fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
iso_map_bijective : Function.Bijective (iso_map C J) := by refine ⟨fun a b h ↦ ?_, fun a ↦ ?_⟩ · ext i rw [Subtype.ext_iff] at h by_cases hi : J i · exact congr_fun h ⟨i, hi⟩ · rcases a with ⟨_, c, hc, rfl⟩ rcases b with ⟨_, d, hd, rfl⟩ simp only [Proj, if_neg hi] · refine ⟨⟨fun i ↦ if hi : J i then a.val ⟨i, hi⟩ else false, ?_⟩, ?_⟩ · rcases a with ⟨_, y, hy, rfl⟩ exact ⟨y, hy, rfl⟩ · ext i exact dif_pos i.prop variable {C}
lemma
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
iso_map_bijective
null
noncomputable spanFunctor [∀ (s : Finset I) (i : I), Decidable (i ∈ s)] (hC : IsCompact C) : (Finset I)ᵒᵖ ⥤ Profinite.{u} where obj s := @Profinite.of (π C (· ∈ (unop s))) _ (by rw [← isCompact_iff_compactSpace]; exact hC.image (continuous_proj _)) _ _ map h := @CompHausLike.ofHom _ _ _ (_) (_) (_) (_) (_) (_) (_) (_) ⟨(ProjRestricts C (leOfHom h.unop)), continuous_projRestricts _ _⟩ map_id J := by simp only [projRestricts_eq_id C (· ∈ (unop J))]; rfl map_comp _ _ := by rw [← CompHausLike.ofHom_comp]; congr; dsimp; rw [projRestricts_eq_comp]
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
spanFunctor
For a given compact subset `C` of `I → Bool`, `spanFunctor` is the functor from the poset of finsets of `I` to `Profinite`, sending a finite subset set `J` to the image of `C` under the projection `Proj J`.
noncomputable spanCone [∀ (s : Finset I) (i : I), Decidable (i ∈ s)] (hC : IsCompact C) : Cone (spanFunctor hC) where pt := @Profinite.of C _ (by rwa [← isCompact_iff_compactSpace]) _ _ π := { app := fun s ↦ TopCat.ofHom ⟨ProjRestrict C (· ∈ unop s), continuous_projRestrict _ _⟩ naturality := by intro X Y h simp only [Functor.const_obj_obj, Functor.const_obj_map, Category.id_comp, ← projRestricts_comp_projRestrict C (leOfHom h.unop)] rfl }
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
spanCone
The limit cone on `spanFunctor` with point `C`.
noncomputable spanCone_isLimit [∀ (s : Finset I) (i : I), Decidable (i ∈ s)] (hC : IsCompact C) : CategoryTheory.Limits.IsLimit (spanCone hC) := by refine (IsLimit.postcomposeHomEquiv (NatIso.ofComponents (fun s ↦ (CompHausLike.isoOfBijective _ (iso_map_bijective C (· ∈ unop s)))) ?_) (spanCone hC)) (IsLimit.ofIsoLimit (indexCone_isLimit hC) (Cones.ext (Iso.refl _) ?_)) · intro ⟨s⟩ ⟨t⟩ ⟨⟨⟨f⟩⟩⟩ ext x have : iso_map C (· ∈ t) ∘ ProjRestricts C f = IndexFunctor.map C f ∘ iso_map C (· ∈ s) := by ext _ i; exact dif_pos i.prop exact congr_fun this x · intro ⟨s⟩ ext x have : iso_map C (· ∈ s) ∘ ProjRestrict C (· ∈ s) = IndexFunctor.π_app C (· ∈ s) := by ext _ i; exact dif_pos i.prop erw [← this] rfl
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
spanCone_isLimit
`spanCone` is a limit cone.
e (i : I) : LocallyConstant C ℤ where toFun := fun f ↦ (if f.val i then 1 else 0) isLocallyConstant := by rw [IsLocallyConstant.iff_continuous] exact (continuous_of_discreteTopology (f := fun (a : Bool) ↦ (if a then (1 : ℤ) else 0))).comp ((continuous_apply i).comp continuous_subtype_val) variable [LinearOrder I]
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
e
`e C i` is the locally constant map from `C : Set (I → Bool)` to `ℤ` sending `f` to 1 if `f.val i = true`, and 0 otherwise.
Products (I : Type*) [LinearOrder I] := {l : List I // l.IsChain (· > ·)}
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
Products
`Products I` is the type of lists of decreasing elements of `I`, so a typical element is `[i₁, i₂, ...]` with `i₁ > i₂ > ...`. We order `Products I` lexicographically, so `[] < [i₁, ...]`, and `[i₁, i₂, ...] < [j₁, j₂, ...]` if either `i₁ < j₁`, or `i₁ = j₁` and `[i₂, ...] < [j₂, ...]`. Terms `m = [i₁, i₂, ..., iᵣ]` of this type will be used to represent products of the form `e C i₁ ··· e C iᵣ : LocallyConstant C ℤ` . The function associated to `m` is `m.eval`.
@[simp] lt_iff_lex_lt (l m : Products I) : l < m ↔ List.Lex (· < ·) l.val m.val := by simp
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
lt_iff_lex_lt
null
eval (l : Products I) := (l.1.map (e C)).prod
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval
The evaluation `e C i₁ ··· e C iᵣ : C → ℤ` of a formal product `[i₁, i₂, ..., iᵣ]`.
isGood (l : Products I) : Prop := l.eval C ∉ Submodule.span ℤ ((Products.eval C) '' {m | m < l})
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
isGood
The predicate on products which we prove picks out a basis of `LocallyConstant C ℤ`. We call such a product "good".
rel_head!_of_mem [Inhabited I] {i : I} {l : Products I} (hi : i ∈ l.val) : i ≤ l.val.head! := List.Sorted.le_head! (List.isChain_iff_pairwise.mp l.prop) hi
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
rel_head
null
head!_le_of_lt [Inhabited I] {q l : Products I} (h : q < l) (hq : q.val ≠ []) : q.val.head! ≤ l.val.head! := List.head!_le_of_lt l.val q.val h hq
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
head
null
GoodProducts := {l : Products I | l.isGood C}
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
GoodProducts
The set of good products.
eval (l : {l : Products I // l.isGood C}) : LocallyConstant C ℤ := Products.eval C l.1
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval
Evaluation of good products.
injective : Function.Injective (eval C) := by intro ⟨a, ha⟩ ⟨b, hb⟩ h dsimp [eval] at h by_contra! hne cases hne.lt_or_gt with | inl h' => apply hb; rw [← h]; exact Submodule.subset_span ⟨a, h', rfl⟩ | inr h' => apply ha; rw [h]; exact Submodule.subset_span ⟨b, h', rfl⟩
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
injective
null
range := Set.range (GoodProducts.eval C)
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
range
The image of the good products in the module `LocallyConstant C ℤ`.
noncomputable equiv_range : GoodProducts C ≃ range C := Equiv.ofInjective (eval C) (injective C)
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
equiv_range
The type of good products is equivalent to its image.
equiv_toFun_eq_eval : (equiv_range C).toFun = Set.rangeFactorization (eval C) := rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
equiv_toFun_eq_eval
null
linearIndependent_iff_range : LinearIndependent ℤ (GoodProducts.eval C) ↔ LinearIndependent ℤ (fun (p : range C) ↦ p.1) := by rw [← @Set.rangeFactorization_eq _ _ (GoodProducts.eval C), ← equiv_toFun_eq_eval C] exact linearIndependent_equiv (equiv_range C)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
linearIndependent_iff_range
null
eval_eq (l : Products I) (x : C) : l.eval C x = if ∀ i, i ∈ l.val → (x.val i = true) then 1 else 0 := by change LocallyConstant.evalMonoidHom x (l.eval C) = _ rw [eval, map_list_prod] split_ifs with h · simp only [List.map_map] apply List.prod_eq_one simp only [List.mem_map, Function.comp_apply] rintro _ ⟨i, hi, rfl⟩ exact if_pos (h i hi) · simp only [List.map_map, List.prod_eq_zero_iff, List.mem_map, Function.comp_apply] push_neg at h convert h with i dsimp [LocallyConstant.evalMonoidHom, e] simp only [ite_eq_right_iff, one_ne_zero]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval_eq
null
evalFacProp {l : Products I} (J : I → Prop) (h : ∀ a, a ∈ l.val → J a) [∀ j, Decidable (J j)] : l.eval (π C J) ∘ ProjRestrict C J = l.eval C := by ext x dsimp [ProjRestrict] rw [Products.eval_eq, Products.eval_eq] simp +contextual [h, Proj]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
evalFacProp
null
evalFacProps {l : Products I} (J K : I → Prop) (h : ∀ a, a ∈ l.val → J a) [∀ j, Decidable (J j)] [∀ j, Decidable (K j)] (hJK : ∀ i, J i → K i) : l.eval (π C J) ∘ ProjRestricts C hJK = l.eval (π C K) := by have : l.eval (π C J) ∘ Homeomorph.setCongr (proj_eq_of_subset C J K hJK) = l.eval (π (π C K) J) := by ext; simp [Homeomorph.setCongr, Products.eval_eq] rw [ProjRestricts, ← Function.comp_assoc, this, ← evalFacProp (π C K) J h]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
evalFacProps
null
prop_of_isGood {l : Products I} (J : I → Prop) [∀ j, Decidable (J j)] (h : l.isGood (π C J)) : ∀ a, a ∈ l.val → J a := by intro i hi by_contra h' apply h suffices eval (π C J) l = 0 by rw [this] exact Submodule.zero_mem _ ext ⟨_, _, _, rfl⟩ rw [eval_eq, if_neg fun h ↦ ?_, LocallyConstant.zero_apply] simpa [Proj, h'] using h i hi
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
prop_of_isGood
null
GoodProducts.span_iff_products [WellFoundedLT I] : ⊤ ≤ Submodule.span ℤ (Set.range (eval C)) ↔ ⊤ ≤ Submodule.span ℤ (Set.range (Products.eval C)) := by refine ⟨fun h ↦ le_trans h (span_mono (fun a ⟨b, hb⟩ ↦ ⟨b.val, hb⟩)), fun h ↦ le_trans h ?_⟩ rw [span_le] rintro f ⟨l, rfl⟩ let L : Products I → Prop := fun m ↦ m.eval C ∈ span ℤ (Set.range (GoodProducts.eval C)) suffices L l by assumption apply IsWellFounded.induction (· < · : Products I → Products I → Prop) intro l h dsimp by_cases hl : l.isGood C · apply subset_span exact ⟨⟨l, hl⟩, rfl⟩ · simp only [Products.isGood, not_not] at hl suffices Products.eval C '' {m | m < l} ⊆ span ℤ (Set.range (GoodProducts.eval C)) by rw [← span_le] at this exact this hl rintro a ⟨m, hm, rfl⟩ exact h m hm
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
GoodProducts.span_iff_products
The good products span `LocallyConstant C ℤ` if and only all the products do.
ord (i : I) : Ordinal := Ordinal.typein ((· < ·) : I → I → Prop) i
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
ord
A term of `I` regarded as an ordinal.
noncomputable term {o : Ordinal} (ho : o < Ordinal.type ((· < ·) : I → I → Prop)) : I := Ordinal.enum ((· < ·) : I → I → Prop) ⟨o, ho⟩ variable {I}
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
term
An ordinal regarded as a term of `I`.
term_ord_aux {i : I} (ho : ord I i < Ordinal.type ((· < ·) : I → I → Prop)) : term I ho = i := by simp only [term, ord, Ordinal.enum_typein] @[simp]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
term_ord_aux
null
ord_term_aux {o : Ordinal} (ho : o < Ordinal.type ((· < ·) : I → I → Prop)) : ord I (term I ho) = o := by simp only [ord, term, Ordinal.typein_enum]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
ord_term_aux
null
ord_term {o : Ordinal} (ho : o < Ordinal.type ((· < ·) : I → I → Prop)) (i : I) : ord I i = o ↔ term I ho = i := by refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · subst h exact term_ord_aux ho · subst h exact ord_term_aux ho
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
ord_term
null
contained (o : Ordinal) : Prop := ∀ f, f ∈ C → ∀ (i : I), f i = true → ord I i < o variable (I) in
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
contained
A predicate saying that `C` is "small" enough to satisfy the inductive hypothesis.
P (o : Ordinal) : Prop := o ≤ Ordinal.type (· < · : I → I → Prop) → (∀ (C : Set (I → Bool)), IsClosed C → contained C o → LinearIndependent ℤ (GoodProducts.eval C))
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
P
The predicate on ordinals which we prove by induction, see `GoodProducts.P0`, `GoodProducts.Plimit` and `GoodProducts.linearIndependentAux` in the section `Induction` below
Products.prop_of_isGood_of_contained {l : Products I} (o : Ordinal) (h : l.isGood C) (hsC : contained C o) (i : I) (hi : i ∈ l.val) : ord I i < o := by by_contra h' apply h suffices eval C l = 0 by simp [this] ext x simp only [eval_eq, LocallyConstant.coe_zero, Pi.zero_apply, ite_eq_right_iff, one_ne_zero] contrapose! h' exact hsC x.val x.prop i (h'.1 i hi)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
Products.prop_of_isGood_of_contained
null
contained_eq_proj (o : Ordinal) (h : contained C o) : C = π C (ord I · < o) := by have := proj_prop_eq_self C (ord I · < o) simp only [ne_eq, Bool.not_eq_false, π] at this exact (this (fun i x hx ↦ h x hx i)).symm
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
contained_eq_proj
null
isClosed_proj (o : Ordinal) (hC : IsClosed C) : IsClosed (π C (ord I · < o)) := (continuous_proj (ord I · < o)).isClosedMap C hC
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
isClosed_proj
null
contained_proj (o : Ordinal) : contained (π C (ord I · < o)) o := by intro x ⟨_, _, h⟩ j hj aesop (add simp Proj)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
contained_proj
null
@[simps!] noncomputable πs (o : Ordinal) : LocallyConstant (π C (ord I · < o)) ℤ →ₗ[ℤ] LocallyConstant C ℤ := LocallyConstant.comapₗ ℤ ⟨(ProjRestrict C (ord I · < o)), (continuous_projRestrict _ _)⟩
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
πs
The `ℤ`-linear map induced by precomposition of the projection `C → π C (ord I · < o)`.
coe_πs (o : Ordinal) (f : LocallyConstant (π C (ord I · < o)) ℤ) : πs C o f = f ∘ ProjRestrict C (ord I · < o) := by rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
coe_πs
null
injective_πs (o : Ordinal) : Function.Injective (πs C o) := LocallyConstant.comap_injective ⟨_, (continuous_projRestrict _ _)⟩ (Set.surjective_mapsTo_image_restrict _ _)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
injective_πs
null
@[simps!] noncomputable πs' {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) : LocallyConstant (π C (ord I · < o₁)) ℤ →ₗ[ℤ] LocallyConstant (π C (ord I · < o₂)) ℤ := LocallyConstant.comapₗ ℤ ⟨(ProjRestricts C (fun _ hh ↦ lt_of_lt_of_le hh h)), (continuous_projRestricts _ _)⟩
def
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
πs'
The `ℤ`-linear map induced by precomposition of the projection `π C (ord I · < o₂) → π C (ord I · < o₁)` for `o₁ ≤ o₂`.
coe_πs' {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) (f : LocallyConstant (π C (ord I · < o₁)) ℤ) : (πs' C h f).toFun = f.toFun ∘ (ProjRestricts C (fun _ hh ↦ lt_of_lt_of_le hh h)) := by rfl
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
coe_πs'
null
injective_πs' {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) : Function.Injective (πs' C h) := LocallyConstant.comap_injective ⟨_, (continuous_projRestricts _ _)⟩ (surjective_projRestricts _ fun _ hi ↦ lt_of_lt_of_le hi h)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
injective_πs'
null
lt_ord_of_lt {l m : Products I} {o : Ordinal} (h₁ : m < l) (h₂ : ∀ i ∈ l.val, ord I i < o) : ∀ i ∈ m.val, ord I i < o := List.Sorted.lt_ord_of_lt (List.isChain_iff_pairwise.mp l.2) (List.isChain_iff_pairwise.mp m.2) h₁ h₂
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
lt_ord_of_lt
null
eval_πs {l : Products I} {o : Ordinal} (hlt : ∀ i ∈ l.val, ord I i < o) : πs C o (l.eval (π C (ord I · < o))) = l.eval C := by simpa only [← LocallyConstant.coe_inj] using evalFacProp C (ord I · < o) hlt
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval_πs
null
eval_πs' {l : Products I} {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) (hlt : ∀ i ∈ l.val, ord I i < o₁) : πs' C h (l.eval (π C (ord I · < o₁))) = l.eval (π C (ord I · < o₂)) := by rw [← LocallyConstant.coe_inj, ← LocallyConstant.toFun_eq_coe] exact evalFacProps C (fun (i : I) ↦ ord I i < o₁) (fun (i : I) ↦ ord I i < o₂) hlt (fun _ hh ↦ lt_of_lt_of_le hh h)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval_πs'
null
eval_πs_image {l : Products I} {o : Ordinal} (hl : ∀ i ∈ l.val, ord I i < o) : eval C '' { m | m < l } = (πs C o) '' (eval (π C (ord I · < o)) '' { m | m < l }) := by ext f simp only [Set.mem_image, Set.mem_setOf_eq, exists_exists_and_eq_and] apply exists_congr; intro m apply and_congr_right; intro hm rw [eval_πs C (lt_ord_of_lt hm hl)]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval_πs_image
null
eval_πs_image' {l : Products I} {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) (hl : ∀ i ∈ l.val, ord I i < o₁) : eval (π C (ord I · < o₂)) '' { m | m < l } = (πs' C h) '' (eval (π C (ord I · < o₁)) '' { m | m < l }) := by ext f simp only [Set.mem_image, Set.mem_setOf_eq, exists_exists_and_eq_and] apply exists_congr; intro m apply and_congr_right; intro hm rw [eval_πs' C h (lt_ord_of_lt hm hl)]
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
eval_πs_image'
null
head_lt_ord_of_isGood [Inhabited I] {l : Products I} {o : Ordinal} (h : l.isGood (π C (ord I · < o))) (hn : l.val ≠ []) : ord I (l.val.head!) < o := prop_of_isGood C (ord I · < o) h l.val.head! (List.head!_mem_self hn)
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
head_lt_ord_of_isGood
null
isGood_mono {l : Products I} {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) (hl : l.isGood (π C (ord I · < o₁))) : l.isGood (π C (ord I · < o₂)) := by intro hl' apply hl rwa [eval_πs_image' C h (prop_of_isGood C _ hl), ← eval_πs' C h (prop_of_isGood C _ hl), Submodule.apply_mem_span_image_iff_mem_span (injective_πs' C h)] at hl'
theorem
Topology
[ "Mathlib.LinearAlgebra.LinearIndependent.Defs", "Mathlib.SetTheory.Ordinal.Basic", "Mathlib.Topology.Category.Profinite.Product", "Mathlib.Topology.LocallyConstant.Algebra" ]
Mathlib/Topology/Category/Profinite/Nobeling/Basic.lean
isGood_mono
If `l` is good w.r.t. `π C (ord I · < o₁)` and `o₁ ≤ o₂`, then it is good w.r.t. `π C (ord I · < o₂)`
GoodProducts.P0 : P I 0 := fun _ C _ hsC ↦ by have : C ⊆ {(fun _ ↦ false)} := fun c hc ↦ by ext x; exact Bool.eq_false_iff.mpr (fun ht ↦ (Ordinal.not_lt_zero (ord I x)) (hsC c hc x ht)) rw [Set.subset_singleton_iff_eq] at this cases this · subst C exact linearIndependentEmpty · subst C exact linearIndependentSingleton
theorem
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
GoodProducts.P0
null
GoodProducts.Plimit (o : Ordinal) (ho : Order.IsSuccLimit o) : (∀ (o' : Ordinal), o' < o → P I o') → P I o := by intro h hho C hC hsC rw [linearIndependent_iff_union_smaller C ho hsC, linearIndependent_subtype_iff] exact linearIndepOn_iUnion_of_directed (Monotone.directed_le fun _ _ h ↦ GoodProducts.smaller_mono C h) fun ⟨o', ho'⟩ ↦ (linearIndependent_iff_smaller _ _).mp (h o' ho' (ho'.le.trans hho) (π C (ord I · < o')) (isClosed_proj _ _ hC) (contained_proj _ _))
theorem
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
GoodProducts.Plimit
null
GoodProducts.linearIndependentAux (μ : Ordinal) : P I μ := by refine Ordinal.limitRecOn μ P0 (fun o h ho C hC hsC ↦ ?_) (fun o ho h ↦ (GoodProducts.Plimit o ho (fun o' ho' ↦ (h o' ho')))) have ho' : o < Ordinal.type (· < · : I → I → Prop) := lt_of_lt_of_le (Order.lt_succ _) ho rw [linearIndependent_iff_sum C hsC ho'] refine ModuleCat.linearIndependent_leftExact (succ_exact C hC hsC ho') ?_ ?_ (succ_mono C o) (square_commutes C ho') · exact h (le_of_lt ho') (π C (ord I · < o)) (isClosed_proj C o hC) (contained_proj C o) · exact linearIndependent_comp_of_eval C hC hsC ho' (span (π C (ord I · < o)) (isClosed_proj C o hC)) (h (le_of_lt ho') (C' C ho') (isClosed_C' C hC ho') (contained_C' C ho'))
theorem
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
GoodProducts.linearIndependentAux
null
GoodProducts.linearIndependent (hC : IsClosed C) : LinearIndependent ℤ (GoodProducts.eval C) := GoodProducts.linearIndependentAux (Ordinal.type (· < · : I → I → Prop)) (le_refl _) C hC (fun _ _ _ _ ↦ Ordinal.typein_lt_type _ _)
theorem
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
GoodProducts.linearIndependent
null
noncomputable GoodProducts.Basis (hC : IsClosed C) : Basis (GoodProducts C) ℤ (LocallyConstant C ℤ) := Basis.mk (GoodProducts.linearIndependent C hC) (GoodProducts.span C hC)
def
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
GoodProducts.Basis
`GoodProducts C` as a `ℤ`-basis for `LocallyConstant C ℤ`.
Nobeling_aux : Module.Free ℤ (LocallyConstant S ℤ) := Module.Free.of_equiv' (Module.Free.of_basis <| GoodProducts.Basis _ hι.isClosed_range) (LocallyConstant.congrLeftₗ ℤ hι.isEmbedding.toHomeomorph).symm
theorem
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
Nobeling_aux
Given a profinite set `S` and a closed embedding `S → (I → Bool)`, the `ℤ`-module `LocallyConstant C ℤ` is free.
noncomputable Nobeling.ι : S → ({C : Set S // IsClopen C} → Bool) := fun s C => decide (s ∈ C.1) open scoped Classical in
def
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
Nobeling.ι
The embedding `S → (I → Bool)` where `I` is the set of clopens of `S`.
Nobeling.isClosedEmbedding : IsClosedEmbedding (Nobeling.ι S) := by apply Continuous.isClosedEmbedding · dsimp +unfoldPartialApp [ι] refine continuous_pi ?_ intro C rw [← IsLocallyConstant.iff_continuous] refine ((IsLocallyConstant.tfae _).out 0 3).mpr ?_ rintro ⟨⟩ · refine IsClopen.isOpen (isClopen_compl_iff.mp ?_) convert C.2 ext x simp only [Set.mem_compl_iff, Set.mem_preimage, Set.mem_singleton_iff, decide_eq_false_iff_not, not_not] · refine IsClopen.isOpen ?_ convert C.2 ext x simp only [Set.mem_preimage, Set.mem_singleton_iff, decide_eq_true_eq] · intro a b h by_contra hn obtain ⟨C, hC, hh⟩ := exists_isClopen_of_totally_separated hn apply hh.2 ∘ of_decide_eq_true dsimp +unfoldPartialApp [ι] at h rw [← congr_fun h ⟨C, hC⟩] exact decide_eq_true hh.1
theorem
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
Nobeling.isClosedEmbedding
The map `Nobeling.ι` is a closed embedding.
LocallyConstant.freeOfProfinite (S : Profinite.{u}) : Module.Free ℤ (LocallyConstant S ℤ) := by obtain ⟨_, _⟩ := exists_wellOrder {C : Set S // IsClopen C} exact @Nobeling_aux {C : Set S // IsClopen C} _ _ S (Nobeling.ι S) (Nobeling.isClosedEmbedding S)
instance
Topology
[ "Mathlib.Algebra.Category.ModuleCat.Free", "Mathlib.Topology.Category.Profinite.Nobeling.Span", "Mathlib.Topology.Category.Profinite.Nobeling.Successor", "Mathlib.Topology.Category.Profinite.Nobeling.ZeroLimit" ]
Mathlib/Topology/Category/Profinite/Nobeling/Induction.lean
LocallyConstant.freeOfProfinite
**Nöbeling's theorem**. The `ℤ`-module `LocallyConstant S ℤ` is free for every `S : Profinite`.
noncomputable πJ : LocallyConstant (π C (· ∈ s)) ℤ →ₗ[ℤ] LocallyConstant C ℤ := LocallyConstant.comapₗ ℤ ⟨_, (continuous_projRestrict C (· ∈ s))⟩
def
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
πJ
The `ℤ`-linear map induced by precomposition of the projection `C → π C (· ∈ s)`.
eval_eq_πJ (l : Products I) (hl : l.isGood (π C (· ∈ s))) : l.eval C = πJ C s (l.eval (π C (· ∈ s))) := by ext f simp only [πJ, LocallyConstant.comapₗ, LinearMap.coe_mk, AddHom.coe_mk, LocallyConstant.coe_comap, Function.comp_apply] exact (congr_fun (Products.evalFacProp C (· ∈ s) (Products.prop_of_isGood C (· ∈ s) hl)) _).symm
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
eval_eq_πJ
null
noncomputable spanFinBasis (x : π C (· ∈ s)) : LocallyConstant (π C (· ∈ s)) ℤ where toFun := fun y ↦ if y = x then 1 else 0 isLocallyConstant := haveI : DiscreteTopology (π C (· ∈ s)) := Finite.instDiscreteTopology IsLocallyConstant.of_discrete _ open scoped Classical in
def
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
spanFinBasis
`π C (· ∈ s)` is finite for a finite set `s`. -/ noncomputable instance : Fintype (π C (· ∈ s)) := by let f : π C (· ∈ s) → (s → Bool) := fun x j ↦ x.val j.val refine Fintype.ofInjective f ?_ intro ⟨_, x, hx, rfl⟩ ⟨_, y, hy, rfl⟩ h ext i by_cases hi : i ∈ s · exact congrFun h ⟨i, hi⟩ · simp only [Proj, if_neg hi] open scoped Classical in /-- The Kronecker delta as a locally constant map from `π C (· ∈ s)` to `ℤ`.
spanFinBasis.span : ⊤ ≤ Submodule.span ℤ (Set.range (spanFinBasis C s)) := by intro f _ rw [Finsupp.mem_span_range_iff_exists_finsupp] use Finsupp.onFinset (Finset.univ) f.toFun (fun _ _ ↦ Finset.mem_univ _) ext x change LocallyConstant.evalₗ ℤ x _ = _ simp only [zsmul_eq_mul, map_finsuppSum, LocallyConstant.evalₗ_apply, LocallyConstant.coe_mul, Pi.mul_apply, spanFinBasis, LocallyConstant.coe_mk, mul_ite, mul_one, mul_zero, Finsupp.sum_ite_eq, Finsupp.mem_support_iff, ne_eq, ite_not] split_ifs with h <;> [exact h.symm; rfl]
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
spanFinBasis.span
null
factors (x : π C (· ∈ s)) : List (LocallyConstant (π C (· ∈ s)) ℤ) := List.map (fun i ↦ if x.val i = true then e (π C (· ∈ s)) i else (1 - (e (π C (· ∈ s)) i))) (s.sort (· ≥ ·))
def
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
factors
A certain explicit list of locally constant maps. The theorem `factors_prod_eq_basis` shows that the product of the elements in this list is the delta function `spanFinBasis C s x`.
list_prod_apply {I} (C : Set (I → Bool)) (x : C) (l : List (LocallyConstant C ℤ)) : l.prod x = (l.map (LocallyConstant.evalMonoidHom x)).prod := by rw [← map_list_prod (LocallyConstant.evalMonoidHom x) l, LocallyConstant.evalMonoidHom_apply]
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
list_prod_apply
null
factors_prod_eq_basis_of_eq {x y : (π C fun x ↦ x ∈ s)} (h : y = x) : (factors C s x).prod y = 1 := by rw [list_prod_apply (π C (· ∈ s)) y _] apply List.prod_eq_one simp only [h, List.mem_map, LocallyConstant.evalMonoidHom, factors] rintro _ ⟨a, ⟨b, _, rfl⟩, rfl⟩ dsimp split_ifs with hh · rw [e, LocallyConstant.coe_mk, if_pos hh] · rw [LocallyConstant.sub_apply, e, LocallyConstant.coe_mk, LocallyConstant.coe_mk, if_neg hh] simp only [LocallyConstant.toFun_eq_coe, LocallyConstant.coe_one, Pi.one_apply, sub_zero]
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
factors_prod_eq_basis_of_eq
null
e_mem_of_eq_true {x : (π C (· ∈ s))} {a : I} (hx : x.val a = true) : e (π C (· ∈ s)) a ∈ factors C s x := by rcases x with ⟨_, z, hz, rfl⟩ simp only [factors, List.mem_map, Finset.mem_sort] refine ⟨a, ?_, if_pos hx⟩ aesop (add simp Proj)
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
e_mem_of_eq_true
null
one_sub_e_mem_of_false {x y : (π C (· ∈ s))} {a : I} (ha : y.val a = true) (hx : x.val a = false) : 1 - e (π C (· ∈ s)) a ∈ factors C s x := by simp only [factors, List.mem_map, Finset.mem_sort] use a simp only [hx] rcases y with ⟨_, z, hz, rfl⟩ aesop (add simp Proj)
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
one_sub_e_mem_of_false
null
factors_prod_eq_basis_of_ne {x y : (π C (· ∈ s))} (h : y ≠ x) : (factors C s x).prod y = 0 := by rw [list_prod_apply (π C (· ∈ s)) y _] apply List.prod_eq_zero simp only [List.mem_map] obtain ⟨a, ha⟩ : ∃ a, y.val a ≠ x.val a := by contrapose! h; ext; apply h cases hx : x.val a · rw [hx, ne_eq, Bool.not_eq_false] at ha refine ⟨1 - (e (π C (· ∈ s)) a), ⟨one_sub_e_mem_of_false _ _ ha hx, ?_⟩⟩ rw [e, LocallyConstant.evalMonoidHom_apply, LocallyConstant.sub_apply, LocallyConstant.coe_one, Pi.one_apply, LocallyConstant.coe_mk, if_pos ha, sub_self] · refine ⟨e (π C (· ∈ s)) a, ⟨e_mem_of_eq_true _ _ hx, ?_⟩⟩ rw [hx] at ha rw [LocallyConstant.evalMonoidHom_apply, e, LocallyConstant.coe_mk, if_neg ha]
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
factors_prod_eq_basis_of_ne
null
factors_prod_eq_basis (x : π C (· ∈ s)) : (factors C s x).prod = spanFinBasis C s x := by ext y dsimp [spanFinBasis] split_ifs with h <;> [exact factors_prod_eq_basis_of_eq _ _ h; exact factors_prod_eq_basis_of_ne _ _ h]
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
factors_prod_eq_basis
If `s` is finite, the product of the elements of the list `factors C s x` is the delta function at `x`.
GoodProducts.finsuppSum_mem_span_eval {a : I} {as : List I} (ha : List.IsChain (· > ·) (a :: as)) {c : Products I →₀ ℤ} (hc : (c.support : Set (Products I)) ⊆ {m | m.val ≤ as}) : (Finsupp.sum c fun a_1 b ↦ e (π C (· ∈ s)) a * b • Products.eval (π C (· ∈ s)) a_1) ∈ Submodule.span ℤ (Products.eval (π C (· ∈ s)) '' {m | m.val ≤ a :: as}) := by apply Submodule.finsuppSum_mem intro m hm have hsm := (LinearMap.mulLeft ℤ (e (π C (· ∈ s)) a)).map_smul dsimp at hsm rw [hsm] apply Submodule.smul_mem apply Submodule.subset_span have hmas : m.val ≤ as := by apply hc simpa only [Finset.mem_coe, Finsupp.mem_support_iff] using hm refine ⟨⟨a :: m.val, ha.cons_of_le m.prop hmas⟩, ⟨List.cons_le_cons a hmas, ?_⟩⟩ simp only [Products.eval, List.map, List.prod_cons] @[deprecated (since := "2025-04-06")] alias GoodProducts.finsupp_sum_mem_span_eval := GoodProducts.finsuppSum_mem_span_eval
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
GoodProducts.finsuppSum_mem_span_eval
null
GoodProducts.spanFin [WellFoundedLT I] : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (· ∈ s)))) := by rw [span_iff_products] refine le_trans (spanFinBasis.span C s) ?_ rw [Submodule.span_le] rintro _ ⟨x, rfl⟩ rw [← factors_prod_eq_basis] let l := s.sort (· ≥ ·) dsimp [factors] suffices l.IsChain (· > ·) → (l.map (fun i ↦ if x.val i = true then e (π C (· ∈ s)) i else (1 - (e (π C (· ∈ s)) i)))).prod ∈ Submodule.span ℤ ((Products.eval (π C (· ∈ s))) '' {m | m.val ≤ l}) from Submodule.span_mono (Set.image_subset_range _ _) (this (Finset.sort_sorted_gt _).isChain) induction l with | nil => intro _ apply Submodule.subset_span exact ⟨⟨[], List.isChain_nil⟩,⟨Or.inl rfl, rfl⟩⟩ | cons a as ih => rw [List.map_cons, List.prod_cons] intro ha specialize ih (by rw [List.isChain_cons'] at ha; exact ha.2) rw [Finsupp.mem_span_image_iff_linearCombination] at ih simp only [Finsupp.mem_supported, Finsupp.linearCombination_apply] at ih obtain ⟨c, hc, hc'⟩ := ih rw [← hc']; clear hc' have hmap := fun g ↦ map_finsuppSum (LinearMap.mulLeft ℤ (e (π C (· ∈ s)) a)) c g dsimp at hmap ⊢ split_ifs · rw [hmap] exact finsuppSum_mem_span_eval _ _ ha hc · noncomm_ring rw [hmap] apply Submodule.add_mem · apply Submodule.finsuppSum_mem intro m hm apply Submodule.smul_mem apply Submodule.subset_span refine ⟨m, ⟨?_, rfl⟩⟩ simp only [Set.mem_setOf_eq] have hmas : m.val ≤ as := hc (by simpa only [Finset.mem_coe, Finsupp.mem_support_iff] using hm) refine le_trans hmas ?_ cases as with | nil => exact (List.nil_lt_cons a []).le | cons b bs => apply le_of_lt rw [List.isChain_cons_cons] at ha exact (List.lt_iff_lex_lt _ _).mp (List.Lex.rel ha.1) · apply Submodule.smul_mem exact finsuppSum_mem_span_eval _ _ ha hc ...
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
GoodProducts.spanFin
If `s` is a finite subset of `I`, then the good products span.
fin_comap_jointlySurjective (hC : IsClosed C) (f : LocallyConstant C ℤ) : ∃ (s : Finset I) (g : LocallyConstant (π C (· ∈ s)) ℤ), f = g.comap ⟨(ProjRestrict C (· ∈ s)), continuous_projRestrict _ _⟩ := by obtain ⟨J, g, h⟩ := @Profinite.exists_locallyConstant (Finset I)ᵒᵖ _ _ _ (spanCone hC.isCompact) ℤ (spanCone_isLimit hC.isCompact) f exact ⟨(Opposite.unop J), g, h⟩
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
fin_comap_jointlySurjective
null
GoodProducts.span [WellFoundedLT I] (hC : IsClosed C) : ⊤ ≤ Submodule.span ℤ (Set.range (eval C)) := by rw [span_iff_products] intro f _ obtain ⟨K, f', rfl⟩ : ∃ K f', f = πJ C K f' := fin_comap_jointlySurjective C hC f refine Submodule.span_mono ?_ <| Submodule.apply_mem_span_image_of_mem_span (πJ C K) <| spanFin C K (Submodule.mem_top : f' ∈ ⊤) rintro l ⟨y, ⟨m, rfl⟩, rfl⟩ exact ⟨m.val, eval_eq_πJ C K m.val m.prop⟩
theorem
Topology
[ "Mathlib.Data.Finset.Sort", "Mathlib.Tactic.NoncommRing", "Mathlib.Topology.Category.Profinite.CofilteredLimit", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Span.lean
GoodProducts.span
The good products span all of `LocallyConstant C ℤ` if `C` is closed.
C0 := C ∩ {f | f (term I ho) = false}
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
C0
The subset of `C` consisting of those elements whose `o`-th entry is `false`.
C1 := C ∩ {f | f (term I ho) = true} include hC in
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
C1
The subset of `C` consisting of those elements whose `o`-th entry is `true`.
isClosed_C0 : IsClosed (C0 C ho) := by refine hC.inter ?_ have h : Continuous (fun (f : I → Bool) ↦ f (term I ho)) := continuous_apply (term I ho) exact IsClosed.preimage h (t := {false}) (isClosed_discrete _) include hC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
isClosed_C0
null
isClosed_C1 : IsClosed (C1 C ho) := by refine hC.inter ?_ have h : Continuous (fun (f : I → Bool) ↦ f (term I ho)) := continuous_apply (term I ho) exact IsClosed.preimage h (t := {true}) (isClosed_discrete _)
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
isClosed_C1
null
contained_C1 : contained (π (C1 C ho) (ord I · < o)) o := contained_proj _ _
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
contained_C1
null
union_C0C1_eq : (C0 C ho) ∪ (C1 C ho) = C := by ext x simp only [C0, C1, Set.mem_union, Set.mem_inter_iff, Set.mem_setOf_eq, ← and_or_left, and_iff_left_iff_imp, Bool.dichotomy (x (term I ho)), implies_true]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
union_C0C1_eq
null
C' := C0 C ho ∩ π (C1 C ho) (ord I · < o) include hC in
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
C'
The intersection of `C0` and the projection of `C1`. We will apply the inductive hypothesis to this set.
isClosed_C' : IsClosed (C' C ho) := IsClosed.inter (isClosed_C0 _ hC _) (isClosed_proj _ _ (isClosed_C1 _ hC _))
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
isClosed_C'
null
contained_C' : contained (C' C ho) o := fun f hf i hi ↦ contained_C1 C ho f hf.2 i hi variable (o)
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
contained_C'
null
noncomputable SwapTrue : (I → Bool) → I → Bool := fun f i ↦ if ord I i = o then true else f i
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
SwapTrue
Swapping the `o`-th coordinate to `true`.
continuous_swapTrue : Continuous (SwapTrue o : (I → Bool) → I → Bool) := by dsimp +unfoldPartialApp [SwapTrue] apply continuous_pi intro i apply Continuous.comp' · apply continuous_bot · apply continuous_apply variable {o} include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
continuous_swapTrue
null
swapTrue_mem_C1 (f : π (C1 C ho) (ord I · < o)) : SwapTrue o f.val ∈ C1 C ho := by obtain ⟨f, g, hg, rfl⟩ := f convert hg dsimp +unfoldPartialApp [SwapTrue] ext i split_ifs with h · rw [ord_term ho] at h simpa only [← h] using hg.2.symm · simp only [Proj, ite_eq_left_iff, not_lt, @eq_comm _ false, ← Bool.not_eq_true] specialize hsC g hg.1 i intro h' contrapose! hsC exact ⟨hsC, Order.succ_le_of_lt (h'.lt_of_ne' h)⟩
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
swapTrue_mem_C1
null
CC'₀ : C' C ho → C := fun g ↦ ⟨g.val,g.prop.1.1⟩
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
CC'₀
The first way to map `C'` into `C`.
noncomputable CC'₁ : C' C ho → C := fun g ↦ ⟨SwapTrue o g.val, (swapTrue_mem_C1 C hsC ho ⟨g.val,g.prop.2⟩).1⟩
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
CC'₁
The second way to map `C'` into `C`.
continuous_CC'₀ : Continuous (CC'₀ C ho) := Continuous.subtype_mk continuous_subtype_val _
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
continuous_CC'₀
null
continuous_CC'₁ : Continuous (CC'₁ C hsC ho) := Continuous.subtype_mk (Continuous.comp (continuous_swapTrue o) continuous_subtype_val) _
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
continuous_CC'₁
null
noncomputable Linear_CC'₀ : LocallyConstant C ℤ →ₗ[ℤ] LocallyConstant (C' C ho) ℤ := LocallyConstant.comapₗ ℤ ⟨(CC'₀ C ho), (continuous_CC'₀ C ho)⟩
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Linear_CC'₀
The `ℤ`-linear map induced by precomposing with `CC'₀`
noncomputable Linear_CC'₁ : LocallyConstant C ℤ →ₗ[ℤ] LocallyConstant (C' C ho) ℤ := LocallyConstant.comapₗ ℤ ⟨(CC'₁ C hsC ho), (continuous_CC'₁ C hsC ho)⟩
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Linear_CC'₁
The `ℤ`-linear map induced by precomposing with `CC'₁`
noncomputable Linear_CC' : LocallyConstant C ℤ →ₗ[ℤ] LocallyConstant (C' C ho) ℤ := Linear_CC'₁ C hsC ho - Linear_CC'₀ C ho
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
Linear_CC'
The difference between `Linear_CC'₁` and `Linear_CC'₀`.
CC_comp_zero : ∀ y, (Linear_CC' C hsC ho) ((πs C o) y) = 0 := by intro y ext x dsimp [Linear_CC', Linear_CC'₀, Linear_CC'₁, LocallyConstant.sub_apply] simp only [sub_eq_zero] congr 1 ext i dsimp [CC'₀, CC'₁, ProjRestrict, Proj] apply if_ctx_congr Iff.rfl _ (fun _ ↦ rfl) simp only [SwapTrue, ite_eq_right_iff] intro h₁ h₂ exact (h₁.ne h₂).elim include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
CC_comp_zero
null
C0_projOrd {x : I → Bool} (hx : x ∈ C0 C ho) : Proj (ord I · < o) x = x := by ext i simp only [Proj, ite_eq_left_iff, not_lt] intro hi rcases hi.lt_or_eq with hi | hi · specialize hsC x hx.1 i rw [← not_imp_not] at hsC simp only [not_lt, Bool.not_eq_true, Order.succ_le_iff] at hsC exact (hsC hi).symm · simp only [C0, Set.mem_inter_iff, Set.mem_setOf_eq] at hx rw [eq_comm, ord_term ho] at hi rw [← hx.2, hi] include hsC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
C0_projOrd
null
C1_projOrd {x : I → Bool} (hx : x ∈ C1 C ho) : SwapTrue o (Proj (ord I · < o) x) = x := by ext i dsimp [SwapTrue, Proj] split_ifs with hi h · rw [ord_term ho] at hi rw [← hx.2, hi] · rfl · simp only [not_lt] at h have h' : o < ord I i := lt_of_le_of_ne h (Ne.symm hi) specialize hsC x hx.1 i rw [← not_imp_not] at hsC simp only [not_lt, Bool.not_eq_true, Order.succ_le_iff] at hsC exact (hsC h').symm include hC in open scoped Classical in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
C1_projOrd
null
CC_exact {f : LocallyConstant C ℤ} (hf : Linear_CC' C hsC ho f = 0) : ∃ y, πs C o y = f := by dsimp [Linear_CC', Linear_CC'₀, Linear_CC'₁] at hf simp only [sub_eq_zero, ← LocallyConstant.coe_inj] at hf let C₀C : C0 C ho → C := fun x ↦ ⟨x.val, x.prop.1⟩ have h₀ : Continuous C₀C := Continuous.subtype_mk continuous_induced_dom _ let C₁C : π (C1 C ho) (ord I · < o) → C := fun x ↦ ⟨SwapTrue o x.val, (swapTrue_mem_C1 C hsC ho x).1⟩ have h₁ : Continuous C₁C := Continuous.subtype_mk ((continuous_swapTrue o).comp continuous_subtype_val) _ refine ⟨LocallyConstant.piecewise' ?_ (isClosed_C0 C hC ho) (isClosed_proj _ o (isClosed_C1 C hC ho)) (f.comap ⟨C₀C, h₀⟩) (f.comap ⟨C₁C, h₁⟩) ?_, ?_⟩ · rintro _ ⟨y, hyC, rfl⟩ simp only [Set.mem_union] rw [← union_C0C1_eq C ho] at hyC refine hyC.imp (fun hyC ↦ ?_) (fun hyC ↦ ⟨y, hyC, rfl⟩) rwa [C0_projOrd C hsC ho hyC] · intro x hx simpa only [h₀, h₁, LocallyConstant.coe_comap] using (congrFun hf ⟨x, hx⟩).symm · ext ⟨x, hx⟩ rw [← union_C0C1_eq C ho] at hx rcases hx with hx₀ | hx₁ · have hx₀' : ProjRestrict C (ord I · < o) ⟨x, hx⟩ = x := by simpa only [ProjRestrict, Set.MapsTo.val_restrict_apply] using C0_projOrd C hsC ho hx₀ simp only [C₀C, πs_apply_apply, hx₀', hx₀, LocallyConstant.piecewise'_apply_left, LocallyConstant.coe_comap, ContinuousMap.coe_mk, Function.comp_apply] · have hx₁' : (ProjRestrict C (ord I · < o) ⟨x, hx⟩).val ∈ π (C1 C ho) (ord I · < o) := by simpa only [ProjRestrict, Set.MapsTo.val_restrict_apply] using ⟨x, hx₁, rfl⟩ simp only [C₁C, πs_apply_apply, LocallyConstant.coe_comap, Function.comp_apply, hx₁', LocallyConstant.piecewise'_apply_right] congr simp only [ContinuousMap.coe_mk, Subtype.mk.injEq] exact C1_projOrd C hsC ho hx₁ variable (o) in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
CC_exact
null
succ_mono : CategoryTheory.Mono (ModuleCat.ofHom (πs C o)) := by rw [ModuleCat.mono_iff_injective] exact injective_πs _ _ include hC in
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
succ_mono
null
succ_exact : (ShortComplex.mk (ModuleCat.ofHom (πs C o)) (ModuleCat.ofHom (Linear_CC' C hsC ho)) (by ext : 2; apply CC_comp_zero)).Exact := by rw [ShortComplex.moduleCat_exact_iff] intro f exact CC_exact C hC hsC ho
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
succ_exact
null
MaxProducts : Set (Products I) := {l | l.isGood C ∧ term I ho ∈ l.val} include hsC in
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
MaxProducts
The `GoodProducts` in `C` that contain `o` (they necessarily start with `o`, see `GoodProducts.head!_eq_o_of_maxProducts`)
union_succ : GoodProducts C = GoodProducts (π C (ord I · < o)) ∪ MaxProducts C ho := by ext l simp only [GoodProducts, MaxProducts, Set.mem_union, Set.mem_setOf_eq] refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ · by_cases hh : term I ho ∈ l.val · exact Or.inr ⟨h, hh⟩ · left intro he apply h have h' := Products.prop_of_isGood_of_contained C _ h hsC simp only [Order.lt_succ_iff] at h' simp only at hh have hh' : ∀ a ∈ l.val, ord I a < o := by intro a ha refine (h' a ha).lt_of_ne ?_ rw [ne_eq, ord_term ho a] rintro rfl contradiction rwa [Products.eval_πs_image C hh', ← Products.eval_πs C hh', Submodule.apply_mem_span_image_iff_mem_span (injective_πs _ _)] · refine h.elim (fun hh ↦ ?_) And.left have := Products.isGood_mono C (Order.lt_succ o).le hh rwa [contained_eq_proj C (Order.succ o) hsC]
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
union_succ
null
sum_to : (GoodProducts (π C (ord I · < o))) ⊕ (MaxProducts C ho) → Products I := Sum.elim Subtype.val Subtype.val
def
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
sum_to
The inclusion map from the sum of `GoodProducts (π C (ord I · < o))` and `(MaxProducts C ho)` to `Products I`.
injective_sum_to : Function.Injective (sum_to C ho) := by refine Function.Injective.sumElim Subtype.val_injective Subtype.val_injective (fun ⟨a,ha⟩ ⟨b,hb⟩ ↦ (fun (hab : a = b) ↦ ?_)) rw [← hab] at hb have ha' := Products.prop_of_isGood C _ ha (term I ho) hb.2 simp only [ord_term_aux, lt_self_iff_false] at ha'
theorem
Topology
[ "Mathlib.Algebra.Homology.ShortComplex.ModuleCat", "Mathlib.Topology.Category.Profinite.Nobeling.Basic" ]
Mathlib/Topology/Category/Profinite/Nobeling/Successor.lean
injective_sum_to
null