fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
pFrobenius_autEx : x^f = x ^+ p. Proof. by []. Qed. Local Notation f'E := pFrobenius_autE.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autE
pFrobenius_aut0: 0^f = 0. Proof. by rewrite f'E -(prednK (prime_gt0 pcharf_prime)) exprS mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut0
pFrobenius_aut1: 1^f = 1. Proof. by rewrite f'E expr1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut1
pFrobenius_autD_commx y (cxy : comm x y) : (x + y)^f = x^f + y^f. Proof. have defp := prednK (prime_gt0 pcharf_prime). rewrite !f'E exprDn_comm // big_ord_recr subnn -defp big_ord_recl /= defp. rewrite subn0 mulr1 mul1r bin0 binn big1 ?addr0 // => i _. by rewrite -mulr_natl bin_lt_pcharf_0 ?mul0r //= -{2}defp ltnS (valP i). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autD_comm
pFrobenius_autMnx n : (x *+ n)^f = x^f *+ n. Proof. elim: n => [|n IHn]; first exact: pFrobenius_aut0. by rewrite !mulrS pFrobenius_autD_comm ?IHn //; apply: commrMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autMn
pFrobenius_aut_natn : (n%:R)^f = n%:R. Proof. by rewrite pFrobenius_autMn pFrobenius_aut1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut_nat
pFrobenius_autM_commx y : comm x y -> (x * y)^f = x^f * y^f. Proof. exact: exprMn_comm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autM_comm
pFrobenius_autXx n : (x ^+ n)^f = x^f ^+ n. Proof. by rewrite !f'E -!exprM mulnC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autX
addrr_pchar2x : x + x = 0. Proof. by rewrite -mulr2n mulrn_pchar. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrr_pchar2
DefinitionPzRing := { R of PzSemiRing R & Zmodule R }. HB.factory Record Zmodule_isPzRing R of Zmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul +%R; mulrDr : right_distributive mul +%R; }. HB.builders Context R of Zmodule_isPzRing R. Local Notation "1" := one. Local Notation "x * y" := (mul x y).
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
mul0r: @left_zero R R 0 mul. Proof. by move=> x; apply: (addIr (1 * x)); rewrite -mulrDl !add0r mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mul0r
mulr0: @right_zero R R 0 mul. Proof. by move=> x; apply: (addIr (x * 1)); rewrite -mulrDr !add0r mulr1. Qed. HB.instance Definition _ := Nmodule_isPzSemiRing.Build R mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0. HB.end. HB.factory Record isPzRing R of Choice R := { zero : R; opp : R -> R; add : R -> R -> R; one : R; mul : R -> R -> R; addrA : associative add; addrC : commutative add; add0r : left_id zero add; addNr : left_inverse zero opp add; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul add; mulrDr : right_distributive mul add; }. HB.builders Context R of isPzRing R. HB.instance Definition _ := @isZmodule.Build R zero opp add addrA addrC add0r addNr. HB.instance Definition _ := @Zmodule_isPzRing.Build R one mul mulrA mul1r mulr1 mulrDl mulrDr. HB.end.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr0
Frobenius_aut:= pFrobenius_aut (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pcharf0 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_aut
charf0:= pcharf0 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pcharf_prime instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
charf0
charf_prime:= pcharf_prime (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use mulrn_pchar instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
charf_prime
mulrn_char:= mulrn_pchar (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use natr_mod_pchar instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrn_char
natr_mod_char:= natr_mod_pchar (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use dvdn_pcharf instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natr_mod_char
dvdn_charf:= dvdn_pcharf (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pcharf_eq instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
dvdn_charf
charf_eq:= pcharf_eq (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use bin_lt_pcharf_0 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
charf_eq
bin_lt_charf_0:= bin_lt_pcharf_0 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_autE instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
bin_lt_charf_0
Frobenius_autE:= pFrobenius_autE (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_aut0 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autE
Frobenius_aut0:= pFrobenius_aut0 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_aut1 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_aut0
Frobenius_aut1:= pFrobenius_aut1 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_autD_comm instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_aut1
Frobenius_autD_comm:= pFrobenius_autD_comm (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_autMn instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autD_comm
Frobenius_autMn:= pFrobenius_autMn (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_aut_nat instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autMn
Frobenius_aut_nat:= pFrobenius_aut_nat (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_autM_comm instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_aut_nat
Frobenius_autM_comm:= pFrobenius_autM_comm (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_autX instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autM_comm
Frobenius_autX:= pFrobenius_autX (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use addrr_pchar2 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autX
addrr_char2:= addrr_pchar2 (only parsing). #[short(type="nzRingType")] HB.structure Definition NzRing := { R of NzSemiRing R & Zmodule R }. #[deprecated(since="mathcomp 2.4.0", note="Use NzRing instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrr_char2
RingR := (NzRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Ring
sort:= (NzRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use NzRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (NzRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use NzRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (NzRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordZmodule_isNzRing R of Zmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul +%R; mulrDr : right_distributive mul +%R; oner_neq0 : one != 0 }.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR := (Zmodule_isNzRing.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
Zmodule_isRingR := (Zmodule_isNzRing R) (only parsing). HB.builders Context R of Zmodule_isNzRing R. HB.instance Definition _ := Zmodule_isPzRing.Build R mulrA mul1r mulr1 mulrDl mulrDr. HB.instance Definition _ := PzSemiRing_isNonZero.Build R oner_neq0. HB.end. HB.factory Record isNzRing R of Choice R := { zero : R; opp : R -> R; add : R -> R -> R; one : R; mul : R -> R -> R; addrA : associative add; addrC : commutative add; add0r : left_id zero add; addNr : left_inverse zero opp add; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul add; mulrDr : right_distributive mul add; oner_neq0 : one != zero }.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Zmodule_isRing
BuildR := (isNzRing.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
isRingR := (isNzRing R) (only parsing). HB.builders Context R of isNzRing R. HB.instance Definition _ := @isZmodule.Build R zero opp add addrA addrC add0r addNr. HB.instance Definition _ := @Zmodule_isNzRing.Build R one mul mulrA mul1r mulr1 mulrDl mulrDr oner_neq0. HB.end.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
isRing
signR b := (exp (- @one R) (nat_of_bool b)) (only parsing). Local Notation "- 1" := (- (1)) : ring_scope.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sign
mulrNx y : x * (- y) = - (x * y). Proof. by apply: (addrI (x * y)); rewrite -mulrDr !subrr mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrN
mulNrx y : (- x) * y = - (x * y). Proof. by apply: (addrI (x * y)); rewrite -mulrDl !subrr mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulNr
mulrNNx y : (- x) * (- y) = x * y. Proof. by rewrite mulrN mulNr opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrNN
mulN1rx : -1 * x = - x. Proof. by rewrite mulNr mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulN1r
mulrN1x : x * -1 = - x. Proof. by rewrite mulrN mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrN1
mulrBlx y z : (y - z) * x = y * x - z * x. Proof. by rewrite mulrDl mulNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrBl
mulrBrx y z : x * (y - z) = x * y - x * z. Proof. by rewrite mulrDr mulrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrBr
natrBm n : n <= m -> (m - n)%:R = m%:R - n%:R :> R. Proof. exact: mulrnBr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natrB
commrNx y : comm x y -> comm x (- y). Proof. by move=> com_xy; rewrite /comm mulrN com_xy mulNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrN
commrN1x : comm x (-1). Proof. exact/commrN/commr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrN1
commrBx y z : comm x y -> comm x z -> comm x (y - z). Proof. by move=> com_xy com_xz; apply: commrD => //; apply: commrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrB
commr_signx n : comm x ((-1) ^+ n). Proof. exact: (commrX n (commrN1 x)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr_sign
signr_oddn : (-1) ^+ (odd n) = (-1) ^+ n :> R. Proof. elim: n => //= n IHn; rewrite exprS -{}IHn. by case/odd: n; rewrite !mulN1r ?opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signr_odd
mulr_sign(b : bool) x : (-1) ^+ b * x = (if b then - x else x). Proof. by case: b; rewrite ?mulNr mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_sign
signr_addbb1 b2 : (-1) ^+ (b1 (+) b2) = (-1) ^+ b1 * (-1) ^+ b2 :> R. Proof. by rewrite mulr_sign; case: b1 b2 => [] []; rewrite ?opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signr_addb
signrE(b : bool) : (-1) ^+ b = 1 - b.*2%:R :> R. Proof. by case: b; rewrite ?subr0 // opprD addNKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signrE
signrNb : (-1) ^+ (~~ b) = - (-1) ^+ b :> R. Proof. by case: b; rewrite ?opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signrN
mulr_signM(b1 b2 : bool) x1 x2 : ((-1) ^+ b1 * x1) * ((-1) ^+ b2 * x2) = (-1) ^+ (b1 (+) b2) * (x1 * x2). Proof. by rewrite signr_addb -!mulrA; congr (_ * _); rewrite !mulrA commr_sign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_signM
exprNnx n : (- x) ^+ n = (-1) ^+ n * x ^+ n :> R. Proof. by rewrite -mulN1r exprMn_comm // /comm mulN1r mulrN mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprNn
sqrrNx : (- x) ^+ 2 = x ^+ 2. Proof. exact: mulrNN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sqrrN
sqrr_signn : ((-1) ^+ n) ^+ 2 = 1 :> R. Proof. by rewrite exprAC sqrrN !expr1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sqrr_sign
signrMKn : @involutive R ( *%R ((-1) ^+ n)). Proof. by move=> x; rewrite mulrA -expr2 sqrr_sign mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signrMK
mulrI0_lregx : (forall y, x * y = 0 -> y = 0) -> lreg x. Proof. move=> reg_x y z eq_xy_xz; apply/eqP; rewrite -subr_eq0 [y - z]reg_x //. by rewrite mulrBr eq_xy_xz subrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrI0_lreg
lregNx : lreg x -> lreg (- x). Proof. by move=> reg_x y z; rewrite !mulNr => /oppr_inj/reg_x. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lregN
lreg_signn : lreg ((-1) ^+ n : R). Proof. exact/lregX/lregN/lreg1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lreg_sign
prodrN(I : finType) (A : pred I) (F : I -> R) : \prod_(i in A) - F i = (- 1) ^+ #|A| * \prod_(i in A) F i. Proof. rewrite -sum1_card; elim/big_rec3: _ => [|i x n _ _ ->]; first by rewrite mulr1. by rewrite exprS !mulrA mulN1r !mulNr commrX //; apply: commrN1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrN
exprBn_commx y n (cxy : comm x y) : (x - y) ^+ n = \sum_(i < n.+1) ((-1) ^+ i * x ^+ (n - i) * y ^+ i) *+ 'C(n, i). Proof. rewrite exprDn_comm; last exact: commrN. by apply: eq_bigr => i _; congr (_ *+ _); rewrite -commr_sign -mulrA -exprNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprBn_comm
subrXX_commx y n (cxy : comm x y) : x ^+ n - y ^+ n = (x - y) * (\sum_(i < n) x ^+ (n.-1 - i) * y ^+ i). Proof. case: n => [|n]; first by rewrite big_ord0 mulr0 subrr. rewrite mulrBl !big_distrr big_ord_recl big_ord_recr /= subnn mulr1 mul1r. rewrite subn0 -!exprS opprD -!addrA; congr (_ + _); rewrite addrA -sumrB. rewrite big1 ?add0r // => i _; rewrite !mulrA -exprS -subSn ?(valP i) //. by rewrite subSS (commrX _ (commr_sym cxy)) -mulrA -exprS subrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrXX_comm
subrX1x n : x ^+ n - 1 = (x - 1) * (\sum_(i < n) x ^+ i). Proof. rewrite -!(opprB 1) mulNr -{1}(expr1n _ n). rewrite (subrXX_comm _ (commr_sym (commr1 x))); congr (- (_ * _)). by apply: eq_bigr => i _; rewrite expr1n mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrX1
sqrrB1x : (x - 1) ^+ 2 = x ^+ 2 - x *+ 2 + 1. Proof. by rewrite -sqrrN opprB addrC sqrrD1 sqrrN mulNrn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sqrrB1
subr_sqr_1x : x ^+ 2 - 1 = (x - 1) * (x + 1). Proof. by rewrite subrX1 !big_ord_recr big_ord0 /= addrAC add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr_sqr_1
smulr_closed:= -1 \in S /\ mulr_2closed S.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
smulr_closed
subring_closed:= [/\ 1 \in S, subr_2closed S & mulr_2closed S].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closed
smulr_closedM: smulr_closed -> mulr_closed S. Proof. by case=> SN1 SM; split=> //; rewrite -[1]mulr1 -mulrNN SM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
smulr_closedM
smulr_closedN: smulr_closed -> oppr_closed S. Proof. by case=> SN1 SM x Sx; rewrite -mulN1r SM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
smulr_closedN
subring_closedB: subring_closed -> zmod_closed S. Proof. by case=> S1 SB _; split; rewrite // -(subrr 1) SB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closedB
subring_closedM: subring_closed -> smulr_closed. Proof. by case=> S1 SB SM; split; rewrite ?(zmod_closedN (subring_closedB _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closedM
subring_closed_semi: subring_closed -> semiring_closed S. Proof. by move=> ringS; split; [apply/zmod_closedD/subring_closedB | case: ringS]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closed_semi
signr_eq0n : ((-1) ^+ n == 0 :> R) = false. Proof. by rewrite -signr_odd; case: odd; rewrite ?oppr_eq0 oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signr_eq0
pFrobenius_autNx : (- x)^f = - x^f. Proof. apply/eqP; rewrite -subr_eq0 opprK addrC. by rewrite -(pFrobenius_autD_comm _ (commrN _)) // subrr pFrobenius_aut0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autN
pFrobenius_autB_commx y : comm x y -> (x - y)^f = x^f - y^f. Proof. by move/commrN/pFrobenius_autD_comm->; rewrite pFrobenius_autN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_autB_comm
exprNn_pcharx n : (pchar R).-nat n -> (- x) ^+ n = - (x ^+ n). Proof. pose p := pdiv n; have [|n_gt1 pcharRn] := leqP n 1; first by case: (n) => [|[]]. have pcharRp: p \in pchar R by rewrite (pnatPpi pcharRn) // pi_pdiv. have /p_natP[e ->]: p.-nat n by rewrite -(eq_pnat _ (pcharf_eq pcharRp)). elim: e => // e IHe; rewrite expnSr !exprM {}IHe. by rewrite -pFrobenius_autE pFrobenius_autN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprNn_pchar
oppr_pchar2x : - x = x. Proof. by apply/esym/eqP; rewrite -addr_eq0 addrr_pchar2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr_pchar2
subr_pchar2x y : x - y = x + y. Proof. by rewrite oppr_pchar2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr_pchar2
addrK_pchar2x : involutive (+%R^~ x). Proof. by move=> y; rewrite /= -subr_pchar2 addrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrK_pchar2
addKr_pchar2x : involutive (+%R x). Proof. by move=> y; rewrite -{1}[x]oppr_pchar2 addKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addKr_pchar2
Frobenius_autN:= pFrobenius_autN (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_autB_comm instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autN
Frobenius_autB_comm:= pFrobenius_autB_comm (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use exprNn_pchar instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Frobenius_autB_comm
exprNn_char:= exprNn_pchar (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use oppr_pchar2 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprNn_char
oppr_char2:= oppr_pchar2 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use subr_pchar2 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr_char2
subr_char2:= subr_pchar2 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use addrK_pchar2 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr_char2
addrK_char2:= addrK_pchar2 (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use addKr_pchar2 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrK_char2
addKr_char2:= addKr_pchar2 (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addKr_char2
Definition_ (T : eqType) := Equality.on T^c. #[export] HB.instance Definition _ (T : choiceType) := Choice.on T^c. #[export] HB.instance Definition _ (U : nmodType) := Nmodule.on U^c. #[export] HB.instance Definition _ (U : zmodType) := Zmodule.on U^c. #[export] HB.instance Definition _ (R : pzSemiRingType) := let mul' (x y : R) := y * x in let mulrA' x y z := esym (mulrA z y x) in let mulrDl' x y z := mulrDr z x y in let mulrDr' x y z := mulrDl y z x in Nmodule_isPzSemiRing.Build R^c mulrA' mulr1 mul1r mulrDl' mulrDr' mulr0 mul0r. #[export] HB.instance Definition _ (R : pzRingType) := PzSemiRing.on R^c. #[export] HB.instance Definition _ (R : nzSemiRingType) := PzSemiRing_isNonZero.Build R^c oner_neq0. #[export] HB.instance Definition _ (R : nzRingType) := NzSemiRing.on R^c.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
rev_prodr(R : pzSemiRingType) (I : Type) (r : seq I) (P : pred I) (E : I -> R) : \prod_(i <- r | P i) (E i : R^c) = \prod_(i <- rev r | P i) E i. Proof. by rewrite rev_big_rev. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rev_prodr
mulIr_eq0x y : rreg x -> (y * x == 0) = (y == 0). Proof. exact: (@mulrI_eq0 R^c). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulIr_eq0
rreg1: rreg (1 : R). Proof. exact: (@lreg1 R^c). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rreg1
rregMx y : rreg x -> rreg y -> rreg (x * y). Proof. by move=> reg_x reg_y; apply: (@lregM R^c). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rregM
revrXx n : (x : R^c) ^+ n = (x : R) ^+ n. Proof. by elim: n => // n IHn; rewrite exprS exprSr IHn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
revrX
rregXx n : rreg x -> rreg (x ^+ n). Proof. by move/(@lregX R^c x n); rewrite revrX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rregX
rreg_neq0(R : nzSemiRingType) (x : R) : rreg x -> x != 0. Proof. exact: (@lreg_neq0 R^c). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rreg_neq0