fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mulIr0_rregx : (forall y, y * x = 0 -> y = 0) -> rreg x. Proof. exact: (@mulrI0_lreg R^c). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulIr0_rreg
rregNx : rreg x -> rreg (- x). Proof. exact: (@lregN R^c). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rregN
RecordNmodule_isLSemiModule (R : pzSemiRingType) V of Nmodule V := { scale : R -> V -> V; scalerA : forall a b v, scale a (scale b v) = scale (a * b) v; scale0r : forall v, scale 0 v = 0; scale1r : left_id 1 scale; scalerDr : right_distributive scale +%R; scalerDl : forall v, {morph scale^~ v: a b / a + b} }. #[short(type="lSemiModType")] HB.structure Definition LSemiModule (R : pzSemiRingType) := {M of Nmodule M & Nmodule_isLSemiModule R M}.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
DefinitionLmodule (R : pzRingType) := {M of Zmodule M & Nmodule_isLSemiModule R M}.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
RecordZmodule_isLmodule (R : pzRingType) V of Zmodule V := { scale : R -> V -> V; scalerA : forall a b v, scale a (scale b v) = scale (a * b) v; scale1r : left_id 1 scale; scalerDr : right_distributive scale +%R; scalerDl : forall v, {morph scale^~ v: a b / a + b} }. HB.builders Context R V of Zmodule_isLmodule R V.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
scale0rv : scale 0 v = 0. Proof. by apply: (addIr (scale 1 v)); rewrite -scalerDl !add0r. Qed. HB.instance Definition _ := Nmodule_isLSemiModule.Build R V scalerA scale0r scale1r scalerDr scalerDl. HB.end. HB.factory Record LSemiModule_isLmodule (R : pzRingType) V of LSemiModule R V := {}. HB.builders Context R V of LSemiModule_isLmodule R V.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scale0r
opp: V -> V := scale (- 1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
opp
addNr: left_inverse 0 opp +%R. Proof. move=> v; suff : scale (-1 + 1) v = 0 by rewrite scalerDl scale1r. by rewrite addNr scale0r. Qed. HB.instance Definition _ := Nmodule_isZmodule.Build V addNr. HB.end.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addNr
scaler0a : a *: 0 = 0 :> V. Proof. by rewrite -[0 in LHS](scale0r 0) scalerA mulr0 scale0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler0
scaler_natn v : n%:R *: v = v *+ n. Proof. elim: n => /= [|n]; first by rewrite scale0r. by rewrite !mulrS scalerDl ?scale1r => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_nat
scalerMnla v n : a *: v *+ n = (a *+ n) *: v. Proof. elim: n => [|n IHn]; first by rewrite !mulr0n scale0r. by rewrite !mulrSr IHn scalerDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerMnl
scalerMnra v n : a *: v *+ n = a *: (v *+ n). Proof. elim: n => [|n IHn]; first by rewrite !mulr0n scaler0. by rewrite !mulrSr IHn scalerDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerMnr
scaler_sumlv I r (P : pred I) F : (\sum_(i <- r | P i) F i) *: v = \sum_(i <- r | P i) F i *: v. Proof. exact: (big_morph _ (scalerDl v) (scale0r v)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_suml
scaler_sumra I r (P : pred I) (F : I -> V) : a *: (\sum_(i <- r | P i) F i) = \sum_(i <- r | P i) a *: F i. Proof. exact: big_endo (scalerDr a) (scaler0 a) I r P F. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_sumr
scaler_closed:= forall a, {in S, forall v, a *: v \in S}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_closed
subsemimod_closed:= nmod_closed S /\ scaler_closed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closed
subsemimod_closedD: subsemimod_closed -> nmod_closed S. Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closedD
subsemimod_closedZ: subsemimod_closed -> scaler_closed. Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closedZ
scaleNra v : - a *: v = - (a *: v). Proof. by apply: (addIr (a *: v)); rewrite -scalerDl !addNr scale0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaleNr
scaleN1rv : - 1 *: v = - v. Proof. by rewrite scaleNr scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaleN1r
scalerNa v : a *: - v = - (a *: v). Proof. by apply: (addIr (a *: v)); rewrite -scalerDr !addNr scaler0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerN
scalerBla b v : (a - b) *: v = a *: v - b *: v. Proof. by rewrite scalerDl scaleNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerBl
scalerBra u v : a *: (u - v) = a *: u - a *: v. Proof. by rewrite scalerDr scalerN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerBr
scaler_sign(b : bool) v : (-1) ^+ b *: v = (if b then - v else v). Proof. by case: b; rewrite ?scaleNr scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_sign
signrZKn : @involutive V ( *:%R ((-1) ^+ n)). Proof. by move=> u; rewrite scalerA -expr2 sqrr_sign scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
signrZK
linear_closed:= forall a, {in S &, forall u v, a *: u + v \in S}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear_closed
submod_closed:= 0 \in S /\ linear_closed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submod_closed
linear_closedB: linear_closed -> subr_2closed S. Proof. by move=> Slin u v Su Sv; rewrite addrC -scaleN1r Slin. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear_closedB
submod_closedB: submod_closed -> zmod_closed S. Proof. by case=> S0 /linear_closedB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submod_closedB
submod_closed_semi: submod_closed -> subsemimod_closed S. Proof. move=> /[dup] /submod_closedB /zmod_closedD SD [S0 Slin]; split => // a v Sv. by rewrite -[a *: v]addr0 Slin. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submod_closed_semi
subsemimod_closed_submod: subsemimod_closed S -> submod_closed. Proof. by case=> [[S0 SD] SZ]; split => // a u v Su Sv; apply/SD/Sv/SZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closed_submod
subsemimod_closedB: subsemimod_closed S -> zmod_closed S. Proof. by move/subsemimod_closed_submod/submod_closedB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closedB
RecordLSemiModule_isLSemiAlgebra R V of NzSemiRing V & LSemiModule R V := { scalerAl : forall (a : R) (u v : V), a *: (u * v) = (a *: u) * v }. #[short(type="lSemiAlgType")] HB.structure Definition LSemiAlgebra R := {A of LSemiModule R A & NzSemiRing A & LSemiModule_isLSemiAlgebra R A}.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
DefinitionLalgebra R := {A of Lmodule R A & NzRing A & LSemiModule_isLSemiAlgebra R A}.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
RecordLmodule_isLalgebra R V of NzRing V & Lmodule R V := { scalerAl : forall (a : R) (u v : V), a *: (u * v) = (a *: u) * v }. HB.builders Context R V of Lmodule_isLalgebra R V. HB.instance Definition _ := LSemiModule_isLSemiAlgebra.Build R V scalerAl. HB.end.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
regularR : Type := R. Local Notation "R ^o" := (regular R) : type_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
regular
Definition_ (V : nmodType) := Nmodule.on V^o. #[export] HB.instance Definition _ (V : zmodType) := Zmodule.on V^o. #[export] HB.instance Definition _ (R : pzSemiRingType) := PzSemiRing.on R^o. #[export] HB.instance Definition _ (R : nzSemiRingType) := NzSemiRing.on R^o. #[export] HB.instance Definition _ (R : pzSemiRingType) := @Nmodule_isLSemiModule.Build R R^o mul mulrA mul0r mul1r mulrDr (fun v a b => mulrDl a b v). #[export] HB.instance Definition _ (R : nzSemiRingType) := LSemiModule_isLSemiAlgebra.Build R R^o mulrA. #[export] HB.instance Definition _ (R : pzRingType) := PzRing.on R^o. #[export] HB.instance Definition _ (R : nzRingType) := NzRing.on R^o.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
mulr_algl(a : R) (x : A) : (a *: 1) * x = a *: x. Proof. by rewrite -scalerAl mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_algl
subsemialg_closed:= [/\ 1 \in S, nmod_closed S, scaler_closed S & mulr_2closed S].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closed
subsemialg_closedZ: subsemialg_closed -> subsemimod_closed S. Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closedZ
subsemialg_closedM: subsemialg_closed -> semiring_closed S. Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closedM
subalg_closed:= [/\ 1 \in S, linear_closed S & mulr_2closed S].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closed
subalg_closedZ: subalg_closed -> submod_closed S. Proof. by case=> S1 Slin _; split; rewrite // -(subrr 1) linear_closedB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closedZ
subalg_closedBM: subalg_closed -> subring_closed S. Proof. by case=> S1 Slin SM; split=> //; apply: linear_closedB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closedBM
subalg_closed_semi: subalg_closed -> subsemialg_closed S. Proof. move=> /[dup] /subalg_closedZ /submod_closedB /zmod_closedD. by move=> [S0 SD] [S1 Slin SM]; split => // a u Su; rewrite -[a *: u]addr0 Slin. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closed_semi
subsemialg_closed_subalg: subsemialg_closed S -> subalg_closed. Proof. by case=> S1 [S0 SD] SZ SM; split => // a u v Su Sv; apply/SD/Sv/SZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closed_subalg
subsemialg_closedBM: subsemialg_closed S -> subring_closed S. Proof. by move/subsemialg_closed_subalg/subalg_closedBM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closedBM
mull_funa f x := a * f x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mull_fun
mulr_funa f x := f x * a.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_fun
mul_funf g x := f x * g x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mul_fun
scale_funa (f : U -> V) x := a *: f x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scale_fun
in_algk : A := k%:A.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
in_alg
raddfMnatn x : f (n%:R * x) = n%:R * f x. Proof. by rewrite !mulr_natl raddfMn. Qed. Variables (U : lSemiModType R) (V : lSemiModType S) (h : {additive U -> V}).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfMnat
raddfZnatn u : h (n%:R *: u) = n%:R *: h u. Proof. by rewrite !scaler_nat raddfMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfZnat
Definition_ := isNmodMorphism.Build U R (a \*o f) mull_fun_is_nmod_morphism. Fact mulr_fun_is_nmod_morphism : nmod_morphism (a \o* f). Proof. by split=> [|x y]; rewrite /= ?raddf0 ?mul0r// raddfD mulrDl. Qed. #[export] HB.instance Definition _ := isNmodMorphism.Build U R (a \o* f) mulr_fun_is_nmod_morphism.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
raddfN: {morph f : x / - x}. Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfN
raddfB: {morph f : x y / x - y}. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfB
raddf_inj: (forall x, f x = 0 -> x = 0) -> injective f. Proof. exact: raddf_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddf_inj
raddfMNnn : {morph f : x / x *- n}. Proof. exact: raddfMNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfMNn
raddfMsignn x : f ((-1) ^+ n * x) = (-1) ^+ n * f x. Proof. by rewrite !(mulr_sign, =^~ signr_odd) (fun_if f) raddfN. Qed. Variables (U : lmodType R) (V : lmodType S) (h : {additive U -> V}).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfMsign
raddfZsignn u : h ((-1) ^+ n *: u) = (-1) ^+ n *: h u. Proof. by rewrite !(scaler_sign, =^~ signr_odd) (fun_if h) raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
raddfZsign
Definition_ := isNmodMorphism.Build V V ( *:%R a) (conj (scaler0 _ a) (scalerDr a)). #[export] HB.instance Definition _ := Additive.copy (a \*: f) (f \; *:%R a).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
multiplicative(R S : pzSemiRingType) (f : R -> S) : Prop := {morph f : x y / x * y}%R * (f 1 = 1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
multiplicative
monoid_morphism(R S : pzSemiRingType) (f : R -> S) : Prop := (f 1 = 1) * {morph f : x y / x * y}%R. HB.mixin Record isMonoidMorphism (R S : pzSemiRingType) (f : R -> S) := { monoid_morphism_subproof : monoid_morphism f }. HB.structure Definition RMorphism (R S : pzSemiRingType) := {f of @isNmodMorphism R S f & isMonoidMorphism R S f}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
monoid_morphism
RecordisMultiplicative (R S : pzSemiRingType) (f : R -> S) := { rmorphism_subproof : multiplicative f }. HB.builders Context R S f of isMultiplicative R S f. #[warning="-HB.no-new-instance"] HB.instance Definition _ := isMonoidMorphism.Build R S f (rmorphism_subproof.2, rmorphism_subproof.1). HB.end.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
rmorph0: f 0 = 0. Proof. exact: raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph0
rmorphD: {morph f : x y / x + y}. Proof. exact: raddfD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphD
rmorphMnn : {morph f : x / x *+ n}. Proof. exact: raddfMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphMn
rmorph_sumI r (P : pred I) E : f (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f (E i). Proof. exact: raddf_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_sum
rmorphism_monoidP: monoid_morphism f. Proof. exact: monoid_morphism_subproof. Qed. #[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0", note="use `rmorphism_monoidP` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphism_monoidP
rmorphismMP: multiplicative f := (fun p => (p.2, p.1)) rmorphism_monoidP.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphismMP
rmorph1: f 1 = 1. Proof. by case: rmorphism_monoidP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph1
rmorphM: {morph f: x y / x * y}. Proof. by case: rmorphism_monoidP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphM
rmorph_prodI r (P : pred I) E : f (\prod_(i <- r | P i) E i) = \prod_(i <- r | P i) f (E i). Proof. exact: (big_morph f rmorphM rmorph1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_prod
rmorphXnn : {morph f : x / x ^+ n}. Proof. by elim: n => [|n IHn] x; rewrite ?rmorph1 // !exprS rmorphM IHn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphXn
rmorph_natn : f n%:R = n%:R. Proof. by rewrite rmorphMn rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_nat
rmorph_eq_natx n : injective f -> (f x == n%:R) = (x == n%:R). Proof. by move/inj_eq <-; rewrite rmorph_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_eq_nat
rmorph_eq1x : injective f -> (f x == 1) = (x == 1). Proof. exact: rmorph_eq_nat 1%N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_eq1
can2_monoid_morphismf' : cancel f f' -> cancel f' f -> monoid_morphism f'. Proof. move=> fK f'K. by split=> [|x y]; apply: (canLR fK); rewrite /= (rmorph1, rmorphM) ?f'K. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `can2_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
can2_monoid_morphism
can2_rmorphismf' (cff' : cancel f f') := (fun p => (p.2, p.1)) \o (can2_monoid_morphism cff').
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
can2_rmorphism
rmorph_pchar(R S : nzSemiRingType) (f : {rmorphism R -> S}) p : p \in pchar R -> p \in pchar S. Proof. by rewrite !inE -(rmorph_nat f) => /andP[-> /= /eqP->]; rewrite rmorph0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_pchar
Definition_ := isMonoidMorphism.Build R R idfun idfun_is_monoid_morphism. Fact comp_is_monoid_morphism : monoid_morphism (f \o g). Proof. by split=> [|x y] /=; rewrite ?rmorph1 ?rmorphM. Qed. #[export] HB.instance Definition _ := isMonoidMorphism.Build R T (f \o g) comp_is_monoid_morphism.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
rmorphN: {morph f : x / - x}. Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphN
rmorphB: {morph f: x y / x - y}. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphB
rmorphMNnn : {morph f : x / x *- n}. Proof. exact: raddfMNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphMNn
rmorphMsignn : {morph f : x / (- 1) ^+ n * x}. Proof. exact: raddfMsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphMsign
rmorphN1: f (- 1) = (- 1). Proof. by rewrite rmorphN rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorphN1
rmorph_signn : f ((- 1) ^+ n) = (- 1) ^+ n. Proof. by rewrite rmorphXn /= rmorphN1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_sign
Definition_ := isNmodMorphism.Build R A (in_alg A) in_alg_is_nmod_morphism. Fact in_alg_is_monoid_morphism : monoid_morphism (in_alg A). Proof. by split=> [|x y]; rewrite /= ?scale1r // mulr_algl scalerA. Qed. #[export] HB.instance Definition _ := isMonoidMorphism.Build R A (in_alg A) in_alg_is_monoid_morphism.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
in_algEa : in_alg A a = a%:A. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
in_algE
rmorph_char:= rmorph_pchar (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_char
RecordisPreLaw (R : pzSemiRingType) (V : nmodType) (op : R -> V -> V) := { op_nmod_morphism : forall a, nmod_morphism (op a); }. #[export] HB.structure Definition PreLaw R V := {op of isPreLaw R V op}.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
preLaw:= PreLaw.type. HB.mixin Record isSemiLaw (R : pzSemiRingType) (V : nmodType) (op : R -> V -> V) := { op0v : forall v, op 0 v = 0; op1v : op 1 =1 id; opA : forall a b v, op a (op b v) = op (a * b) v; }. #[export] HB.structure Definition SemiLaw R V := {op of isPreLaw R V op & isSemiLaw R V op}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
preLaw
semiLaw:= SemiLaw.type. HB.mixin Record isLaw (R : pzRingType) (V : zmodType) (op : R -> V -> V) := { N1op : op (-1) =1 -%R }. #[export] HB.structure Definition Law (R : pzRingType) (V : zmodType) := {op of isPreLaw R V op & isLaw R V op}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiLaw
law:= Law.type.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
law
Definition_ (R : pzSemiRingType) := Scale.isPreLaw.Build R R *%R (fun => mull_fun_is_nmod_morphism _ idfun). #[export] HB.instance Definition _ (R : pzSemiRingType) := Scale.isSemiLaw.Build R R *%R mul0r mul1r mulrA. #[export] HB.instance Definition _ (R : pzRingType) := Scale.isLaw.Build R R *%R (@mulN1r R). #[export] HB.instance Definition _ (R : pzSemiRingType) (V : lSemiModType R) := Scale.isPreLaw.Build R V *:%R (fun => (scaler0 _ _, scalerDr _)). #[export] HB.instance Definition _ (R : pzSemiRingType) (V : lSemiModType R) := Scale.isSemiLaw.Build R V *:%R scale0r scale1r (@scalerA _ _). #[export] HB.instance Definition _ (R : pzRingType) (U : lmodType R) := Scale.isLaw.Build R U *:%R (@scaleN1r R U). #[export] HB.instance Definition _ (R : pzSemiRingType) (V : nmodType) (s : Scale.preLaw R V) (aR : pzSemiRingType) (nu : {rmorphism aR -> R}) := Scale.isPreLaw.Build aR V (nu \; s) (fun => Scale.op_nmod_morphism _). #[export] HB.instance Definition _ (R : pzSemiRingType) (V : nmodType) (s : Scale.semiLaw R V) (aR : pzSemiRingType) (nu : {rmorphism aR -> R}) := Scale.isSemiLaw.Build aR V (nu \; s) (Scale.comp_op0v s nu) (Scale.comp_op1v s nu) (Scale.comp_opA s nu). #[export] HB.instance Definition _ (R : pzRingType) (V : zmodType) (s : Scale.law R V) (aR : pzRingType) (nu : {rmorphism aR -> R}) :=
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
scalable_for(R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : R -> V -> V) (f : U -> V) := forall a, {morph f : u / a *: u >-> s a u}. HB.mixin Record isScalable (R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : R -> V -> V) (f : U -> V) := { semi_linear_subproof : scalable_for s f; }. HB.structure Definition Linear (R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : R -> V -> V) := {f of @isNmodMorphism U V f & isScalable R U V s f}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalable_for
semilinear_for(R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : R -> V -> V) (f : U -> V) : Type := scalable_for s f * {morph f : x y / x + y}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semilinear_for
nmod_morphism_semilinear(R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : Scale.semiLaw R V) (f : U -> V) : semilinear_for s f -> nmod_morphism f. Proof. by case=> sf Df; split => //; rewrite -[0 in LHS](scale0r 0) sf Scale.op0v. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
nmod_morphism_semilinear
additive_semilinear:= nmod_morphism_semilinear.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
additive_semilinear