ add_le_add_right h c) (continuous_add_right c).continuousAt cobdd bdd_below).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
liminf_add_const
`liminf (xᵢ + c) = (liminf xᵢ) + c`.
limsup_const_sub (F : Filter ι) [AddCommSemigroup R] [Sub R] [ContinuousSub R] [OrderedSub R] [AddLeftMono R] (f : ι → R) (c : R) (cobdd : F.IsCoboundedUnder (· ≥ ·) f) (bdd_below : F.IsBoundedUnder (· ≥ ·) f) : Filter.limsup (fun i ↦ c - f i) F = c - Filter.liminf f F := by rcases F.eq_or_neBot with rfl | _ · simp only [liminf, limsInf, limsup, limsSup, map_bot, eventually_bot, Set.setOf_true] simp only [IsCoboundedUnder, IsCobounded, map_bot, eventually_bot, true_implies] at cobdd rcases cobdd with ⟨x, hx⟩ refine (csInf_le ?_ (Set.mem_univ _)).antisymm (tsub_le_iff_tsub_le.1 (le_csSup ?_ (Set.mem_univ _))) · refine ⟨x - x, mem_lowerBounds.2 fun y ↦ ?_⟩ simp only [Set.mem_univ, true_implies] exact tsub_le_iff_tsub_le.1 (hx (x - y)) · refine ⟨x, mem_upperBounds.2 fun y ↦ ?_⟩ simp only [Set.mem_univ, hx y, implies_true] · exact (Antitone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ c - x) (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c).continuousAt cobdd bdd_below).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
limsup_const_sub
`limsup (c - xᵢ) = c - liminf xᵢ`.
limsup_sub_const (F : Filter ι) [AddCommSemigroup R] [Sub R] [ContinuousSub R] [OrderedSub R] (f : ι → R) (c : R) (bdd_above : F.IsBoundedUnder (· ≤ ·) f) (cobdd : F.IsCoboundedUnder (· ≤ ·) f) : Filter.limsup (fun i ↦ f i - c) F = Filter.limsup f F - c := by rcases F.eq_or_neBot with rfl | _ · have {a : R} : sInf Set.univ ≤ a := by apply csInf_le _ (Set.mem_univ a) simp only [IsCoboundedUnder, IsCobounded, map_bot, eventually_bot, true_implies] at cobdd rcases cobdd with ⟨x, hx⟩ refine ⟨x, mem_lowerBounds.2 fun y ↦ ?_⟩ simp only [Set.mem_univ, hx y, implies_true] simp only [limsup, limsSup, map_bot, eventually_bot, Set.setOf_true] exact this.antisymm (tsub_le_iff_right.2 this) · apply (Monotone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ x - c) _ _).symm · exact fun _ _ h ↦ tsub_le_tsub_right h c · exact (continuous_sub_right c).continuousAt
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
limsup_sub_const
`limsup (xᵢ - c) = (limsup xᵢ) - c`.
liminf_const_sub (F : Filter ι) [NeBot F] [AddCommSemigroup R] [Sub R] [ContinuousSub R] [OrderedSub R] [AddLeftMono R] (f : ι → R) (c : R) (bdd_above : F.IsBoundedUnder (· ≤ ·) f) (cobdd : F.IsCoboundedUnder (· ≤ ·) f) : Filter.liminf (fun i ↦ c - f i) F = c - Filter.limsup f F := (Antitone.map_limsSup_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ c - x) (fun _ _ h ↦ tsub_le_tsub_left h c) (continuous_sub_left c).continuousAt bdd_above cobdd).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
liminf_const_sub
`liminf (c - xᵢ) = c - limsup xᵢ`.
liminf_sub_const (F : Filter ι) [NeBot F] [AddCommSemigroup R] [Sub R] [ContinuousSub R] [OrderedSub R] (f : ι → R) (c : R) (cobdd : F.IsCoboundedUnder (· ≥ ·) f) (bdd_below : F.IsBoundedUnder (· ≥ ·) f) : Filter.liminf (fun i ↦ f i - c) F = Filter.liminf f F - c := (Monotone.map_limsInf_of_continuousAt (F := F.map f) (f := fun (x : R) ↦ x - c) (fun _ _ h ↦ tsub_le_tsub_right h c) (continuous_sub_right c).continuousAt cobdd bdd_below).symm
lemma
Topology
[ "Mathlib.Algebra.Order.Group.DenselyOrdered", "Mathlib.Data.Real.Archimedean", "Mathlib.Topology.Algebra.Group.Basic", "Mathlib.Topology.Order.LiminfLimsup" ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
liminf_sub_const
`liminf (xᵢ - c) = (liminf xᵢ) - c`.
@[to_additive] HasCompactMulSupport.sup {f g : X → M} (hf : HasCompactMulSupport f) (hg : HasCompactMulSupport g) : HasCompactMulSupport (f ⊔ g) := by apply IsCompact.of_isClosed_subset (IsCompact.union hf hg) (isClosed_mulTSupport _) rw [mulTSupport, mulTSupport, mulTSupport, ← closure_union] apply closure_mono exact Function.mulSupport_sup f g
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Indicator", "Mathlib.Topology.Algebra.Support" ]
Mathlib/Topology/Algebra/Order/Support.lean
HasCompactMulSupport.sup
null
@[to_additive] HasCompactMulSupport.inf {f g : X → M} (hf : HasCompactMulSupport f) (hg : HasCompactMulSupport g) : HasCompactMulSupport (f ⊓ g) := by apply IsCompact.of_isClosed_subset (IsCompact.union hf hg) (isClosed_mulTSupport _) rw [mulTSupport, mulTSupport, mulTSupport, ← closure_union] apply closure_mono exact Function.mulSupport_inf f g
theorem
Topology
[ "Mathlib.Algebra.Order.Group.Indicator", "Mathlib.Topology.Algebra.Support" ]
Mathlib/Topology/Algebra/Order/Support.lean
HasCompactMulSupport.inf
null
HasUpperLowerClosure (α : Type*) [TopologicalSpace α] [Preorder α] : Prop where isUpperSet_closure : ∀ s : Set α, IsUpperSet s → IsUpperSet (closure s) isLowerSet_closure : ∀ s : Set α, IsLowerSet s → IsLowerSet (closure s) isOpen_upperClosure : ∀ s : Set α, IsOpen s → IsOpen (upperClosure s : Set α) isOpen_lowerClosure : ∀ s : Set α, IsOpen s → IsOpen (lowerClosure s : Set α) variable {α : Type*} [TopologicalSpace α] @[to_additive]
class
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
HasUpperLowerClosure
Ad hoc class stating that the closure of an upper set is an upper set. This is used to state lemmas that do not mention algebraic operations for both the additive and multiplicative versions simultaneously. If you find a satisfying replacement for this typeclass, please remove it!
protected IsUpperSet.closure : IsUpperSet s → IsUpperSet (closure s) := HasUpperLowerClosure.isUpperSet_closure _
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
IsUpperSet.closure
null
protected IsLowerSet.closure : IsLowerSet s → IsLowerSet (closure s) := HasUpperLowerClosure.isLowerSet_closure _
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
IsLowerSet.closure
null
protected IsOpen.upperClosure : IsOpen s → IsOpen (upperClosure s : Set α) := HasUpperLowerClosure.isOpen_upperClosure _
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
IsOpen.upperClosure
null
protected IsOpen.lowerClosure : IsOpen s → IsOpen (lowerClosure s : Set α) := HasUpperLowerClosure.isOpen_lowerClosure _
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
IsOpen.lowerClosure
null
protected IsUpperSet.interior (h : IsUpperSet s) : IsUpperSet (interior s) := by rw [← isLowerSet_compl, ← closure_compl] exact h.compl.closure
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
IsUpperSet.interior
null
protected IsLowerSet.interior (h : IsLowerSet s) : IsLowerSet (interior s) := h.toDual.interior
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
IsLowerSet.interior
null
protected Set.OrdConnected.interior (h : s.OrdConnected) : (interior s).OrdConnected := by rw [← h.upperClosure_inter_lowerClosure, interior_inter] exact (upperClosure s).upper.interior.ordConnected.inter (lowerClosure s).lower.interior.ordConnected
theorem
Topology
[ "Mathlib.Algebra.Order.UpperLower", "Mathlib.Topology.Algebra.Group.Pointwise" ]
Mathlib/Topology/Algebra/Order/UpperLower.lean
Set.OrdConnected.interior
null
ProperVAdd (G X : Type*) [TopologicalSpace G] [TopologicalSpace X] [AddGroup G] [AddAction G X] : Prop where /-- Proper group action in the sense of Bourbaki: the map `G × X → X × X` is a proper map (see `IsProperMap`). -/ isProperMap_vadd_pair : IsProperMap (fun gx ↦ (gx.1 +ᵥ gx.2, gx.2) : G × X → X × X)
class
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
ProperVAdd
Proper group action in the sense of Bourbaki: the map `G × X → X × X` is a proper map (see `IsProperMap`).
@[to_additive existing (attr := mk_iff)] ProperSMul (G X : Type*) [TopologicalSpace G] [TopologicalSpace X] [Group G] [MulAction G X] : Prop where /-- Proper group action in the sense of Bourbaki: the map `G × X → X × X` is a proper map (see `IsProperMap`). -/ isProperMap_smul_pair : IsProperMap (fun gx ↦ (gx.1 • gx.2, gx.2) : G × X → X × X) attribute [to_additive existing] properSMul_iff variable {G X : Type*} [Group G] [MulAction G X] variable [TopologicalSpace G] [TopologicalSpace X]
class
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
ProperSMul
Proper group action in the sense of Bourbaki: the map `G × X → X × X` is a proper map (see `IsProperMap`).
@[to_additive /-- An additive group `G` acts properly on a topological space `X` if and only if for all ultrafilters `𝒰` on `X`, if `𝒰` converges to `(x₁, x₂)` along the map `(g, x) ↦ (g • x, x)`, then there exists `g : G` such that `g • x₂ = x₁` and `𝒰.fst` converges to `g`. -/] properSMul_iff_continuousSMul_ultrafilter_tendsto : ProperSMul G X ↔ ContinuousSMul G X ∧ (∀ 𝒰 : Ultrafilter (G × X), ∀ x₁ x₂ : X, Tendsto (fun gx : G × X ↦ (gx.1 • gx.2, gx.2)) 𝒰 (𝓝 (x₁, x₂)) → ∃ g : G, g • x₂ = x₁ ∧ Tendsto (Prod.fst : G × X → G) 𝒰 (𝓝 g)) := by refine ⟨fun h ↦ ⟨inferInstance, fun 𝒰 x₁ x₂ h' ↦ ?_⟩, fun ⟨cont, h⟩ ↦ ?_⟩ · rw [properSMul_iff, isProperMap_iff_ultrafilter] at h rcases h.2 h' with ⟨gx, hgx1, hgx2⟩ refine ⟨gx.1, ?_, (continuous_fst.tendsto gx).mono_left hgx2⟩ simp only [Prod.mk.injEq] at hgx1 rw [← hgx1.2, hgx1.1] · rw [properSMul_iff, isProperMap_iff_ultrafilter] refine ⟨by fun_prop, fun 𝒰 (x₁, x₂) hxx ↦ ?_⟩ rcases h 𝒰 x₁ x₂ hxx with ⟨g, hg1, hg2⟩ refine ⟨(g, x₂), by simp_rw [hg1], ?_⟩ rw [nhds_prod_eq, 𝒰.le_prod] exact ⟨hg2, (continuous_snd.tendsto _).comp hxx⟩
theorem
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
properSMul_iff_continuousSMul_ultrafilter_tendsto
If a group acts properly then in particular it acts continuously. -/ @[to_additive /-- If a group acts properly then in particular it acts continuously. -/] -- See note [lower instance property] instance (priority := 100) ProperSMul.toContinuousSMul [ProperSMul G X] : ContinuousSMul G X where continuous_smul := isProperMap_smul_pair.continuous.fst /-- A group `G` acts properly on a topological space `X` if and only if for all ultrafilters `𝒰` on `X × G`, if `𝒰` converges to `(x₁, x₂)` along the map `(g, x) ↦ (g • x, x)`, then there exists `g : G` such that `g • x₂ = x₁` and `𝒰.fst` converges to `g`.
properSMul_iff_continuousSMul_ultrafilter_tendsto_t2 [T2Space X] : ProperSMul G X ↔ ContinuousSMul G X ∧ (∀ 𝒰 : Ultrafilter (G × X), ∀ x₁ x₂ : X, Tendsto (fun gx : G × X ↦ (gx.1 • gx.2, gx.2)) 𝒰 (𝓝 (x₁, x₂)) → ∃ g : G, Tendsto (Prod.fst : G × X → G) 𝒰 (𝓝 g)) := by rw [properSMul_iff_continuousSMul_ultrafilter_tendsto] refine and_congr_right fun hc ↦ ?_ congrm ∀ 𝒰 x₁ x₂ hxx, ∃ g, ?_ exact and_iff_right_of_imp fun hg ↦ tendsto_nhds_unique (hg.smul ((continuous_snd.tendsto _).comp hxx)) ((continuous_fst.tendsto _).comp hxx)
theorem
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
properSMul_iff_continuousSMul_ultrafilter_tendsto_t2
A group `G` acts properly on a T2 topological space `X` if and only if for all ultrafilters `𝒰` on `X × G`, if `𝒰` converges to `(x₁, x₂)` along the map `(g, x) ↦ (g • x, x)`, then there exists `g : G` such that `𝒰.fst` converges to `g`.
@[to_additive /-- If `G` acts properly on `X`, then the quotient space is Hausdorff (T2). -/] t2Space_quotient_mulAction_of_properSMul [ProperSMul G X] : T2Space (Quotient (MulAction.orbitRel G X)) := by rw [t2_iff_isClosed_diagonal] set R := MulAction.orbitRel G X let π : X → Quotient R := Quotient.mk' have : IsOpenQuotientMap (Prod.map π π) := MulAction.isOpenQuotientMap_quotientMk.prodMap MulAction.isOpenQuotientMap_quotientMk rw [← this.isQuotientMap.isClosed_preimage] convert ProperSMul.isProperMap_smul_pair.isClosedMap.isClosed_range · ext ⟨x₁, x₂⟩ simp only [mem_preimage, map_apply, mem_diagonal_iff, mem_range, Prod.mk.injEq, Prod.exists, exists_eq_right] rw [Quotient.eq', MulAction.orbitRel_apply, MulAction.mem_orbit_iff] all_goals infer_instance
theorem
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
t2Space_quotient_mulAction_of_properSMul
If `G` acts properly on `X`, then the quotient space is Hausdorff (T2).
@[to_additive /-- If a T1 group acts properly on a topological space, then this topological space is T2. -/] t2Space_of_properSMul_of_t1Group [h_proper : ProperSMul G X] [T1Space G] : T2Space X := by let f := fun x : X ↦ ((1 : G), x) have proper_f : IsProperMap f := by refine IsClosedEmbedding.isProperMap ⟨?_, ?_⟩ · let g := fun gx : G × X ↦ gx.2 have : Function.LeftInverse g f := fun x ↦ by simp [f, g] exact this.isEmbedding (by fun_prop) (by fun_prop) · have : range f = ({1} ×ˢ univ) := by simp [f, Set.singleton_prod] rw [this] exact isClosed_singleton.prod isClosed_univ rw [t2_iff_isClosed_diagonal] let g := fun gx : G × X ↦ (gx.1 • gx.2, gx.2) have proper_g : IsProperMap g := (properSMul_iff G X).1 h_proper have : g ∘ f = fun x ↦ (x, x) := by ext x <;> simp [f, g] have range_gf : range (g ∘ f) = diagonal X := by simp [this] rw [← range_gf] exact (proper_f.comp proper_g).isClosed_range @[deprecated (since := "2025-03-21")] alias t2Space_of_properSMul_of_t2Group := t2Space_of_properSMul_of_t1Group
theorem
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
t2Space_of_properSMul_of_t1Group
If a T1 group acts properly on a topological space, then this topological space is T2.
@[to_additive /-- If two groups `H` and `G` act on a topological space `X` such that `G` acts properly and there exists a group homomorphism `H → G` which is a closed embedding compatible with the actions, then `H` also acts properly on `X`. -/] properSMul_of_isClosedEmbedding {H : Type*} [Group H] [MulAction H X] [TopologicalSpace H] [ProperSMul G X] (f : H →* G) (f_clemb : IsClosedEmbedding f) (f_compat : ∀ (h : H) (x : X), f h • x = h • x) : ProperSMul H X where isProperMap_smul_pair := by have h : IsProperMap (Prod.map f (fun x : X ↦ x)) := f_clemb.isProperMap.prodMap isProperMap_id have : (fun hx : H × X ↦ (hx.1 • hx.2, hx.2)) = (fun hx ↦ (f hx.1 • hx.2, hx.2)) := by simp [f_compat] rw [this] exact h.comp <| ProperSMul.isProperMap_smul_pair
theorem
Topology
[ "Mathlib.Topology.Algebra.MulAction", "Mathlib.Topology.Maps.Proper.Basic", "Mathlib.Topology.Maps.OpenQuotient" ]
Mathlib/Topology/Algebra/ProperAction/Basic.lean
properSMul_of_isClosedEmbedding
If two groups `H` and `G` act on a topological space `X` such that `G` acts properly and there exists a group homomorphism `H → G` which is a closed embedding compatible with the actions, then `H` also acts properly on `X`.
properlyDiscontinuousSMul_iff_properSMul [T2Space X] [DiscreteTopology G] [ContinuousConstSMul G X] [CompactlyGeneratedSpace (X × X)] : ProperlyDiscontinuousSMul G X ↔ ProperSMul G X := by constructor · intro h rw [properSMul_iff] refine isProperMap_iff_isCompact_preimage.2 ⟨(continuous_prod_of_discrete_left.2 continuous_const_smul).prodMk (by fun_prop), fun K hK ↦ ?_⟩ let K' := fst '' K ∪ snd '' K have hK' : IsCompact K' := (hK.image continuous_fst).union (hK.image continuous_snd) let E := {g : G | Set.Nonempty ((g • ·) '' K' ∩ K')} have fin : Set.Finite E := by simp_rw [E, nonempty_iff_ne_empty] exact h.finite_disjoint_inter_image hK' hK' have : (fun gx : G × X ↦ (gx.1 • gx.2, gx.2)) ⁻¹' (K' ×ˢ K') = ⋃ g ∈ E, {g} ×ˢ ((g⁻¹ • ·) '' K' ∩ K') := by ext gx simp only [mem_preimage, mem_prod, nonempty_def, mem_inter_iff, mem_image, exists_exists_and_eq_and, mem_setOf_eq, singleton_prod, iUnion_exists, biUnion_and', mem_iUnion, exists_prop, E] constructor · exact fun ⟨gx_mem, x_mem⟩ ↦ ⟨gx.2, x_mem, gx.1, gx_mem, ⟨gx.2, ⟨⟨gx.1 • gx.2, gx_mem, by simp⟩, x_mem⟩, rfl⟩⟩ · rintro ⟨x, -, g, -, ⟨-, ⟨⟨x', x'_mem, rfl⟩, ginvx'_mem⟩, rfl⟩⟩ exact ⟨by simpa, by simpa⟩ have : IsCompact ((fun gx : G × X ↦ (gx.1 • gx.2, gx.2)) ⁻¹' (K' ×ˢ K')) := this ▸ fin.isCompact_biUnion fun g hg ↦ isCompact_singleton.prod <| (hK'.image <| continuous_const_smul _).inter hK' exact this.of_isClosed_subset (hK.isClosed.preimage <| (continuous_prod_of_discrete_left.2 continuous_const_smul).prodMk (by fun_prop)) <| preimage_mono fun x hx ↦ ⟨Or.inl ⟨x, hx, rfl⟩, Or.inr ⟨x, hx, rfl⟩⟩ · intro h; constructor intro K L hK hL simp_rw [← nonempty_iff_ne_empty] apply IsCompact.finite_of_discrete have : IsProperMap (fun gx : G × X ↦ (gx.1⁻¹ • gx.2, gx.2)) := (IsProperMap.prodMap (Homeomorph.isProperMap (Homeomorph.inv G)) isProperMap_id).comp <| ProperSMul.isProperMap_smul_pair have eq : {g | Set.Nonempty ((g • ·) '' K ∩ L)} = fst '' ((fun gx : G × X ↦ (gx.1⁻¹ • gx.2, gx.2)) ⁻¹' (K ×ˢ L)) := by simp_rw [nonempty_def] ext g; constructor · exact fun ⟨_, ⟨x, x_mem, rfl⟩, hx⟩ ↦ ⟨(g, g • x), ⟨by simpa, hx⟩, rfl⟩ · rintro ⟨gx, hgx, rfl⟩ exact ⟨gx.2, ⟨gx.1⁻¹ • gx.2, hgx.1, by simp⟩, hgx.2⟩ exact eq ▸ IsCompact.image (this.isCompact_preimage <| hK.prod hL) continuous_fst
theorem
Topology
[ "Mathlib.Topology.Algebra.ProperAction.Basic", "Mathlib.Topology.Maps.Proper.CompactlyGenerated" ]
Mathlib/Topology/Algebra/ProperAction/ProperlyDiscontinuous.lean
properlyDiscontinuousSMul_iff_properSMul
If a discrete group acts on a T2 space `X` such that `X × X` is compactly generated, and if the action is continuous in the second variable, then the action is properly discontinuous if and only if it is proper. This is in particular true if `X` is first-countable or weakly locally compact. There was an older version of this theorem which was changed to this one to make use of the `CompactlyGeneratedSpace` typeclass. (since 2024-11-10)
RestrictedProduct (𝓕 : Filter ι) : Type _ := {x : Π i, R i // ∀ᶠ i in 𝓕, x i ∈ A i} open Batteries.ExtendedBinder
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
RestrictedProduct
The **restricted product** of a family `R : ι → Type*` of types, relative to subsets `A : (i : ι) → Set (R i)` and the filter `𝓕 : Filter ι`, is the set of all `x : Π i, R i` such that the set `{j | x j ∈ A j}` belongs to `𝓕`. We denote it by `Πʳ i, [R i, A i]_[𝓕]`. The most common use case is with `𝓕 = cofinite`, in which case the restricted product is the set of all `x : Π i, R i` such that `x j ∈ A j` for all but finitely many `j`. We denote it simply by `Πʳ i, [R i, A i]`. Similarly, if `S` is a principal filter, the restricted product `Πʳ i, [R i, A i]_[𝓟 s]` is the set of all `x : Π i, R i` such that `∀ j ∈ S, x j ∈ A j`.
mk (x : Π i, R i) (hx : ∀ᶠ i in 𝓕, x i ∈ A i) : Πʳ i, [R i, A i]_[𝓕] := ⟨x, hx⟩ @[simp]
abbrev
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mk
`Πʳ i, [R i, A i]_[𝓕]` is `RestrictedProduct R A 𝓕`. -/ scoped[RestrictedProduct] notation3 "Πʳ "(...)", ""["r:(scoped R => R)", "a:(scoped A => A)"]_[" f "]" => RestrictedProduct r a f /-- `Πʳ i, [R i, A i]` is `RestrictedProduct R A cofinite`. -/ scoped[RestrictedProduct] notation3"Πʳ "(...)", ""["r:(scoped R => R)", "a:(scoped A => A)"]" => RestrictedProduct r a cofinite namespace RestrictedProduct open scoped RestrictedProduct variable {𝓕 𝓖 : Filter ι} instance : DFunLike (Πʳ i, [R i, A i]_[𝓕]) ι R where coe x i := x.1 i coe_injective' _ _ := Subtype.ext variable {R A} in /-- Constructor for `RestrictedProduct`.
mk_apply (x : Π i, R i) (hx : ∀ᶠ i in 𝓕, x i ∈ A i) (i : ι) : (mk x hx) i = x i := rfl @[ext]
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
mk_apply
null
ext {x y : Πʳ i, [R i, A i]_[𝓕]} (h : ∀ i, x i = y i) : x = y := Subtype.ext <| funext h
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
ext
null
range_coe : range ((↑) : Πʳ i, [R i, A i]_[𝓕] → Π i, R i) = {x | ∀ᶠ i in 𝓕, x i ∈ A i} := Subtype.range_val_subtype
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
range_coe
null
range_coe_principal {S : Set ι} : range ((↑) : Πʳ i, [R i, A i]_[𝓟 S] → Π i, R i) = S.pi A := range_coe R A @[simp] lemma eventually (x : Πʳ i, [R i, A i]_[𝓕]) : ∀ᶠ i in 𝓕, x i ∈ A i := x.2 variable (𝓕) in
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
range_coe_principal
null
structureMap (x : Π i, A i) : Πʳ i, [R i, A i]_[𝓕] := ⟨fun i ↦ x i, .of_forall fun i ↦ (x i).2⟩
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
structureMap
The *structure map* of the restricted product is the obvious inclusion from `Π i, A i` into `Πʳ i, [R i, A i]_[𝓕]`.
inclusion (h : 𝓕 ≤ 𝓖) (x : Πʳ i, [R i, A i]_[𝓖]) : Πʳ i, [R i, A i]_[𝓕] := ⟨x, x.2.filter_mono h⟩ variable (𝓕) in
def
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
inclusion
If `𝓕 ≤ 𝓖`, the restricted product `Πʳ i, [R i, A i]_[𝓖]` is naturally included in `Πʳ i, [R i, A i]_[𝓕]`. This is the corresponding map.
inclusion_eq_id : inclusion R A (le_refl 𝓕) = id := rfl
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
inclusion_eq_id
null
exists_inclusion_eq_of_eventually (h : 𝓕 ≤ 𝓖) {x : Πʳ i, [R i, A i]_[𝓕]} (hx𝓖 : ∀ᶠ i in 𝓖, x i ∈ A i) : ∃ x' : Πʳ i, [R i, A i]_[𝓖], inclusion R A h x' = x := ⟨⟨x.1, hx𝓖⟩, rfl⟩
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
exists_inclusion_eq_of_eventually
null
exists_structureMap_eq_of_forall {x : Πʳ i, [R i, A i]_[𝓕]} (hx : ∀ i, x.1 i ∈ A i) : ∃ x' : Π i, A i, structureMap R A 𝓕 x' = x := ⟨fun i ↦ ⟨x i, hx i⟩, rfl⟩
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
exists_structureMap_eq_of_forall
null
range_inclusion (h : 𝓕 ≤ 𝓖) : Set.range (inclusion R A h) = {x | ∀ᶠ i in 𝓖, x i ∈ A i} := subset_antisymm (range_subset_iff.mpr fun x ↦ x.2) (fun _ hx ↦ mem_range.mpr <| exists_inclusion_eq_of_eventually R A h hx)
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
range_inclusion
null
range_structureMap : Set.range (structureMap R A 𝓕) = {f | ∀ i, f.1 i ∈ A i} := subset_antisymm (range_subset_iff.mpr fun x i ↦ (x i).2) (fun _ hx ↦ mem_range.mpr <| exists_structureMap_eq_of_forall R A hx)
lemma
Topology
[ "Mathlib.Algebra.Ring.Pi", "Mathlib.Algebra.Ring.Subring.Defs", "Mathlib.GroupTheory.GroupAction.SubMulAction", "Mathlib.Order.Filter.Cofinite -- for `Πʳ i, [R i, A i]` notation, confuses shake", "Mathlib.Algebra.Module.Pi" ]
Mathlib/Topology/Algebra/RestrictedProduct/Basic.lean
range_structureMap
null