fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
scalable_semilinear(R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : Scale.preLaw R V) (f : U -> V) : semilinear_for s f -> scalable_for s f. Proof. by case. Qed. HB.factory Record isSemilinear (R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : Scale.semiLaw R V) (f : U -> V) := { linear_subproof : semilinear_for s f; }. HB.builders Context R U V s f of isSemilinear R U V s f. HB.instance Definition _ := isNmodMorphism.Build U V f (additive_semilinear linear_subproof). HB.instance Definition _ := isScalable.Build R U V s f (scalable_semilinear linear_subproof). HB.end.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalable_semilinear
linear_for(R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : R -> V -> V) (f : U -> V) := forall a, {morph f : u v / a *: u + v >-> s a u + v}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear_for
zmod_morphism_linear(R : pzRingType) (U : lmodType R) V (s : Scale.law R V) (f : U -> V) : linear_for s f -> zmod_morphism f. Proof. by move=> Lsf x y; rewrite -scaleN1r addrC Lsf Scale.N1op addrC. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `zmod_morphism_linear` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_morphism_linear
additive_linear:= zmod_morphism_linear.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
additive_linear
scalable_linear(R : pzRingType) (U : lmodType R) V (s : Scale.law R V) (f : U -> V) : linear_for s f -> scalable_for s f. Proof. by move=> Lsf a v; rewrite -[a *:v](addrK v) (zmod_morphism_linear Lsf) Lsf addrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalable_linear
semilinear_linear(R : pzRingType) (U : lmodType R) V (s : Scale.law R V) (f : U -> V) : linear_for s f -> semilinear_for s f. Proof. move=> Lsf; split=> [a x|x y]; first exact: (scalable_linear Lsf). have f0: f 0 = 0 by rewrite -[0 in LHS]subr0 (zmod_morphism_linear Lsf) subrr. by rewrite -[y in LHS]opprK -[- y]add0r !(zmod_morphism_linear Lsf) f0 sub0r opprK. Qed. HB.factory Record isLinear (R : pzRingType) (U : lmodType R) (V : zmodType) (s : Scale.law R V) (f : U -> V) := { linear_subproof : linear_for s f; }. HB.builders Context R U V s f of isLinear R U V s f. HB.instance Definition _ := isZmodMorphism.Build U V f (zmod_morphism_linear linear_subproof). HB.instance Definition _ := isScalable.Build R U V s f (scalable_linear linear_subproof). HB.end.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semilinear_linear
scalablef := (scalable_for *:%R f).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalable
semilinearf := (semilinear_for *:%R f).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semilinear
semiscalarf := (semilinear_for *%R f).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiscalar
linearf := (linear_for *:%R f).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear
scalarf := (linear_for *%R f).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalar
map_class:= mapUV.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
map_class
map_at(a : R) := mapUV.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
map_at
map_fora s_a := MapFor {map_for_map : mapUV; _ : s a = s_a}.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
map_for
unify_map_ata (g : map_at a) := MapFor g (erefl (s a)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
unify_map_at
wrapped:= Wrap {unwrap : mapUV}.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
wrapped
wrap(f : map_class) := Wrap f.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
wrap
Linear.map_for_map : Linear.map_for >-> Linear.type.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Linear
Linear.unify_map_at : Linear.map_at >-> Linear.map_for.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Linear
Linear.unify_map_at.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Linear
Linear.unwrap : Linear.wrapped >-> Linear.type.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Linear
Linear.wrap : Linear.map_class >-> Linear.wrapped.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Linear
Linear.wrap.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Linear
linear0: f 0 = 0. Proof. exact: raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear0
linearD: {morph f : x y / x + y}. Proof. exact: raddfD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearD
linearMnn : {morph f : x / x *+ n}. Proof. exact: raddfMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearMn
linear_sumI r (P : pred I) E : f (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f (E i). Proof. exact: raddf_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear_sum
linearZ_LR: scalable_for s f. Proof. exact: semi_linear_subproof. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearZ_LR
semilinearP: semilinear_for s f. Proof. split; [exact: linearZ_LR | exact: linearD]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semilinearP
linearP: linear_for s f. Proof. by move=> a u v /=; rewrite !semilinearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearP
linearN: {morph f : x / - x}. Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearN
linearB: {morph f : x y / x - y}. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearB
linearMNnn : {morph f : x / x *- n}. Proof. exact: raddfMNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearMNn
linearZ(R : pzSemiRingType) (U : lSemiModType R) (V : nmodType) (s : R -> V -> V) (S : pzSemiRingType) (h : Scale.preLaw S V) (c : S) (a : R) (h_c := h c) (f : Linear.map_for U s a h_c) (u : U) : f (a *: u) = h_c (Linear.wrap f u). Proof. by rewrite linearZ_LR; case: f => f /= ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearZ
linearZZ: scalable f. Proof. exact: linearZ_LR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearZZ
semilinearPZ: semilinear f. Proof. exact: semilinearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semilinearPZ
linearPZ: linear f. Proof. exact: linearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linearPZ
can2_scalablef' : cancel f f' -> cancel f' f -> scalable f'. Proof. by move=> fK f'K a x; apply: (canLR fK); rewrite linearZZ f'K. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
can2_scalable
can2_semilinearf' : cancel f f' -> cancel f' f -> semilinear f'. Proof. by move=> fK f'K; split=> ? ?; apply: (canLR fK); rewrite semilinearPZ !f'K. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
can2_semilinear
can2_linearf' : cancel f f' -> cancel f' f -> linear f'. Proof. by move=> fK f'K a x y /=; apply: (canLR fK); rewrite linearP !f'K. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
can2_linear
scalarZ: scalable_for *%R f. Proof. exact: linearZ_LR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalarZ
semiscalarP: semiscalar f. Proof. exact: semilinearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiscalarP
scalarP: scalar f. Proof. exact: linearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalarP
idfun_is_scalable: scalable (@idfun U). Proof. by []. Qed. #[export] HB.instance Definition _ := isScalable.Build R U U *:%R idfun idfun_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
idfun_is_scalable
comp_is_scalable: scalable_for s (f \o g). Proof. by move=> a v /=; rewrite !linearZ_LR. Qed. #[export] HB.instance Definition _ := isScalable.Build R W V s (f \o g) comp_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
comp_is_scalable
null_fun_is_scalable: scalable_for s (\0 : U -> V). Proof. by move=> a v /=; rewrite raddf0. Qed. #[export] HB.instance Definition _ := isScalable.Build R U V s \0 null_fun_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
null_fun_is_scalable
add_fun_is_scalable: scalable_for s (add_fun f g). Proof. by move=> a u; rewrite /= !linearZ_LR raddfD. Qed. #[export] HB.instance Definition _ := isScalable.Build R U V s (f \+ g) add_fun_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
add_fun_is_scalable
opp_is_scalable: scalable (-%R : U -> U). Proof. by move=> a v /=; rewrite scalerN. Qed. #[export] HB.instance Definition _ := isScalable.Build R U U *:%R -%R opp_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
opp_is_scalable
sub_fun_is_scalable: scalable_for s (f \- g). Proof. by move=> a u; rewrite /= !linearZ_LR raddfB. Qed. #[export] HB.instance Definition _ := isScalable.Build R U V s (f \- g) sub_fun_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sub_fun_is_scalable
opp_fun_is_scalable: scalable_for s (\- f). Proof. by move=> a u; rewrite /= linearZ_LR raddfN. Qed. #[export] HB.instance Definition _ := isScalable.Build R U V s (\- f) opp_fun_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
opp_fun_is_scalable
Definition_ := isScalable.Build R U A *:%R (a \o* f) mulr_fun_is_scalable.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
DefinitionLRMorphism (R : pzSemiRingType) (A : lSemiAlgType R) (B : pzSemiRingType) (s : R -> B -> B) := {f of @RMorphism A B f & isScalable R A B s f}.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
rmorph_alga : f a%:A = a%:A. Proof. by rewrite linearZ /= rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_alg
RecordPzSemiRing_hasCommutativeMul R of PzSemiRing R := { mulrC : commutative (@mul R) }.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR := (PzSemiRing_hasCommutativeMul.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SemiRing_hasCommutativeMulR := (PzSemiRing_hasCommutativeMul R) (only parsing). #[short(type="comPzSemiRingType")] HB.structure Definition ComPzSemiRing := {R of PzSemiRing R & PzSemiRing_hasCommutativeMul R}.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SemiRing_hasCommutativeMul
RecordNmodule_isComPzSemiRing R of Nmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mulrC : commutative mul; mul1r : left_id one mul; mulrDl : left_distributive mul add; mul0r : left_zero zero mul; }. HB.builders Context R of Nmodule_isComPzSemiRing R.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
mulr1:= Monoid.mulC_id mulrC mul1r.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr1
mulrDr:= Monoid.mulC_dist mulrC mulrDl.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrDr
mulr0: right_zero zero mul. Proof. by move=> x; rewrite mulrC mul0r. Qed. HB.instance Definition _ := Nmodule_isPzSemiRing.Build R mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0. HB.instance Definition _ := PzSemiRing_hasCommutativeMul.Build R mulrC. HB.end. #[short(type="comNzSemiRingType")] HB.structure Definition ComNzSemiRing := {R of NzSemiRing R & PzSemiRing_hasCommutativeMul R}. #[deprecated(since="mathcomp 2.4.0", note="Use ComNzSemiRing instead.")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr0
ComSemiRingR := (ComNzSemiRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
ComSemiRing
sort:= (ComNzSemiRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use ComNzSemiRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (ComNzSemiRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use ComNzSemiRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (ComNzSemiRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordNmodule_isComNzSemiRing R of Nmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mulrC : commutative mul; mul1r : left_id one mul; mulrDl : left_distributive mul add; mul0r : left_zero zero mul; oner_neq0 : one != zero }.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR := (Nmodule_isComNzSemiRing.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
Nmodule_isComSemiRingR := (Nmodule_isComNzSemiRing R) (only parsing). HB.builders Context R of Nmodule_isComNzSemiRing R.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Nmodule_isComSemiRing
mulr1:= Monoid.mulC_id mulrC mul1r.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr1
mulrDr:= Monoid.mulC_dist mulrC mulrDl.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrDr
mulr0: right_zero zero mul. Proof. by move=> x; rewrite mulrC mul0r. Qed. HB.instance Definition _ := Nmodule_isNzSemiRing.Build R mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0 oner_neq0. HB.instance Definition _ := PzSemiRing_hasCommutativeMul.Build R mulrC. HB.end.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr0
Definition_ := SemiGroup.isCommutativeLaw.Build R *%R mulrC.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
mulrCA: @left_commutative R R *%R. Proof. exact: mulmCA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrCA
mulrAC: @right_commutative R R *%R. Proof. exact: mulmAC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrAC
mulrACA: @interchange R *%R *%R. Proof. exact: mulmACA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrACA
exprMnn : {morph (fun x => x ^+ n) : x y / x * y}. Proof. by move=> x y; exact/exprMn_comm/mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprMn
prodrXln I r (P : pred I) (F : I -> R) : \prod_(i <- r | P i) F i ^+ n = (\prod_(i <- r | P i) F i) ^+ n. Proof. by rewrite (big_morph _ (exprMn n) (expr1n _ n)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrXl
prodr_undup_exp_count(I : eqType) r (P : pred I) (F : I -> R) : \prod_(i <- undup r | P i) F i ^+ count_mem i r = \prod_(i <- r | P i) F i. Proof. exact: big_undup_iterop_count. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodr_undup_exp_count
prodrMl{I : finType} (A : pred I) (x : R) F : \prod_(i in A) (x * F i) = x ^+ #|A| * \prod_(i in A) F i. Proof. by rewrite big_split ?prodr_const. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrMl
prodrMr{I : finType} (A : pred I) (x : R) F : \prod_(i in A) (F i * x) = \prod_(i in A) F i * x ^+ #|A|. Proof. by rewrite big_split ?prodr_const. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrMr
exprDnx y n : (x + y) ^+ n = \sum_(i < n.+1) (x ^+ (n - i) * y ^+ i) *+ 'C(n, i). Proof. by rewrite exprDn_comm //; apply: mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprDn
sqrrDx y : (x + y) ^+ 2 = x ^+ 2 + x * y *+ 2 + y ^+ 2. Proof. by rewrite exprDn !big_ord_recr big_ord0 /= add0r mulr1 mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sqrrD
rmorph_comm(S : pzSemiRingType) (f : {rmorphism R -> S}) x y : comm (f x) (f y). Proof. by red; rewrite -!rmorphM mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rmorph_comm
scale_is_scalable: scalable ( *:%R b : V -> V). Proof. by move=> a v /=; rewrite !scalerA mulrC. Qed. #[export] HB.instance Definition _ := isScalable.Build R V V *:%R ( *:%R b) scale_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scale_is_scalable
scale_fun_is_scalable: scalable (b \*: f). Proof. by move=> a v /=; rewrite !linearZ. Qed. #[export] HB.instance Definition _ := isScalable.Build R U V *:%R (b \*: f) scale_fun_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scale_fun_is_scalable
pFrobenius_aut_is_nmod_morphism: nmod_morphism (pFrobenius_aut pcharRp). Proof. by split=> [|x y]; [exact: pFrobenius_aut0 | exact/pFrobenius_autD_comm/mulrC]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut_is_nmod_morphism
pFrobenius_aut_is_monoid_morphism: monoid_morphism (pFrobenius_aut pcharRp). Proof. by split=> [|x y]; [exact: pFrobenius_aut1 | exact/pFrobenius_autM_comm/mulrC]. Qed. #[export] HB.instance Definition _ := isNmodMorphism.Build R R (pFrobenius_aut pcharRp) pFrobenius_aut_is_nmod_morphism. #[export] HB.instance Definition _ := isMonoidMorphism.Build R R (pFrobenius_aut pcharRp) pFrobenius_aut_is_monoid_morphism.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut_is_monoid_morphism
exprDn_pcharx y n : (pchar R).-nat n -> (x + y) ^+ n = x ^+ n + y ^+ n. Proof. pose p := pdiv n; have [|n_gt1 pcharRn] := leqP n 1; first by case: (n) => [|[]]. have pcharRp: p \in pchar R by rewrite (pnatPpi pcharRn) ?pi_pdiv. have{pcharRn} /p_natP[e ->]: p.-nat n by rewrite -(eq_pnat _ (pcharf_eq pcharRp)). by elim: e => // e IHe; rewrite !expnSr !exprM IHe -pFrobenius_autE rmorphD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprDn_pchar
DefinitionComPzRing := {R of PzRing R & ComPzSemiRing R}. HB.factory Record PzRing_hasCommutativeMul R of PzRing R := { mulrC : commutative (@mul R) }.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
BuildR := (PzRing_hasCommutativeMul.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
Ring_hasCommutativeMulR := (PzRing_hasCommutativeMul R) (only parsing). HB.builders Context R of PzRing_hasCommutativeMul R. HB.instance Definition _ := PzSemiRing_hasCommutativeMul.Build R mulrC. HB.end. HB.factory Record Zmodule_isComPzRing R of Zmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mulrC : commutative mul; mul1r : left_id one mul; mulrDl : left_distributive mul add; }. HB.builders Context R of Zmodule_isComPzRing R.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Ring_hasCommutativeMul
mulr1:= Monoid.mulC_id mulrC mul1r.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr1
mulrDr:= Monoid.mulC_dist mulrC mulrDl. HB.instance Definition _ := Zmodule_isPzRing.Build R mulrA mul1r mulr1 mulrDl mulrDr. HB.instance Definition _ := PzRing_hasCommutativeMul.Build R mulrC. HB.end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrDr
pFrobenius_aut_is_multiplicative:= (fun p => (p.2, p.1) \o pFrobenius_aut_is_monoid_morphism) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use exprDn_pchar instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut_is_multiplicative
exprDn_char:= exprDn_pchar (only parsing). #[short(type="comNzRingType")] HB.structure Definition ComNzRing := {R of NzRing R & ComNzSemiRing R}. #[deprecated(since="mathcomp 2.4.0", note="Use ComNzRing instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprDn_char
ComRingR := (ComNzRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
ComRing
sort:= (ComNzRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use ComNzRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (ComNzRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use ComNzRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (ComNzRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordZmodule_isComNzRing R of Zmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mulrC : commutative mul; mul1r : left_id one mul; mulrDl : left_distributive mul add; oner_neq0 : one != zero }.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR := (Zmodule_isComNzRing.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build